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We propose a multiscale method to explore the energy landscape of water clusters. An asynchronous genetic
algorithm is employed to explore the potential energy surface (PES) of OSS2 and TTM2.1-F models. Local
minimum structures are collected on the fly, and the ultrafast shape recognition algorithm was used to remove
duplicate structures. These structures are then refined at the B3LYP/6-31+G* level. The number of distinct
local minima we found (21, 76, 369, 1443, and 3563 isomers for n ) 4-8, respectively) reflects the complexity
of the PES of water clusters.

Introduction

Neutral water clusters have been investigated extensively for
a long period because they provide important understanding of
properties of water molecules in aqueous media.1–16 A number
of empirical potential models have been developed for estimat-
ing the interaction energies and to reproduce the ground-state
structures of first-principle calculation. To date, many research-
ers have focused on using the global minima to validate and
compare the different potential models. Lee et al. applied a
simulated annealing method with the empirical potential function
of Cieplak, Kollman, and Lybrand to optimize water clusters
up to n ) 20.4 With the use of basin hopping, Wales and Hodges
studied the TIP4P17 and TIP5P18 potentials for n e 21 and
performed a comparison of the structures and formation energies
obtained against the MP2 calculation. More recently, Bandow
and Hartke10 developed a highly parallel evolutionary algorithm
to study water clusters up to n ) 34 on TIP4P and TTM2-F
potentials. It is worth noting that these earlier methods generally
focus on global optimization with empirical models for the large-
sized system in the efforts to bridge the gap from single
molecule to bulk materials.

Recently, Maeda and Ohno11 proposed a full first-principle-
based approach for studying the structures and thermodynamic
transitions of water clusters by searching for isomers instead
of focusing only on the global minima. The authors have
developed a scaled hypersphere search (SHS) method that
employs an “uphill-walking” technique to locate the isomers
sequentially. The set of 168 identified isomers for (H2O)8 at
the B3LYP/6-31+G(d,p) level was considered to be relatively
large. The shortcoming of the proposed method, however, is
its complete reliance on first-principle and second-order deriva-
tive calculations. The high computational demand of first-
principle calculations renders this method computationally
infeasible for exploring the quantum chemistry potential energy
surfaces (PES) with a large number of local minima.

In this study, we presented an alternative approach that
synergizes empirical model with first-principle calculations. Our
aim is to benefit from the low computational cost of empirical
models by coupling it with first-principle calculation to explore
the PES of water clusters at the quantum mechanical level.
Consequently, the search for isomers becomes an efficient yet
highly accurate process. We demonstrated the approach with
two sophisticated, flexible potential models, OSS2 and TTM2.1-
F. The isomers of (H2O)n in the range of n ) 4-8 of these
models were collected extensively using an asynchronous
parallelized genetic algorithm and subsequently refined using
B3LYP/6-31+G*. The details are described in the next section,
followed by the results and discussions.

Methodology

Empirical Models. TTM2-F is a flexible, polarizable, Thole-
typeinteractionpotentialdevelopedbyBernhamandco-workers.5–8,19

Although the model was parameterized using water dimer only,
it was shown to reproduce the binding energies that are in close
agreement to MP2 calculations for (H2O)n (n ) 2-6)8 and
(H2O)20.9 In this study, we first considered the TTM2.1-F
empirical model,20 which is a revised version of the original
TTM2-F, that reportedly resolves issues relating to the dipole
moment of individual water and short intermolecular interactions.

The second sophisticated empirical model considered in this
study is the OSS2 potential.21 It was developed to describe water
as a participant in ionic chemistry. Since it is an atomic and
polarizable potential, OSS2 is useful for studying the proton-
transfer reaction and water disassociation. While originally
designed for H+(H2O)n, it was later demonstrated by some
researchers to model small-sized pure water clusters well.22

The close agreement of both TTM2.1-F and OSS2 with the
first-principle method on small-sized water clusters inspired our
idea of engaging empirical models to enhance the exploration
of PES at the quantum level. Because the PES landscape and
the structures of water cluster isomers generated by these two
models are sufficiently close to that of first-principle counter-
parts, it makes good sense to use their local minima as input to
first-principle methods, thus reducing the computational efforts
required.
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Exploring PES Using a Genetic Algorithm. An asynchro-
nous genetic algorithm (GA) is used for exploring the PES to
locate the global and local minima of the empirical models.
Similar to prior works,10,23 our real-coded GA explores directly
the configuration space based on a Cartesian representation. The
asynchronous, nongenerational-based GA, which was success-
fully applied elsewhere for optimizing water clusters,10 is used
in this study: the master node manages the population of
candidate structures and performs the genetic operators while
the slave nodes locally optimize the structures sent by the master.

The flowchart of our GA is depicted in Figure 1. After
initialization, parent structures are rank-selected from the
population before undergoing crossover and/or mutation to
generate the offspring. In crossover, the selected structures are
first cut into two equal-sized substructures using a random plane
across their centers of mass. The substructures are then swapped
to form new, possibly lower energy, structures. In mutation,
both molecular and atomic moves are applied to a maximum
of 30% of the molecules in the cluster. Further, 10% of the
molecules are randomly chosen to be rotated around the mass
center. Constraints on bond lengths and bond angles are imposed
on the molecular and atomic moves to avoid unnatural geometries.

Each individual offspring structure is sent to a slave node
for local optimization. If the local optimization is successful,
i.e., the root mean square of force is less than 0.00005 hartree/
Å, the resultant locally optimized structure is then inserted back
into the GA population of the master node to compete for
reproductive opportunities in the spirit of Lamarckian learning.24–26

It is also archived for further analysis. This entire process repeats
until a maximum number of iterations or the wall-clock time
limit is reached.

In many cases, low-lying structures easily dominate the others
in the population leading to premature search convergence. In
the present context, for example, the consequence is that the
crossover operator fails to generate any further improvements
when the population of structures becomes homogeneous. To
maintain diversity in the population, the ultrafast shape recogni-
tion (USR) metric, developed recently by Ballester and Rich-
ards27 was used. USR provides an efficient means of measuring
the similarity of cluster geometries. With the use of the Cartesian
coordinates of two structures, the USR similarity index is
computed. The similarity index is a scalar value in the range of

[0, 1]. A value of 0 implies that the structures are completely
dissimilar, whereas the other extreme indicates identical struc-
tures. In the present study, diversity is preserved by ensuring
the similarity indices of all pairs of structures in the population
are maintained above the threshold level of 0.93.

Throughout the search process, the issue of archiving
duplicate local minima is also of concern. Since the number of
local minima grows exponentially with cluster size, the local
minima archive may become unnecessarily large and, hence,
difficult to classify. The number of isomers grows to thousands
in the present study. To ensure that only unique structures are
archived, local minima with a USR similarity of 0.96 to any
structure already in the archive are excluded.

Figure 1. Flowchart of the asynchronous genetic algorithm (GA).

Figure 2. (a) Number of isomers of water clusters in the range of n
) 4-8 of OSS2 (red crosses), TTM2.1-F (blue asterisks), and B3LYP/
6-31+G* (black triangles). The exponential dependence of the number
of isomers as a function of n can be estimated as e1.26n (red solid line)
and e1.32n (blue dotted line) for OSS2 and TTM2.1F, respectively. The
density of states (DOS) of (H2O)6, (H2O)7, and (H2O)8 in terms of
binding energy (kcal/mol) are shown in (b-d), respectively. In subplot
(d), the DOS of (H2O)8 originated from ref 11 is included for
comparison (shown in pink squares).
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First-Principle Calculation. Subsequently, all the archived
isomers using the two empirical models are refined using a first-
principle method. In particular, these archived isomers undergo
geometrical optimization using Becke’s three-parameter hybrid
method28 with the Lee, Yang, and Parr (B3LYP) functional29

and the 6-31+G* basis set. The convergence criteria were set
as the root mean square and the maximum component of
gradient less than 0.0003 and 0.00045 hartree/Å, respectively.
Furthermore, selected low-energy isomers (those shown in
Figures 3 and 4) have been examined by the MP2 method with
the aug-cc-pvDZ basis. All calculations were completed using
the GAUSSIAN-03 package.30

Results and Discussion

The number of distinct isomers is an important index to reflect
the complexity of the PES. Although there is no strict rules on
the number of isomers, Nisomer, with system size, it was
demonstrated in LJ clusters and TIP models that Nisomer would
grow exponentially with system size n, that is, Nisomer ∼ exp(Rn),
where R is a system-dependent constant.1,12,31,32 Here, the
number of isomers identified using our GA search on both OSS2
and TTM2.1F models are tabulated in Table 1. Note that since
a value of 0.96 is used as the similarity threshold index to
remove duplicate isomers, it is possible for overelimination of
unique isomers to happen. Hence, our results may be regarded
as a lower bound for the number of unique isomers that exist.
Nevertheless, the numbers of isomers we collected increases
rapidly from dozens to thousands in the range of n ) 4-8. The
exponential dependence of isomer size, n, is depicted clearly
in Figure 2a, and by linear regression we estimated the values
of R for OSS2 and TTM2.1F to be 1.26 and 1.32, respectively.

To evaluate the efficacy of using empirical potential models
to guide the exploration of PES at the quantum level, the success

rate, the ratio between the number of successfully located isomer
using B3LYP/6-31+G* and the initial number of isomers used
as starting geometries, was computed. As shown in Table 1,
upon relaxation using density functional theory (DFT), ap-
proximately 50% of the isomers found in OSS2 successfully
converged to equivalent-topology isomers. On the other hand,
TTM2.1-F displays a higher efficiency of >60%. It is worth
noting that this also highlights the rugged PES of OSS2 over
TTM2.1-F on n ) 4-8. Nevertheless, by cross-referencing both
empirical models simultaneously, the exploration on the PES
of the first-principle method has led to the identification of far
more isomers than would be possible when using only any one
of the empirical models in isolation. For example, the set of
(H2O)7 isomers found increased to 1443 isomers compared to
1175 and 406 on OSS2 and TTM2.1F alone, respectively.

The density of states (DOS) for (H2O)6, (H2O)7, (H2O)8 are
illustrated in the Figure 2b-d, respectively, to reflect the
distribution of isomers on the energy scale. Note that calculations
based on B3LYP/6-31+G* lead to a shift in DOS to larger
binding energy in comparison with OSS2 and TTM2.1-F. This
is as expected since both OSS2 and TTM2.1F have been
parameterized based on MP2 binding energies, and it is
commonly acknowledged that the B3LYP method tends to
overestimate the interaction energies. On the other hand, the
overall features of DOS for all three models are similar. For
example, in (H2O)8 the energy gaps separating the most stable
cubic structure from the others are of similar values, with a
Gaussian distribution of the DOS spanning the scale of ∼20
kcal/mol. This suggests thermal simulation of all three models
would be comparable. Maeda and Ohno11 independently ex-
amined the energy landscape of (H2O)8 and found 164 isomers.
Here, we reoptimized their isomers using the B3LYP/6-31+G*
method, and the resultant DOS is depicted in Figure 2d. The

Figure 3. Molecular structures of the five most stable isomers in OSS2, TTM2.1-F, and B3LYP/6-31+G*, at n ) 4-6. The unit of the binding
energy is reported in kcal/mol. Note that the binding energies of the B3LYP/6-31+G* isomers reoptimized using MP2/aug-cc-pvDZ are also
reported and enclosed in parentheses.
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figure indicates that Maeda and Ohno have generated a fairly
good coverage of the low-energy region. Nevertheless, our
results highlight a significantly more complex energy landscape
of (H2O)8 than was revealed earlier, since we discovered at least
2093 isomers.

The structures of the five most stable isomers for OSS2,
TTM2.1-F, and B3LYP/6-31+G* are depicted in Figures 3 and
4. For n ) 4 and 5, the most stable forms for all three models
are ring structures. For n ) 6, the global minima of OSS2 is
also of ring form, which is similar to the TIP5P model; the
TTM2.1F global minima has a cagelike form similar to the
TIP4P model, whereas B3LYP/6-31+G* is of a two-ring-
membered form. For n ) 7, TTM2.1-F and DFT calculations
predict the cubelike structure with a missing corner as the most
stable state, whereas OSS2 retains the prediction of double ring

structure. Overall, one can conclude that OSS2 tends to favor
more open structures rather than compact forms, whereas
TTM2.1F displays an opposite trend. From the binding energies
(by OSS2, TTM2.1F, B3LLYP/6-31+G*, and MP2/aug-cc-
pvDZ methods) of these low-energy isomers, it is clear that the
lower part of the PES of water clusters are characterized by
many isoenergetic isomers, and it is beyond the scope of this
work to make an extensive comparison of the empirical models.
Nevertheless, the isomers we have archived will serve as a good
starting effort to span greater investigation on using a multiscale
approach to explore the PES of water clusters. Furthermore,
we have also provided the five most stable structures in this
paper with the aim of facilitating future studies in the field.

Conclusions

In this work, we demonstrated a multiscale approach for
exploring the PES of water clusters at the quantum chemistry
level in the range of n ) 4-8. Two flexible models, TTM2.1F
and OSS2, were used in the prescreening process for identifying
the probable locations of the isomers in the PES of the B3LYP/
6-31+G* calculation. The numbers of distinct isomers found
using the present methodology are much larger than those
reported in the literature highlighting the complexity of the PES
of water clusters. In this study, the moderate 6-31+G* basis
set has been chosen due to its high computational efficiency.
Currently, we are extending the present work to a closely
coupled multiscale optimization approach where the higher level

Figure 4. Molecular structures of the five most stable isomers in OSS2, TTM2.1-F, and B3LYP/6-31+G*, at n ) 7 and 8. The unit of the binding
energy is reported in kcal/mol. Note that the binding energies of the B3LYP/6-31+G* isomers reoptimized using MP2/aug-cc-pvDZ are also
reported and enclosed in parentheses.

TABLE 1: Numbers of Distinct Isomers of OSS2,
TTM2.1-F, and B3LYP/6-31+G* for (H2O)n, n ) 4-8a

OSS2 TTM2.1-F

size I II III (%) I II III (%) B3LYP/6-31+G*

4 38 21 55 14 10 71 21
5 186 68 37 33 23 70 76
6 736 332 45 154 95 62 379
7 2700 1175 44 639 406 64 1443
8 5521 2455 44 2331 1429 61 3563

a The “success rate” (shown in column III) is the ratio between
the number of successfully located isomers using B3LYP/6-31+G*
(column II) and the initial number of isomers used in the empirical
model (column I).
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calculations are directly coupled to mitigate the basis set
superposition error which results from the limited basis set
method.
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