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A simple model is developed to treat the energy levels and spectroscopy of diatomic molecules inside C60.
The C60 cage is treated as spherically symmetric, and the coupling to the C60 vibrations is ignored. The
remaining six degrees of freedom correspond to the vibrations and rotations of the diatomic molecule and the
rattling vibration of the molecule inside the cage. By using conservation of angular momentum, we can remove
two of these motions and simplify the calculations. The resulting energy levels are simple and can be labeled
by a set of quantum numbers. The IR and Raman spectra look like those of gas-phase diatomic molecules at
low temperatures. At higher temperatures, hot bands due to the low-frequency rattling mode appear, and the
spectrum becomes congested, looking like a solution spectrum.

Introduction

We have developed several techniques for putting nonmetal
atoms and small molecules inside fullerenes, where they remain
trapped.1–4 These species are van der Waals molecules, because
there are no formal chemical bonds between the guest and the
fullerene cage, but the guest cannot escape without breaking
several C-C bonds. We have used a high-pressure technique2

to put He, Ne, Ar, Kr, Xe, CO, and N2 inside C60
1,5 and, in

some cases, higher fullerenes. Komatsu et al. have developed a
way to chemically open a hole in C60 and C70 that is large
enough to admit He and H2.6 They were then able to fill C60

with H2 and remove the outside groups, closing the hole.7 The
result was H2@C60: C60 where almost every molecule contained
H2. Iwamatsu has made two derivatives of C60 with larger holes
that can admit H2O, CO, N2, and larger noble gases.8–11 There
is currently no known way to close these larger holes, but it is
quite likely that one will be found, and the list of molecules
that can be trapped inside fullerenes will grow.

These unusual molecules can be expected to have unusual
spectra. What does the IR spectrum of CO@C60 look like? With
62 atoms and a nonstandard structure, it is very difficult to treat
accurately. Olthof et al. have done a model calculation on
CO@C60,12 and more recently, Xu et al. have done one on
H2@C60.13 Furthermore, as explained below, the most interesting
spectra will have to be done in the solid state at low temper-
atures; therefore, interactions with neighboring molecules could
be important. Here, we develop a simple model to explore this
spectroscopy in the case of a diatomic molecule inside C60.
Although the results are unlikely to give an accurate description
of the true spectra, the model may help explain the basic features
of the spectra and point the way to more complicated and
accurate models. Electronic structure calculations on H2@C60

show that, if the H2 is placed at the center of the C60 cage,
there is almost no torque on the molecule as it points to the
various bonds and rings of the C60.14 Similar calculations were
done for CO@C60 with the same results.15 This suggests that
we can treat C60 as having spherical symmetry rather than only
Ih symmetry. The frequencies associated with the atom or
molecule vibration inside C60 are thought to be fairly low,
around 100 cm-1,16–18 and well below the normal modes of the

C60 cage.19 This suggests that the coupling to the cage vibrations
is small, and we can get away with neglecting it, at least to a
first approximation. We are then left with studying the motions
of a molecule inside a rigid, spherically symmetric cage with
some sort of potential between the molecule and the cage. This
system has only six degrees of freedom and is tractable. We
use a suitable basis set in the six variables and compute and
diagonalize the Hamiltonian matrix to get the allowed energies.
Both Olthof et al.12 and Xu et al.13 ignore the coupling to the
cage vibrations. They do not make the approximation of
spherical symmetry. However, this approximation allows us to
use the full power of angular momentum theory and to partially
diagonalize the Hamiltonian, thus greatly simplifying the
calculations. We can then take the electric dipole matrix
elements between states to get the IR spectrum or the matrix
elements of the polarizability tensor to get the Raman spectrum.
The results show that the energy levels are regular and can be
assigned to a simple set of quantum numbers. The computed
IR spectrum of CO@C60 at low temperatures looks very much
like the gas-phase spectrum. As the temperature is raised, more
and more lines appear. As a result, we get a gas-phase spectrum
at low temperature and a solution-like spectrum at high
temperature.

Computational Details

The six coordinates required to define the positions of the
two atoms inside a spherical cavity are best defined by two
vectors. Let r ) (r,θ,φ) be the vector between the two atoms.
Let R ) (R,Θ,Φ) be the vector between the center of the cavity
and the center of mass of the molecule. Then, motion along r
is basically the vibration of the molecule, whereas θ and φ

describe its rotation. The coordinates R, Θ, and Φ describe the
rattling vibration as the molecule moves inside the cage.

Because of the spherical symmetry, we can rotate both R
and r by any angle without changing the potential. The potential
is then

V)V(R, r, γ) (1)

where γ is the angle between R and r. At R ) 0, V is
independent of γ. The form of the potential and much of the
following theory are very similar to the quantum mechanics of
the scattering of an atom from a diatomic molecule.20–22 We* Corresponding author. E-mail: james.cross@yale.edu.
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start by expanding the potential in a series of Legendre
polynomials.

V(R, r, γ)) 1
2

k0(r- r0)
2 +V0 +∑

λ)0

∞

Vλ(R, r) Pλ(cos γ) (2)

where k0 and r0 are the force constant and the bond length for
the free diatomic, respectively, and V0 ) V(0,r0,γ). V0 defines
the energy zero for the calculation, and we can ignore it, thus
setting E ) 0 to be the energy at R ) 0 and r ) r0. For
homonuclear diatomics, Vλ is zero for odd λ because of
symmetry.

We could determine the potential by doing a series of ab
initio electronic structure calculations by using any of a number
of popular programs. In practice, it is not so simple. A major
part of the interaction is due to the van der Waals force.
Including this requires correlation and a large basis set. Because
most cases lack symmetry, this amounts to a very long
calculation. Having made some severe approximation to define
the model, it seems more appropriate to use a simple potential.
We assume a Lennard-Jones potential between each atom of
the diatomic and each of the sixty carbons on C60. Both Olthof
et al.12 and Xu et al.13 use similar potentials.
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where FAi is the distance between atom A in the diatomic and
carbon i in C60 and ε and σ are the Lennard-Jones parameters
for the interaction of A and B and a carbon atom (see the
Supporting Information). The values of these parameters are,
at best, only an educated guess, and the results of the calculation
depend rather strongly on them. We can then determine Vλ(R,r)
by integrating VPλ(cos γ) over γ. In practice, we need terms
only through λ ) 5. For most diatomics, the force constant is
sufficiently large that only small changes in r occur. We can
expand Vλ(R,r) in a power series in (r - r0) by keeping only
the constant and linear terms. We then expand Vλ(R,r) in a power
series in R, but now, we have to keep more terms. Because the
potential is not strictly spherically symmetric, Vλ(R,r) depends
slightly on the orientation of the C60 molecule, particularly for
large λ and large R. Calculations of the energy levels (see below)
with the C60 oriented with a pentagon, a double bond, or a
carbon atom along the z-axis show differences of at most a few
tenths of a percent. In contrast, increasing the two Lennard-
Jones σ parameters by 1% causes changes in energies larger by
an order of magnitude.

We must calculate the matrix elements of the Hamiltonian
by using some basis set of functions. For five of the six

coordinates, the choice is obvious and routine. For r, we use
harmonic-oscillator wave functions uν(r), where ν is the quantum
number. We need not use the force constant (frequency) and r0

for the free molecule. In fact, changing these values slightly
from the values for the free molecule can result in faster
convergence, meaning that we can use fewer basis functions.

For the four angular variables, we can use spherical harmon-
ics, Yjmj(θ,φ) and Ylml(Θ,Φ). The resulting matrix elements
contain an ugly mess of Clebsch-Gordan coefficients (see the
Supporting Information). Because of the spherical symmetry,
there is no torque on the system as a whole, and the total angular
momentum must be conserved. We can couple the rotational
angular momentum (j and mj) and the orbital angular momentum
(l and ml) to get basis functions in |JMjl〉 . The magnitude of the
total angular momentum is given by J and its z component by
M. The resulting Hamiltonian matrix contains an even uglier
mess of Clebsch-Gordan and 6-j coefficients, but it is diagonal
in J and M and independent of M. There is one further
symmetry. Because of parity, ∆j and ∆l must be either both
even (even parity) or both odd (odd parity). Blocks of different
parity are uncoupled. For J ) 0, only the even parity block is
present. This sort of basis set is standard in the theory of
molecular scattering. Without the assumption of spherical
symmetry, these diagonalizations are impossible.

This leaves the variable R. A natural choice of basis set is a
set of harmonic oscillator wave functions about R ) 0. However,
because of the three-dimensional nature of the problem, these
are not the usual Hermite polynomials described in every book
on quantum mechanics. We look at the problem of an atom
inside a spherical cage with a harmonic potential. The Schrö-
dinger equation is immediately soluble in Cartesian coordinates.
It separates into three degenerate one-dimensional Schrödinger
equations for the harmonic oscillator. The energies are

E) (nx + ny + nz + 3 ⁄ 2)hν (4)

Unfortunately, this solution is of little use because we need
spherical coordinates to do the angular momentum coupling.
We can also separate the Schrödinger equation in spherical
coordinates. The process is very similar to what is done for the
hydrogen atom. The details are given in the Supporting
Information. The angular part of the wave function is a spherical
harmonic with quantum numbers l and ml, where ml ) -l, -l
+ 1,..., l. With some substitutions, the radial equation can be
transformed to Laguere’s differential equation. Well-behaved
solutions give rise to a quantum number n ) 0, 1, 2,... Unlike
the hydrogen atom, the energies depend on both n and l (but
not ml), and there is no restriction on l. The energy is

Enl ) (2n+ l+ 3 ⁄ 2)hν (5)

The ground state corresponds to n ) l ) 0 and is nondegenerate.
The first excited state corresponds to n ) 0, l ) 1 and is 3-fold
degenerate (ml ) ( 1, 0). One quantum goes into the x, y, or
z mode. The next state is 6-fold degenerate corresponding to n
) 1, l ) 0 and n ) 0, l ) 2. The energy depends on a single
quantum number k ) 2n + l, and the degeneracy is given by

gk )
1
2

(k+ 1)(k+ 2) (6)

If anharmonic terms are included in the potential, the degeneracy
in k is lost, but the degeneracy in ml is retained. Matrix elements
in R are obtained as integrals over the Laguerre functions, as
described in the Supporting Information.

For each value of J and parity, we can calculate a Hamiltonian
matrix with quantum numbers j, l, ν, and n. For the case of

TABLE 1: Energies of the States in the Lowest Level for
CO@C60

J parity E cm-1 E/J(J + 1) cm-1

0 + 0
1 - 3.75 1.875
2 + 11.36 1.893
3 - 22.68 1.890
4 + 37.93 1.897
5 - 56.62 1.887
6 + 79.63 1.896
7 - 105.88 1.891
8 + 136.37 1.894
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CO@C60, the dimension ranges from a few hundred for J ) 0
to a few thousand for larger J. All the Hamiltonian matrices
for J ) 0-8 can be diagonalized in less than an hour of
computer time on a standard PC.

Results and Discussion

After diagonalizing the Hamiltonian matrix, we are left with
long tables of eigenvalues, one for each J and parity. We must
now try to make sense of the data. For CO@C60, this is not
hard. By starting with the lowest energies, we find a series of
states with even parity for even J and odd parity for odd J which
have the energies

E)E0 +BJ(J+ 1) (7)

where B is close but not equal to the gas-phase rotation constant
for CO. The energies are shown in Table 1.

About 100 cm-1 higher is a second series with both even
and odd parities but without a state with J ) 0. The odd and
even parity states for a given J are close in energy but not
degenerate. This series is followed by a series like the first series.
Then, there is a gap and a series with both even and odd parities
but only for states with J g 2. The value of B differs from state
to state but is almost always within 20% of the gas-phase value.
The fit to eq 7 gets worse as the energy gets larger, because
there are often two or more states with the same J and parity
which are close together, causing small interactions between
them. Nature needs not be so accommodating. The system might
have been chaotic. Then, we would have gotten a series of
seemingly random energies. Making small changes in the
potential parameters would then have produced a very different
series of energies. Fitting or interpreting experimental data
would be nearly impossible.

Clearly, we must devise an approximate set of quantum
numbers to assign to the various states and thus simplify the
classification. As mentioned above, the form of the potential
and the angular momentum coupling are similar to those used
in the calculation of the scattering of an atom and a diatomic
molecule. Here, we also have rotational and orbital angular
momentum that couple. Again, the total J and parity are
conserved. There are various coupling schemes used in the
scattering problem. The one described above is known as the
space-fixed (SF) representation. The quantum numbers are V,
n, J, M, j, and l. A second representation is the body-fixed (BF)
representation.23 Here, we get the projection of the rotational
angular momentum along the vector R. The quantum numbers
are V, n, J, M, j, and µ, where µ is the projection quantum
number. The transformation between SF and BF representations
mixes states of different l. In the BF representation, the potential
matrix is simpler, but the kinetic energy is no longer diagonal.
In the scattering problem, generally R . r, and the energy
difference between states of different l are much smaller than
between states of different j. Here, r . R, and the energy
spacings are reversed. It makes sense, therefore, to couple states
of different j to get the projection of l on the vector r. The
quantum numbers are V, n, J, M, l, and µ. The state for µ ) 0
has only even parity. All others have both even and odd parity.
Also, µ ) 0, 1, 2,..., l. Taking sums and differences of odd and
even parity states for µ > 0 gives a representation with both
positive and negative values of µ and no parity. The lowest
states are shown in Table 2. The energies of the states for
different J are fit to eq 7.

The lowest series of states has V ) n ) l ) µ ) 0. Only
even symmetry (even parity for even J and odd parity for odd
J) is allowed. The second series has one quantum of energy in

the rattling mode such that V ) n ) 0, l ) µ ) 1. Both even
and odd symmetries are allowed, but because µ and l are 1, J
cannot be zero. The next series at a slightly higher energy has
V ) n ) 0, l ) 1, µ ) 0. Again, only even symmetry is allowed.
This is followed by a series of states with two quanta in the
rattling mode characterized by n ) 0 and l ) 2, µ ) 2, 1, 0 and
a state with n ) 1, l ) µ ) 0. As the energy gets higher, the
various series of states get closer in energy, and the assignment
gets increasingly more difficult. Nevertheless, we can assign a
few dozen series comprising several hundred quantum states.
The energies go up to 600 cm-1. If the potential parameters are
changed, the energies change, and the ordering of closely spaced
levels change, but the general assignment scheme still works.

Calculations were also done on N2@C60 and H2@C60. In both
cases, the calculations are simplified by the symmetry. Only
terms in even λ are allowed in the expansion of the potential.
Matrix elements between even and odd j are zero. The states
for N2@C60 are quite similar to those for CO@C60. H2 has a
much larger rotation constant than CO and N2. The energy
spacing between states of different J is now comparable to the
spacing between the different series of states. With fewer J states
in the basis set, it is harder to make the assignments, but the
general scheme described above still holds.

When the Hamiltonian matrix is diagonalized, we get not only
the energies but also the matrix of the eigenvectors. This is the
unitary matrix that transforms the original basis set to the
eigenfunctions. It is then a simple matter to compute the matrix
elements of the electric dipole operator in the original basis set
and then transform it to the eigenfunction basis set. Squaring
the matrix elements and multiplying by a Boltzmann factor gives
the computed IR spectrum. The selection rules are ∆J ) ( 1,
0, and the parity must change. Figure 1 gives the IR spectrum
for CO@C60 at three different temperatures. At 20 K, the
spectrum looks remarkably similar to the gas-phase spectrum
of CO. There is a P and an R branch and a missing Q branch.
The vibrational frequency and the rotational constant are slightly
different. If you look closely, you will see that the rotational
lines are not spaced exactly right. This spectrum is due to
excitations from the lowest series of states, V ) n ) l ) µ )
0. At 100 K, we now see hot bands from states with one
quantum in the rattling mode. We now have a small Q branch,
and the lines in the P and R branches are doublets, corresponding
to odd and even parity. At still higher temperatures, the spectrum
becomes highly congested. Given the experimental line broad-
ening due to the spectrometer and to various interactions not
included in this model, we will probably loose most or all of
the structure in the peak. Thus, we get a gas-phase spectrum at
lowtemperaturesandasolution-likespectrumathightemperatures.

TABLE 2: Lowest Energy Levels for CO@C60

level syma quantb l µ n V E0
c Bd

1 e 0 0 0 0 0 0 1.89
2 e 1 1 1 0 0 120.6 1.71
3 o 1 1 1 0 0 121.2 1.89
4 e 1 1 0 0 0 186.4 2.16
5 e 2 2 2 0 0 243.0 1.59
6 o 2 2 2 0 0 244.4 1.52
7 e 2 0 0 1 0 250.5 1.72
8 e 2 2 1 0 0 314.1 1.81
9 o 2 2 1 0 0 314.2 2.09

a Even symmetry, e, is even parity for even J and odd parity for
odd J. Odd symmetry, o, is the opposite. b The nominal number of
quanta in the rattling mode is l + 2n. c Energy in cm-1 above the
lowest state, as fit to eq 7. d Rotation constant in cm-1, as fit to eq
7. B for gas-phase CO is 1.9313 cm-1.

7154 J. Phys. Chem. A, Vol. 112, No. 31, 2008 Cross



The rattling mode is IR active, and there are many weak lines
around 100 cm-1 in the spectrum. However, the intensities are
low, and this is a difficult region (far IR) to do spectroscopy.
There are no obvious lines corresponding to combination bands
involving the rattling mode and the CO stretch. This is
disappointing, because it means that it will be difficult to observe
the rattling mode by any means other than studying the
temperature dependence of the lines for the CO stretch.

N2, of course, has no IR spectrum. It does have an intense
Raman spectrum, and this can be calculated by transforming
the matrix for the polarizability tensor into the eigenfunction
basis set. Figure 2 shows some calculated spectra. As in the
case of CO, the low-temperature spectrum looks similar to the
gas-phase spectrum. There are O and S branches and a very
pronounced Q branch, going way off scale in Figure 2. As the
temperature increases, we get contributions from the hot bands,
but the Q lines are very closely spaced. The most pronounced
feature of an experimental spectrum is likely to be the Q branch.

What are the consequences of the assumptions made in
deriving the model? The most severe limitation is our almost
complete ignorance of the potential for the interaction of the
molecule and the C60 cage. Accurate ab initio calculations would
be very expensive. The four Lennard-Jones parameters used in
eq 3 are only slightly educated guesses, and the results are
affected by even small changes in these parameters. We assumed
that the C60 cage is spherically symmetric, when, in reality, it
has Ih symmetry. If we decompose various J states into the
representations of the Ih group, we see that J ) 0 goes into Ag,
J ) 1 goes into T1u,g, and J ) 2 goes into Hg,u. J ) 3
decomposes into T2u,g and Gu,g, and it is the lowest state that
goes into two different representations. One manifestation of

the Ih symmetry is likely to be that rotational lines with J g 3
will split, whereas those with J e 2 will not. Small splittings
(1 cm-1) are seen in the calculations of Olthof et al.12 and Xu
et al.13 It is harder to see the consequences of ignoring the
coupling between the motions of the diatomic molecule and
the vibrations of the C60 cage. There are no close frequency
matches, but there may be coupling to the cage vibrations.
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