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When a group of four states forms a subspace of the Hilbert space, i.e., appears to be strongly coupled with
each other but very weakly interacts with all other states of the entire space, it is possible to express the
nonadiabatic coupling (NAC) elements either in terms of s or in terms of electronic basis function angles,
namely, mixing angles presumably representing the same sub-Hilbert space. We demonstrate that those explicit
forms of the NAC terms satisfy the curl conditionssthe necessary requirements to ensure the adiabatic-diabatic
transformation in order to remove the NAC terms (could be often singular also at specific point(s) or along
a seam in the configuration space) in the adiabatic representation of nuclear SE and to obtain the diabatic one
with smooth functional form of coupling terms among the electronic states. In order to formulate extended
Born-Oppenheimer (EBO) equations [J. Chem. Phys. 2006, 124, 074101] for a group of four states, we
show that there should exist a coordinate independent ratio of the gradients for each pair of ADT/mixing
angles leading to zero curls and, thereafter, provide a brief discussion on its analytical validity. As a numerical
justification, we consider the first four eigenfunctions of the Mathieu equation to demonstrate the interesting
features of nonadiabatic coupling (NAC) elements, namely, the validity of curl conditions and the nature of
curl equations around CIs.

I. Introduction

Since the molecular processes are governed by Coulombic
interactions, it is a well-established fact that the relevant
Schroedinger equation (SE) can treat those processes accurately
and provide the solutions as the observable such as reactive/
nonreactive cross sections or spectroscopic quantities leading
to the main theoretical interest in developing numerical algo-
rithm to solve the SE. The fundamental theoretical development
by Born-Oppenheimer1 and thereafter Born-Huang2 help us
to pursue the quantum mechanical treatment of realistic mo-
lecular system as long as the process takes place exclusively
on the ground electronic state. Indeed, the situation changes
almost immediately when the excited electronic states affect
the ground due the presence of so-called “nonadiabatic cou-
pling”, i.e., the coupling among the electronic states and,
thereby, further rigorous theoretical treatment is required. When
the electronic excitations are included in the molecular pro-
cesses, the Hellmann-Feynman theorem3 points out the exist-
ence of NAC terms with singularity any where in the config-
uration space. These singularities arise due to the fact that
electronic states become degenerate at certain points or along a
line (seam) in the configuration space.4 At this junction, we may
mention that singularities dictate a crucial role in the theory of
elementary particles5 leading to vector potentials connected with
the creation and annihilation of elementary particles. It may be
interesting to note that the required theoretical approach to

handle the singularities of NAC terms in molecular physics6,7

is similar to that of used in field theory and elementary particles.
For a quite longer period, the presence of singularity in

nonadiabatic coupling terms7 had been overlooked until
Longuet-Higgins8,9 and others10,11 demonstrated that such
singularity destroy the single-valuedness of electronic wave
function in many molecular systems and therefore, it is not worth
pursuing dynamical calculations for the nuclei on the multival-
ued diabatic potential energy surfaces (PES). Herzberg and
Longuet-Higgins (HLH)12 corrected this deficiency by multiply-
ing a complex phase factor, known as Longuet-Higgins’ phase,
leading to a single-valued wave function. This “modification”
of the electronic eigenfunctions is not an outcome of any first
principles based theory but imposed in an ad hoc manner. In
an alternative manner, Mead and Truhlar13 introduced a vector
potential in the nuclear Hamiltonian to generalize the Born-
Oppenheimer (BO) equation, which is a reminiscent of the
complex phase factor treatment of Herzberg and Longuet-
Higgins. With these theoretical predictions, Kuppermann et al.14

and many others15 calculated integral and differential scattering
cross sections of the H3 isotopic system; Adhikari and Billing16

evaluated the transition probabilities of a two -arrangement
channel pseudo-Jahn-Teller model17 and clearly demonstrate
the effect of Longuet-Higgins’ phase, also known as geometric
phase (GP), on reactive/nonreactive transition probabilities with
a demand to explore the origin of GP from first principles.

The development of any first principles based theory by
including BO treatment considers the fact that slow-moving
nuclei are distinguishable from fast-moving electrons in mo-
lecular systems and intends to impose the BO approximation
by neglecting the effect of upper electronic state(s) on the lower
with the implication that the nonadiabatic coupling (NAC)
elements are negligibly small. Such approximation has been
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assumed to be independent of the eigenspectrum of the system
and, thereby, the ordinary BO equations are being frequently
used for calculations even for systems with large NAC terms.
Even if the components of the total wave function on the upper
electronic state(s) are negligibly small at enough low energies,
the products between the singularly large NAC terms and the
amplitudes of the excited state(s) wave functions could be finite
in magnitude leading to the breakdown of BO approximation.
Therefore, one needs to pursue theoretical development in such
a way that the beyond Born-Oppenheimer effects are included
in the dynamical calculations. While developing such theories,
Mead and Truhlar (MT)18 mentioned that the consideration of
the entire Hilbert space (n ) N) to incorporate the couplings
among the electronic states is indeed a trivial approach to
demonstrate. In the same article,18 they explore the curl of the
nonadiabatic coupling for any realistic description of the
electronic wave function. A general vector field can be
decomposed into longitudinal and transverse components,
where the longitudinal component can be expressed as a
derivative of a scalar and the transverse component by the curl
of a vector. The ADT can at best remove the longitudinal
component of the derivative coupling. The longitudinal and
transverse components are referred to as the removable and
nonremovable couplings.

The general characteristics of the removable and nonremov-
able components have been discussed by Kendrick, Mead, and
Truhlar.19 When the energy eigenvalues are well separated, the
removable and nonremovable couplings will be of the same
order. At sufficiently low energies (well below the energy of
the upper state), these coupling can be ignored in dynamics
calculations due to the 1/M prefactor. At the close proximity of
a degeneracy, only the removable coupling is singular and
according to the degenerate perturbation theory, the nonremov-
able couplings are insignificant.20 It means that the ADT angle
can be obtained by integrating the derivative coupling at and
around the same region. On the contrary, away from the conical
intersection, the contribution from the nonremovable coupling
appears in path-dependent integrals for the ADT angles and,
therefore, closed line integrals of the derivative coupling21 will

not be multiples of π. The inclusion of more electronic states
can reduce this problem;22 however, this greatly increases the
computational cost of ab initio quantum chemistry and dynami-
cal calculations.

One can separate the removable and nonremovable couplings
by solving Poisson’s equation for the ADT angle λ.23 As there
are many possible definitions for the boundary conditions on
λ,24 there is no unique solution. Moreover, the solution of
Poisson’s equation is computationally too expensive to be
carried out for molecules of more than three atoms. Since the
Born-Oppenheimer approximation implies that it is not neces-
sary to find the best diabatic basis, one can find a diabatic basis
for which the residual couplings can be neglected and such a
basis is referred to as quasidiabatic basis. The requirements for
a quasidiabatic basis are easier to satisfy: (a) the singularity in
the derivative coupling must be transformed away; (b) the
residual couplings must be negligible. It is desirable for a
diabatic basis to estimate the residual couplings to ensure that
no spurious couplings have been incorporated. If it is necessary,
the residual couplings could be perturbatively included in
scattering calculations.

It is a matter of contemporary research how elegantly one
can handle the NAC terms instead of neglecting them forcibly.
Since the definition of NAC terms appears in the adiabatic
representation of SE and those terms are usually very sharp
functions of nuclear coordinates with singularity in the config-
uration space, one may wish to perform a unitary transformation
to obtain the diabatic representation of those SEs, where
couplings among the electronic states are slowly varying
functions of nuclear coordinates and, therefore, the dynamical
calculations on the diabatic PESs are numerically accurate and
stable. On the other hand, the transformation from adiabatic to
diabatic representation of SEs for a given sub-Hilbert space is
guaranteed only when the NAC terms being vector fields satisfy
the so-called curl conditions. Moreover, it has been shown
analytically that the formulation of extended BO equations is
possible only when there exists a coordinate-independent ratio
of the gradients for each pair of ADT/mixing angles implying
zero curls of the NAC terms. Therefore, the nature of the curls

Figure 1. First four adiabatic potentials where k ) 0.2 and (a) Eel ) 0.05, (b) Eel ) 0.04, (c) Eel ) 0.03, (d) Eel ) 0.02, and (e) Eel ) 0.01.
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of the NAC terms is a crucial aspect to explore in order to carry
out the first principles based theoretical development on BO
treatment.

Baer et al.7,17,25-27 made the first attempt to pursue the first
principles based BO treatment on two coupled electronic states
as sub-Hilbert space, performed the adiabatic-diabatic trans-
formation of SE, and derived a new set of two coupled BO
equations by grafting the effects of NAC terms into the diagonal
to formulate the single surface extended Born-Oppenheimer
(EBO) equations. In an alternative approach, Varandas and Xu28

reformulated the two-state adiabatic nuclear SE by casting the
NAC elements in terms of nuclear coordinate dependent
electronic basis functions angle (mixing angle), found the one-
to-one correspondence between mixing28 and adiabatic-diabatic

transformation (ADT)29 angles and then derived the single-
surface EBO equation in the vicinity of degeneracy. Both the
formulations with two-dimensional sub-Hilbert space have the
following inbuilt features: (a) the components of NAC term
satisfy the curl condition; (b) the curl of the NAC term is zero.
On the other hand, in the BO treatment for any N (g3) state
coupled BO system in the adiabatic representation of nuclear
SE, the transformation from adiabatic to diabatic equations and
the formulation of EBO equations have been carried out by Baer
et al.30 and Adhikari et al.31 considering a model situation instead
of including the general features of any BO system. Moreover,
the formulation does not have the scope to demonstrate (a) how
the curl conditions are being satisfiedsa necessity to pursue
adiabatic-diabatic transformation and (b) how the curls are

Figure 2. First four adiabatic potentials where Eel ) 0.01 and (a) k ) 0.20, (b) k ) 0.15, (c) k ) 0.10, (d) k ) 0.05, and (e) k ) 0.04.

Figure 3. φ components of nonadiabatic coupling elements: (a) τ12
φ , (b) τ13

φ , (c) τ14
φ , (d) τ23

φ , (e) τ24
φ , and (f) τ34

φ as a function of q with different Eel

where k ) 0.2.
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zeros around conical intersection(s) (CI(s))sa necessary condi-
tion to formulate approximate/rigorous EBO equation. Sarkar
and Adhikari32,33 performed a generalized BO treatment of any
three coupled electronic states with a detailed analysis of curl
conditions and thereby carried out adiabatic-diabatic transfor-
mation of nuclear SE, and finally formulated approximate32 as
well as rigorous33 EBO equations in terms of electronic basis
functions/ADT angles.

In this article, we present the explicit forms of the nonadia-
batic coupling elements in terms of ADT angles by considering
the validity of ADT condition for any four-state sub-Hilbert
space. Since the NAC terms could be singular in the nuclear
configuration space, it is a necessity to transform the adiabatic
representation of SE to the diabatic in order to ensure accurate
and stable numerical calculations but this transformation is
possible only when each pair of components of the NAC terms
satisfy the curl conditions. Considering the explicit forms of
the NAC terms for any four-state sub-Hilbert space, we explore
the validity of curl conditions. Since the necessary condition to
derive the EBO equations is the existence of a relation among
the ADT angles implicating zero curls at least around the CIs,
we briefly demonstrate the analytical proof for the validity of
such relations. The principal aim of this article is to perform
numerical calculations by employing Mathieu equation34-40

considering its first four adiabatic states to evaluate adiabatic
potential energy surfaces, components of NAC terms, validity
of curl conditions, and the nature of curl/divergence equations.
Though similar calculations were being performed41-43 on the
same system to evaluate the NAC terms and their behavior at
and around the seam, presently we are performing a much more
detailed analysis.

II. Born-Oppenheimer Treatment of a Four-State
Sub-Hilbert Space

The investigations performed so far on the validity/existence
of sub-Hilbert space require a detailed discussion. When the
derivative coupling is large, the nonremovable part is a relatively
small component, whereas if the derivative coupling is small,
the nonremovable term is a relatively significant component of
the coupling vector. Kuppermann,24,44 Baer,45,46 and Yarkony21,47

carried out investigations on this issue to demonstrate the
possibility of the existence of sub-Hilbert space. The nonre-
movable couplings have been reported for the H3 system.24 It
was observed that the nonremovable couplings are at least an
order of magnitude lower than the derivative coupling when
the energy difference is less than 180 mH and the nonremovable
coupling is comparable to the derivative coupling when the
energy difference is greater than 180 mH. Baer et al.45,46 studied
a tetra-atomic system, C2H2

+, to investigate the topological
effect for both the two-state (Abelian) and multistate (non-
Abelian) case. In case of a tetra-atomic systems, topological
effects are revealed when one atom surrounds the triatom axis
or when two atoms surround (at a time) the two atoms. In other
words, it was shown that for a tetra-atomic system not only a
triatom axis but even a two-atom axis forms a seam that contains
degeneracy points. For the treatment of nonadiabatic coupling
terms, they distinguish between the case where the NAC matrix
is of 2 × 2 dimension and the case where it is of the 3 × 3
dimension. Thus, the first case applies to the two-state Hilbert
subspace and the second to the three-state Hilbert subspace. On
the other hand, Yarkony21 investigated the nonremovable part
of the derivative couplings by considering the integral of
derivative coupling along closed loops in the vicinity of the
12A′-22A′ seam of conical intersections in the H3 system. It

has been noticed that for radial coordinate F f 0, the
contribution of the nonremovable part decreases rapidly. For
this case, as F increases the upper state approaches the energy
of manifold of Rydberg states so that the contribution from
derivative couplings to this states becomes significant.

We carry out the first principles based BO treatment for any
four-state electronic sub-Hilbert space assuming the presence
of conical intersection(s) anywhere in the nuclear configuration
space. Since these four states are considered as either decoupled
or approximately decoupled from rest of the states of a molecular
system, the BO expansion of the wave function for this subspace
of the Hilbert space is given by

Ψ(n, e))∑
i)1

4

ψi(n)�i(e, n) (1)

where �i(e,n) are the electronic eigenfunctions with nuclear
coordinate dependent expansion coefficients, ψi(n) subsequently
termed as nuclear wave function and the sets of nuclear and
electronic coordinates are defined as n and e, respectively.

In the adiabatic representation of Schroedinger equation, the
total electron-nuclei Hamiltonian (Ĥ), the nuclear kinetic energy
(KE) operator (T̂n) and the eigenvalue [ui(n)]seigenfunction
[�i(e,n)] equation for the electronic Hamiltonian [Ĥe(e,n)] are
presented as

Ĥ) T̂n + Ĥe(e, n)

T̂n )- p
2

2m∑
n

∇ n
2

Ĥe(e, n)�i(e, n)) ui(n)�i(e, n) (2)

The BO expansion for the sub-Hilbert space of molecular
wave function, Ψ(n,e) (eq 1) and the total electron-nuclear
Hamiltonian, Ĥ (eq 2) are being substituted in the time-
independent Schroedinger equation, ĤΨ(n,e) ) EΨ(n,e), to
obtain the following matrix representation of adiabatic nuclear
SE:

∑
j)1

4

(Hij -Eδij)ψj(n)) 0, i) 1, 2, 3, 4

Hii )- p
2

2m
(∇ 2 + 2τbii

(1) · ∇b+ τii
(2))+ ui(n)

Hij )- p
2

2m
(2τbij

(1) · ∇b+ τij
(2)))Hji

†

τbij
(1) ) 〈�i(e, n)|∇b|�j(e, n) 〉 , τij

(2) )

〈�i(e, n)|∇ 2|�j(e, n) 〉 , 〈�i(e, n)|�j(e, n) 〉 ) δij (3)

where τbij
(1) and τij

(2) are the elements of nonadiabatic coupling
matrices of the first [τ(1)] and second [τ(2)] kind, respectively.

For a given Hilbert/sub-Hilbert space, the two kinds of NAC
matrices are related as

τ(2) ) τb(1) · τb(1) + ∇bτb(1) (4)

leading to the following compact form of kinetically coupled
nuclear equations:

- p
2

2m
(∇b+ τb)2Ψ+ (U-E)Ψ) 0 (5)

where the adiabatic PES matrix elements are defined as Uij )
uiδij with the NAC matrix [τ(≡τb(1))] elements as
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τb) (0 τb12 τb13 τb14

-τb12 0 τb23 τb24

-τb13 -τb23 0 τb34

-τb14 -τb24 -τb34 0 ) (6)

Since the four states constitute the sub-Hilbert space, i.e., the complete space at present, it is possible to transform (Ψ ) AΨd) the
adiabatic nuclear SE (eq 5) to the diabatic one and the diabatic matrix equations are presented as below

- p
2

2m
∇ 2Ψd + (W-E)Ψd ) 0, W)A†UA (7)

under the condition

∇bA+ τA) 0 (8)

This equation is known as adiabatic-diabatic transformation (ADT) condition.29 In order to obtain its meaningful solution, one
need to ensure that the chosen form of A matrix is orthogonal at any point in configuration space and its elements are cyclic
functions with respect to a parameter. At present, considering a four-dimensional Hilbert space, any chosen (model) form of the
ADT matrix (A) consisting of 16 elements has to be an orthogonal matrix with the fulfillment of 10 relations. These orthonormality
conditions demand six independent variables [θ12(n), θ13(n), θ14(n), θ23(n), θ24(n), and θ34(n)], commonly called ADT/mixing angles,
to construct the four-state A matrix by taking the product of six rotation matrices, A12(θ12), A13(θ13), A14(θ14), A23(θ23), A24(θ24),
and A34(θ34) in various ways. We define these six rotation matrices and one of the ways of their product (A) can be taken as

A(θ34, θ24, θ14, θ23, θ13, θ12))A34(θ34) ·A24(θ24) ·A14(θ14) ·A23(θ23) ·A13(θ13) ·A12(θ12)

) (1 0 0 0
0 1 0 0
0 0 cosθ34 sinθ34

0 0 -sinθ34 cosθ34
) · (1 0 0 0

0 cosθ24 0 sinθ24

0 0 1 0
0 -sinθ24 0 cosθ24

) · (cosθ14 0 0 sinθ14

0 1 0 0
0 0 1 0
-sinθ14 0 0 cosθ14

) · (1 0 0 0
0 cosθ23 sinθ23 0
0 -sinθ23 cosθ23 0
0 0 0 1

) · (cosθ13 0 sinθ13 0
0 1 0 0
-sinθ13 0 cosθ13 0
0 0 0 1

) ·

(cosθ12 sinθ12 0 0
-sinθ12 cosθ12 0 0
0 0 1 0
0 0 0 1

) (9)

It may be noted that there can be as many as 6! different ways of taking the product of rotation matrices to construct the ADT
matrix, A, but the explicit form of τb matrix elements derived by considering those ADT matrices are essentially same except the
interchange of their forms along with a multiplication by the factor (1.

When we substitute the above model form of A matrix (eq 9) and the antisymmetric form of τb matrix (eq 6) in eq 8, simple
manipulation leads to the differential equations48,49 for ADT angles, which in turn provide the explicit form of τbmatrix elements in
terms of ADT angles:

Figure 4. q components of nonadiabatic coupling elements: (a) τ12
q , (b) τ13

q , (c) τ14
q , (d) τ23

q , (e) τ24
q , and (f) τ34

q as a function of q with different Eel

where k ) 0.2.
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τb12 )-cos θ13 cos θ23 cos θ14 cos θ24∇bθ12 - sin θ23 cos θ14 cos θ24∇bθ13 - sin θ24∇bθ14 (10a)

τb13 ) cos θ13 sin θ23 cos θ14 cos θ34∇bθ12 - cos θ13 cos θ23 cos θ14 sin θ24 sin θ34∇bθ12- cos θ23 cos θ14 cos θ34∇bθ13 +

sin θ23 cos θ14 sin θ24 sin θ34∇bθ13 cos θ24 sin θ34∇bθ14 (10b)

τb14 )-cos θ13 sin θ23 cos θ14 sinθ34∇bθ12 + cos θ13 cos θ23 cos θ14 sin θ24 cosθ34∇bθ12+ cos θ23 cos θ14 sinθ34∇bθ13 +

sin θ23 cos θ14 sin θ24 cos θ34∇bθ13 cos θ24 sin θ34∇bθ14 (10c)

τb23 )- sin θ13 cos θ24 cos θ34∇bθ12 - cos θ13 sin θ23 sin θ14 sin θ24 cos θ34∇bθ12 - cos θ13 cos θ23 sin θ14 sin θ34∇bθ12 +

cos θ23 sin θ14 sin θ24 cos θ34∇bθ13 - sin θ23 sin θ14 sin θ34∇bθ13 - cos θ24 cos θ34∇bθ23 - sin θ34∇bθ24 (10d)

τb24 )- sin θ13 cos θ24 sin θ34∇bθ12 - cos θ13 sin θ23 sin θ14 sin θ24 sin θ34∇bθ12 - cos θ13 cos θ23 sin θ14 cos θ34∇bθ12 -

cos θ23 sin θ14 sin θ24 sin θ34∇bθ13 - sin θ23 sin θ14 cos θ34∇bθ13 + cos θ24 sin θ34∇bθ23 - cos θ34∇bθ24 (10e)

τb34 )- sin θ13 sin θ24∇bθ12 + cos θ13 sin θ23 sin θ14 cos θ24∇bθ12 - cos θ23 sin θ14 cos θ24∇bθ13 - sin θ24∇bθ23 - ∇bθ34

(10f)

In an alternative manner, if we replace the so-called ADT angles [θ12(n), θ13(n), θ14(n), θ23(n), θ24(n), and θ34(n)] by electronic
basis function angles, namely, mixing angles [R(n), �(n), γ(n), λ(n), δ(n), and η(n)] in the ADT matrix, A (eq 9) and the columns
of the A† matrix are substituted in eq 3 as electronic basis functions, we obtain the same set of equations for NAC elements (eqs
10a-f) as functions of mixing angles and, thereby, show the one-to-one correspondence among ADT and mixing angles.

Once the nonadiabatic coupling elements τb12, τb13, τb14, τb23, τb24 and τb34 are evaluated by using ab initio calculation for a particular
nuclear configuration, the solutions of eqs 10a-f provide the ADT angles for the same nuclear configuration and then one can
transform the adiabatic representation of Schroedinger equation with the kinetic coupling τb matrix among the electronic states (eq
5) to the diabatic representation with potential coupling, namely, the W matrix (eq 7) among the same states. This transformation
guarantees the uniquely defined diabatic potential energy matrix in the configuration space only when the following curl conditions
of the NAC elements are valid. At this junction, we must note that the derivative coupling matrix, τb, evaluated from ab initio
calculations will satisfy the curl condition as well as provide zero curls if the sub-Hilbert space (namely four states in this case)
partitioning is rigorous, but otherwise not. In our present numerical study by employing the Mathieu equation, it appears that as
long as the four states form a sub-Hilbert space for a set or various sets of parametric values, the calculated NAC terms have zero
curl and satisfy curl condition.

A curl condition for each NAC element, τbij, has been derived29 and proved to exist for an isolated group of states (sub-Hilbert
space) by considering the analyticity of the ADT matrix A for a pair of nuclear degrees of freedom

curl τij
pq ) ∂

∂p
τij

q - ∂

∂q
τij

q ) (τqτp)ij - (τqτq)ij

τij
p ) 〈�i|∇ p�i〉 , τij

q ) 〈�i|∇ q�j〉 (11)

where p and q are in Cartesian coordinates with ∇ p ) ∂/∂p and ∇ q ) ∂/∂q. While defining the conditions for a strictly diabatic
electronic basis of molecular system, Mead and Truhlar18 reformulated the curl equation and explored its consequences.

At present, for a given four-dimensional sub-Hilbert space, we demonstrate that the explicit forms of the NAC elements in terms
of ADT/mixing angles satisfy the curl conditions, i.e., the difference between the cross derivatives of any two components of a
NAC element with respect to a pair of nuclear coordinates (Zij ) (∂/∂pτij

q) - (∂/∂qτij
p)) appears to be analytically equal to the

corresponding element arising from the difference of the products taken at different order between the component NAC matrices
[Cij ) (τqτp)ij - (τpτq)ij]. Since the compact expressions of the curl and divergence equations for the explicit forms of NAC elements
(eqs 10a-f] are as such lengthy, we present only two of them:

curl τ12
pq ) Z12 )C12 ) sin θ13 cos θ23 cos θ14 cos θ24(∇ pθ12∇ qθ13 - ∇ qθ12∇ pθ13)+

cos θ13 sin θ23 cos θ14 cos θ24(∇ pθ12∇ qθ23 - ∇ qθ12∇ pθ23)+ cos θ13 cos θ23 sin θ14 cos θ24(∇ pθ12∇ qθ14 - ∇ qθ12∇ pθ14)+

cos θ13 cos θ23 cos θ14 sin θ24(∇ pθ12∇ qθ24 - ∇ qθ12∇ pθ24)- cos θ23 cos θ14 cos θ24(∇ pθ13∇ qθ23 - ∇ qθ13∇ pθ23)+

sin θ23 sin θ14 cos θ24(∇ pθ13∇ qθ14- ∇ qθ13∇ pθ14)+ sin θ23 cos θ14 sin θ24(∇ pθ13∇ qθ24 - ∇ qθ13∇ pθ24)-

cos θ24(∇ pθ14∇ qθ24 - ∇ qθ14∇ pθ24) (12a)

div τb12 )- cos θ13 cos θ23 cos θ14 cos θ24∇
2θ12 - sin θ23cos θ14cos θ24∇

2θ13 - sin θ24∇
2θ14 +

sin θ13 cos θ23 cos θ14 cos θ24∇bθ12 · ∇bθ13 + cos θ13sin θ23cos θ14cos θ24∇bθ12 · ∇bθ23 +

cos θ13 cos θ23 sin θ14 cos θ24∇bθ12 · ∇bθ14 + cos θ13cos θ23cos θ14sin θ24∇bθ12 · ∇bθ24 - cos θ23 cos θ14 cos θ24∇bθ13 · ∇bθ23 +

sin θ13sin θ14cos θ24∇bθ13 · ∇bθ24 + sin θ13 cos θ14 sin θ24∇bθ13 · ∇bθ24 - cos θ24∇bθ14 · ∇bθ24 (12b)
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curl τ34
pq ) Z34

)C34

) (- cos θ13 sin θ24 - sin θ13 sin θ23 sin θ14 cos θ24)(∇ pθ12∇ qθ13 - ∇ qθ12∇ pθ13)- (sin θ13 cos θ24 +

cos θ13 sin θ23 sin θ14 sin θ24)(∇ pθ12∇ qθ24 - ∇ qθ12∇ pθ24)+ cos θ13 cos θ23 sin θ14 cos θ24(∇ pθ12∇ qθ23-

∇ qθ12∇ pθ23)+ cos θ13 sin θ23 cos θ14 cos θ24(∇ pθ12∇ qθ14 - ∇ qθ12∇ pθ14)+ sin θ23 sin θ14 cos θ24(∇ pθ13∇ qθ23 -

∇ qθ13∇ pθ23)- cos θ23 cos θ14 cos θ24(∇ pθ13∇ qθ14- ∇ qθ13∇ pθ14)+ cos θ23 sin θ14 sin θ24(∇ pθ13∇ qθ24 -

∇ qθ13∇ pθ24)- cos θ24(∇ pθ23∇ qθ24- ∇ qθ23∇ pθ24) (13a)

div τb34 ) cos θ13 sin θ23 sin θ14 cos θ24∇
2θ12 - sin θ13sin θ24∇

2θ12 - cos θ23sin θ14cos θ24∇
2θ13 - sin θ24∇

2θ23 - ∇ 2θ34 -

(sin θ13 sin θ23 sin θ14cos θ24 + cos θ13sin θ24)∇bθ12 · ∇bθ13 + cos θ13 cos θ23 sin θ14 cos θ24∇bθ12 · ∇bθ23 +

cos θ13sin θ23cos θ14cos θ24∇bθ12 · ∇bθ14 + sin θ23 sin θ14 cos θ24∇bθ13 · ∇bθ23 + cos θ13cos θ14cos θ24∇bθ13 · ∇bθ14 -

(sin θ13 cos θ24 + cos θ13 sin θ23 sin θ14 sin θ24)∇bθ12 · ∇bθ23 + cos θ23 sin θ14 sin θ24∇bθ13 · ∇bθ24 - cos θ24∇bθ23 · ∇bθ24(13b)

and similar expressions can be evaluated for the other NAC elements.
Since ∇b θijs and, in general, ∇ 2θijs are nonzero around the conical intersection, the divergences of the vector field (τbij) are

nonvanishing for any arbitrary values of ADT/mixing angles and therefore the vector field may show up nonzero curl50,51 also. On
the other hand, if a nonadiabatic coupling term of the kind τbii+1(n), exhibits a (i, i + 1) CI associated with a singularity (pole) at the
same point, it decays like 1/r where r is the distance from the CI. The theory of electrodynamics predicts that such vector field could
be resolved into irrotational (longitudinal) and solenoidal (transverse) components,50,51 where the curl of longitudinal part is zero
but curl of transverse part may or may not. At the same time, experimental observations on so-called solenoids tend to argue that
if an infinitely long contour line (seam) due to conical intersection is considered as infinitesimally narrow “solenoid”, the seam
should produce zero field outside of the line but ab initio calculations52,53 show the presence of nonzero τb in the space surrounding
the seam. In a similar context, Mead and Truhlar predicted18 that for a molecular system with three or more nuclei, it is possible to
obtain approximate but useful diabatic basis set only if the transverse (solenoidal) part of the nonadiabatic coupling is negligible,
i.e., if the component of the coupling terms due to the internuclear distance dependence of the configurational wave function is
enough small with respect to the internuclear distance dependence of the configurational coefficients. Thus, the existing knowledge
of the vector field (τbij) cannot say quantitatively about the nature of their curls and therefore, the following section demonstrates that
in order to perform further theoretical development like the formulation of single surface EBO equation, it is necessary to find out
the nature of curl τij

pqs quantitatively, at least around the point/seam of CI, for a given sub-Hilbert space.
Since, in the adiabatic representation of SE (eq 5), the electronic states interact through kinetic coupling terms

- p
2

2m
(∇b+ τb)2Ψ+ (U-E)Ψ) 0, Uij ) uiδij (14)

in order to formulate the EBO equation, one needs to bring the effect of the off-diagonal NAC terms to the diagonal. The

Figure 5. φ components of nonadiabatic coupling elements: (a) τ12
φ , (b) τ13

φ , (c) τ14
φ , (d) τ23

φ , (e) τ24
φ , and (f) τ34

φ as a function of q with different k
where Eel ) 0.01.
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convenient way of pursuing such operation is to carry out a
unitary transformation on eq 14 by a matrix, G (Ψ ) GΦ),
i.e., the G matrix diagonalizes all the components of τ under
the condition, namely, components of the τ matrix commute
with each other [curl τij

φq ) [τφ, τq] ) 0] leading to the following
form:

- p
2

2m
(G†∇bG+ iωb)2Φ+ (V-E)Φ) 0, V)

G†UG, iωb)G†τbG (15)

The eigenvalues ((iωb) of the NAC matrix, τb, should be vectors

in order to obtain physically meaningful (a scalar) Hamiltonian
(eq 15) and thereby one can impose the BO approximation, |ψ1|
. |ψi|, i ) 2, 3, 4, by considering the upper electronic states as
classically closed at low enough energy, to formulate the single
surface adiabatic nuclear SE (EBO): 30-33

- p
2

2m
(∇b+ iωb1)

2
φ1 -

p2

2m[-2(∇bG11
d

G11
d )∇bφ1 + 2(∇bG11

d

G11
d )2

φ1 -

(∇ 2G11
d

G11
d )φ1 - iωb1(∇bG11

d

G11
d )φ1 - (∇bG12

d

G11
d )τb21φ1 -

(∇bG13
d

G11
d )τb31φ1 - (∇bG14

d

G11
d )τb41φ1] + (u1 -E)φ1 ) 0 (16)

On the other hand, since the straightforward diagonalization of
τ matrix (eq 6) gives scalar eigenvalues

iω) ( i�A
2
( 1

2
√A2 - 4B2

A) τb12 · τb12 + τb13 · τb13 + τb23 · τb23 +

τb14 · τb14 + τb24 · τb24 + τb34 · τb34

B) τb14 · τb23 - τb13 · τb24 + τb12 · τb34 (17)

but the requirement of eq 15 dictates that the eigenvalues ((iωb)
of τb matrix must be vectors, the only possibility remains that
the τbmatrix could be written as the product of a vector function,
∇b η (η ≡ θ12 or θ13 or θ14 or θ23 or θ24 or θ34) and a ADT/
mixing angle dependent antisymmetric scalar matrix, g(θ12, θ13,
θ23, θ14, θ24, θ34). It is quite straightforward to find from the
elements of the τbmatrix (eq 10a) that if the following identities,
(∇ pθ13/∇ pθ12) ) (∇ qθ13/∇ qθ12), (∇ pθ14/∇ pθ12) ) (∇ qθ14/∇ qθ12),
(∇ pθ23/∇ pθ12) ) (∇ qθ23/∇ qθ12), (∇ pθ24/∇ pθ12) ) (∇ qθ24/∇ qθ12),
and (∇ pθ34/∇ pθ12) ) (∇ qθ34/∇ qθ12) for any pair of nuclear
coordinates, namely, p and q are assumed to be true, one can
write, τb ) ∇b η ·g(θ12, θ13, θ14, θ23, θ24, θ34), with the
eigenvalues ((ıbω) as presented in Appendix A. Therefore, we
need to explore the validity of these identities (see eqs 12a and

Figure 6. q components of nonadiabatic coupling elements: (a) τ12
q , (b) τ13

q , (c) τ14
q , (d) τ23

q , (e) τ24
q , and (f) τ34

q as a function of q with different k
where Eel ) 0.01.

Figure 7. Divergence of the nonadiabatic coupling elements as a
function of q where (a) Eel ) 0.05, k ) 0.20, and (b) Eel ) 0.01, k )
0.04.
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13a) or whether the components of NAC terms commutes (eq
11) with each other at and around CI(s), i.e.

curl τij
φq ) [τφ, τq]) 0 (18)

In the following sections, we explore the validity of the curl
condition as well as the identities leading to zero curl along the
seam of the CI using the Mathieu equation as the model system.
At this juncture, we remind that (a) the validity of the curl
condition (eqs 12a and 13a) implies that the adiabatic-diabatic
transformation can provide uniquely defined diabatic PESs, on
which stable and accurate numerical calculations can be

performed; and (b) the zero curls bring the extended Born-
Oppenheimer (EBO) equation; i.e, the transformation of eq 14
to eq 15 and then approximation to eq 16 are justified. Therefore,
one can carry out accurate ground-state calculations with an
expection that eq 16 takes into account the effect of upper
electronic states.

III. Mathieu Equation as the Model System

The electronic SE to be considered is written for one
electronic (circular) coordinate, θ, and is expressed in terms of
two nuclear coordinates, φ and q:

Figure 8. Curls of the nonadiabatic coupling elements calculated by using the equation Cij ) (τφτq)ij - (τqτφ)ij as a function of q where k ) 0.2
and (a) Eel ) 0.05, (b) Eel ) 0.04, (c) Eel ) 0.03, (d) Eel ) 0.02, and (e) Eel ) 0.01.

Figure 9. Curls of the nonadiabatic coupling elements calculated by using the equation Zij ) (∂/∂q)τij
φ - (∂/∂φ)τij

q as a function of q where k ) 0.2
and (a) Eel ) 0.05, (b) Eel ) 0.04, (c) Eel ) 0.03, (d) Eel ) 0.02, and (e) Eel ) 0.01.

9876 J. Phys. Chem. A, Vol. 112, No. 40, 2008 Sarkar and Adhikari



(-1
2

Eel
∂

2

∂θ2
-G(q, φ)cos(2θ- φ)- uj(q, φ))�j(θ|q, �)) 0

(19)

where Eel is a characteristic electronic quantity, G(q,φ) is the
nuclear-electronic interaction coefficient, and uj(q,φ) and
�j(θ|q,φ) are the jth eigenvalue and eigenfunction, respectively,
which parametrically depend on the nuclear coordinates. Equa-
tion 19 is recognized as the well-known Mathieu equation.34-40

For the degenerate systems, we consider the above symmetrical
system where the degeneracy is at the origin, but for a
nonsymmetrical system where the degeneracy is shifted to some

point in configuration space, one have to consider the following
extended Mathieu equation.

{-Eel
∂

2

∂θ2
- k[(q cos φ- a) cos 2θ+

(q sin φ- b) sin 2θ]- uj(q, φ)} �j(θ|q, φ)) 0 (20)

As can be seen, the interaction due to the nuclear motion at the
point (a, b) is zero, which means that the degeneracy of the
electronic states is left at this point. The difference between
the two is with respect to the location of CI. In the first model
the CI is located at the origin and in the latter, it is located at

Figure 11. Curls of the nonadiabatic coupling elements calculated by using the equation Cij ) (τφτq)ij - (τqτφ)ij as a function of q where Eel ) 0.01
and (a) k ) 0.20, (b) k ) 0.15, (c) k ) 0.10, (d) k ) 0.05, and (e) k ) 0.04.

Figure 10. Off-diagonal elements of the matrix F (F ) C - Z) as a function of q where k ) 0.2 and (a) Eel ) 0.05, (b) Eel ) 0.04, (c) Eel ) 0.03,
(d) Eel ) 0.02, and (e) Eel ) 0.01.
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some point (a, b) in the nuclear configuration space.
For the present study, we solve the symmetric case (eq 19)

and assume G(q,φ) to be independent of φ and linearly
dependent on q, namely, equal to kq with k as a given constant.
This choice of the interaction term has several advantages: (1)
it forms singular NAC elements (or degenerate eigenvalues)
along the coordinate q only; (2) the eigenvalues of eq 19 depend
on q but are independent of φ; (3) the eigenvectors are functions
of φ and q, and their nature is such that the resulting NAC
elements are φ independent but vary with q only.

To solve the Mathieu equation, we expand the �j(θ|q,φ)
eigenfunctions in the Fourier series. We select the following
two families of solutions:34

ce2n+1(z,-x)) ∑
m)0

∞

A2m+1
2n+1 (-x)cos(2m+ 1)z

se2n+1(z,-x)) ∑
m)0

∞

B2m+1
2n+1 (-x)sin(2m+ 1)z (21)

where x and z are given by

x) kq
Eel

, z) θ- φ

2
(22)

Here, the cosine series stands for the �j(θ|q,φ) functions with
odd j values and the sine function for those with the even j
values.

Figure 12. Curls of the nonadiabatic coupling elements calculated by using the equation Zij ) (∂/∂q)τij
φ - (∂/∂φ)τij

q as a function of q where Eel )
0.01 and (a) k ) 0.20, (b) k ) 0.15, (c) k ) 0.10, (d) k ) 0.05, and (e) k ) 0.04.

Figure 13. Off-diagonal elements of the matrix F (F ) C - Z) as a function of q where Eel ) 0.01 and (a) k ) 0.20, (b) k ) 0.15, (c) k ) 0.10,
(d) k ) 0.05, and (e) k ) 0.04.
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It is well-known that the geometrical series, as presented in
eqs 21 and 22, do not converge at a point close to the real axis.
This feature may affect the rate of convergence for points on
the real axis and therefore the convergence in each case was
treated with care. In this respect, it is important to mention that
we have included 200 bases in each case to guarantee that the
convergence though the required convergence arrives within 50
bases.

We need to perform a separate calculation using this
nonsymmetrical Mathieu equation (eq 20) to investigate the
nature of curls when the conical intersection is not at the origin.

IV. Numerical Calculations: Results and Discussion

IVa. Nonadiabatic Coupling Elements. Since we choose
the nuclear-electronic interaction coefficient, G(q,φ) ()kq), as
independent of the nuclear coordinate φ, the adiabatic potential
energies being the solutions of Mathieu equation are dependent
only on the coordinate q. We present the first four adiabatic
PESs (u1, u2, u3, and u4) as functions of q in Figure 1 for a
fixed k ) 0.2 with various Eel ) (a) 0.05, (b) 0.04, (c) 0.03,(d)
0.02, and (e) 0.01, whereas in Figure 2 for a particular Eel )
0.01 with different k ) (a) 0.20, (b) 0.15, (c) 0.10, (d) 0.05,
and (e) 0.04. The solutions of Mathieu equation are such that
adiabatic PESs show pairwise degeneracy, namely, between u1

and u2 and then, between u3 and u4 up to different values of q
depending on the constants, Eel and k. In Figure 1a-e, for a
fixed value of k ()0.2) and gradually decreasing values of Eel,
both u1 and u2 come closer and closer to the set u3 and u4 but
each individual set (set I, u1 and u2; and set II, u3 and u4) loses
its degeneracy at different but smaller values of q. On the other
hand, Figure 2a-e displays that for a fixed value of Eel with
higher to lower values of k, the degeneracy within the individual
set sustains more as functions of q. In summary, as the value
of Eel decreases, each set of adiabatic states loses its degeneracy
(Figure 1, a-e), but as the value k decreases, the same
degeneracy increases (Figure 2, a-e).

Figure 3 presents the φ component of the nonadiabatic
coupling terms, (a) τ12

φ , (b) τ13
φ , (c) τ14

φ , (d) τ23
φ , (e) τ24

φ , and (f)
τ34
φ , and Figure 4 displays the q components, (a) τ12

q , (b) τ13
q , (c)

τ14
q , (d) τ23

q , (e) τ24
q , and (f) τ34

q , as functions of q for various
values of Eel ()0.05, 0.04, 0.03, 0.02, and 0.01) and a fixed k
()0.2). It is clear from the figures that as the Eel value decreases,
both the φ as well as q components of the NAC terms undergo
more and more changes as the functions of q, indicating
increasingly stronger interaction among the adiabatic states. On
the contrary, Figure 5 presents the φ component of the NAC
terms, (a) τ12

φ , (b) τ13
φ , (c) τ14

φ , (d) τ23
φ , (e) τ24

φ , and (f) τ34
φ , and

Figure 6 displays the q components, (a) τ12
q , (b) τ13

q , (c) τ14
q , (d)

τ23
q , (e) τ24

q , and (f) τ34
q as functions of q with different values of

k ()0.20, 0.15, 0.10, 0.05, 0.04) and a fixed Eel () 0.01). It is
again quite evident from the figures that as the k value decreases
with a fixed Eel, both the φ and the q components of the
nonadiabatic coupling terms show less and less changes as the
functions of q leading to gradually lower interaction among
the adiabatic states. Thus, as the value of Eel increases, the
interaction among the adiabatic states through NAC terms
decreases, but as the value k increases, the interaction elements
among the same states increase.

Figures 3-6 demonstrate two interesting features. (a) If the
φ component of a NAC element shows nonzero magnitude,
invariably its q component appears zero or the vice versa as
functions of the nuclear coordinate, q. This feature of the NAC
terms obtained as the solution of Mathieu equation is being
supported by the calculated divergence of the same NAC terms.

Figure 7a,b displays the divergence of the NAC elements as
functions of q for two different set of parametric values of Eel

and k, where the NAC elements with nonzero φ component
shows zero divergence but with nonzero q component presents
nonzero divergence as expected from electrodynamics. (b) The
choices of the parameters Eel and k are such that the four
adiabatic states are interacting with each other, where all the
NAC elements show nonzero values except τb14 and τb23 only at
q ) 0. More precisely, since either q or φ component of NAC
elements is nonzero, it will be interesting to see how the curls
of the NAC elements behave as functions of q for various chosen
values of the parameters, Eel and k.

Figure 8 presents the curls of the NAC elements calculated
by using the equation Cij ) (τφτq)ij - (τqτφ)ij, Figure 9 displays
the same quantities evaluated by using the equation, Zij ) (∂/
∂q)τij

φ - (∂/∂φ)τij
q, and Figure 10 demonstrates their difference,

Fij ) Cij-Zij, known as Yang-Mills field (curl condition)
elements, as functions of q for various values of the parameter
Eel ()0.05, 0.04, 0.03, 0.02, and 0.01) with a fixed k ()0.2). In
a similar manner, Figures 11, 12 and 13 demonstrate the
elements of the matrices, Cij, Zij, and Fij, respectively, as
functions of q for various values of the parameter k ()0.20,
0.15, 0.10, 0.05, and 0.04) with a fixed Eel ()0.01). Figures 8
and 9 clearly indicate that as the Eel values decrease for a fixed
k, the curls of the nonadiabatic coupling elements deviate more
from zeros since the individual sets of states lose degeneracy
due to the increasingly stronger interaction among themselves.
Figures 11 and 12 demonstrate the same feature but in the other
way; i.e., for a fixed Eel with decreasing values of k, the curls
of the nonadiabatic coupling terms approach zero due to the
lower interaction among the sets. On the other hand, Figures
10 and 13 present the validity of curl conditions, namely, as
these four adiabatic states form a subspace, the curl conditions
remain satisfied leading to zero Yang-Mills field; otherwise,
such conditions are also deviating. In other words, we find when
curls of the NAC terms are approaching zero for a set of
parametric values, Yang-Mills field elements are also showing
the same trend. On the contrary, when the NAC elements among
the first four states tend to show zero curls and zero curl
conditions (Yang-Mills fields) for a set of parametric values
(e.g., k ) 0.04 and Eel ) 0.01), the nearest-neighbor NAC
elements of the complementary space appear to vanish for the
same set of parameters leading to the four state sub-Hilbert
space. Figure 14 presents the nearest-neighbor nonzero NAC
elements (τ16

φ , τ25
φ , τ15

q , and τ26
q ) as functions of q for a fixed Eel

) 0.01 with different values of k ) 0.20, 0.15, 0.10, 0.05, and
0.04. The figure indicates that all the NAC elements in the
complementary space gradually vanish as the k value decreases.
Figure 15 demonstrates the relative magnitude of the subspace
and the complementary space NAC elements when the first four
states is about to decouple from the rest at k ) 0.04 and Eel )
0.01.

Since the solution of the Mathieu equation shows conical
intersections due to degeneracies at q ) 0, the nature of the
nonadiabatic coupling terms close to q f 0 is important to
investigate. Figures 8 and 9 as well as Figures 11 and 12 clearly
indicate that if curls deviate from zero for various chosen values
of k and Eel, it happens prominently well within q < 0.25. At
k ) 0.2, Eel ) 0.04 and k ) 0.04, Eel ) 0.01, Figures 8-13
demonstrate that the curls and curl conditions are around zero
for those values of q with the ratio x ()kq/Eel) < 1, leading to
form a four-state sub-Hilbert space. In more specific terms,
since the validity of curl condition (F ) C - Z ) 0) ensu-
res the existence of sub-Hilbert space, we have calculated the

Four-State Born-Oppenheimer System J. Phys. Chem. A, Vol. 112, No. 40, 2008 9879



Yang-Mills field (F) elements for various chosen values of k and q with fixed Eel and presented those elements in Table 1. It is
clear from the table that as the value of x becomes lower and lower (,1), the magnitude of the F elements tends to virtually zero,
forming a four-state sub-Hilbert space, but for all practical purposes of numerical calculation, even x < 1 situation may be considered
(see Table 1) as sub-Hilbert space. Therefore, the solution of the Mathieu equation for the parametric space with x , 1 not only
mimics a realistic molecular system but also shows the existence or presence of a four-state sub-Hilbert space.

IVb. Adiabatic-Diabatic Transformation (ADT) Angle. When we substitute the model form of A matrix (eq 9) and the
antisymmetric form of the τbmatrix (eq 6) in the ADT equation (∇ A + τA ) 0), simple manipulation leads to the following differential
equations for the ADT angles

∇bθ12 )- 1
cos θ13 cos θ14

[ cos θ23{τb12 cos θ24 - sin θ24(τb13 sin θ34 + τb14 cos θ34)}- sin θ23(τb13 cos θ34 - τb14 sin θ34)]

(23a)

∇bθ13 )- 1
cos θ14

[sin θ23{τb12 cos θ24 - sin θ24(τb13 sin θ34 + τb14 cos θ34)}+ cos θ23(τb13 cos θ34 - τb14 sin θ34)] (23b)

∇bθ23 )
1

cos θ14
(tan θ13[cos θ23{τb12 cos θ24 - sin θ24(τb13 sin θ34 + τb14 cos θ34)}- sin θ23(τb13 cos θ34 - τb14 sin θ34)])+

1
cos θ24

{tan θ14 sin θ24(τb13 cos θ34 - τb14 sin θ34)- (τb23 cos θ34 - τb24 sin θ34)} (23c)

∇bθ14 )-τb12 sin θ24 - cos θ24(τb13 sin θ34 + τb14 cos θ34) (23d)

∇bθ24 ) tan θ14{τb12 cos θ24 - sin θ24(τb13 sin θ34 + τb14 cos θ34)}- (τb23 sin θ34 - τb24 cos θ34) (23e)

∇bθ34 )
1

cos θ24
{tan θ14(τb13 cos θ34 - τb14 sin θ34)+ sin θ24(τb23 cos θ34 - τb24 sin θ34)- τb34 cos θ24} (23f)

Numerically calculated τq and τφ matrix elements as presented in a previous section (IVa) are substituted in the q and φ components
of the above differential equations and those coupled differential equations are solved to obtain six ADT angles as functions of q
and φ. While solving those differential equations, we initialize all the ADT angles to zeros at q ) 0 and φ ) 0. Figure 16 demonstrates
that at q f 0, the ADT angles start with zeros at φ ) 0 and end up with integral multiples of π at φ ) 2π, whereas at q * 0, the
ADT angles often move away from zero to a particular value even at φ ) 0 and take the same magnitude (either with plus or minus
sign) at φ ) 2π such that the ADT angles at φ ) 0 and φ ) 2π satisfy the single-valuedness of the ADT matrix. The same figure

Figure 14. φ and q components of nonadiabatic coupling elements in the complementary space: (a) τ16
φ , (b) τ25

φ , (c) τ15
q , and (d) τ26

q as a function
of q with different k where Eel ) 0.01.
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shows the ADT angles both for E ) 0.01 and k ) 0.2 as well
as E ) 0.01 and k ) 0.04 cases. At this juncture, we are in a
position to calculate the identities (the differences of the product
of the cross derivatives) as defined in the curl equation (eq 12a)

and later used while formulating the EBO equation (see the
discussion following eq 17). Figure 17 presents a few such
identities as functions of q and φ for the above two cases,
namely, E ) 0.01 and k ) 0.2, and E ) 0.01 and k ) 0.04. It

Figure 15. φ and q components of nonadiabatic coupling elements of the four-state subspace compared with the corresponding components of the
complementary space elements: (a) τ12

φ , τ14
φ , and τ16

φ ; (b) τ21
φ , τ23

φ , and τ25
φ ; (c) τ32

φ , τ34
φ , and τ36

φ ; (d) τ41
φ , τ43

φ , and τ45
φ ; (e) τ13

q , τ15
q ; (f) τ24

q , τ26
q ; (g) τ31

q , τ35
q ;

(h) τ42
q , τ46

q , as a function of q where k ) 0.04 and Eel ) 0.01.
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is quite clear that at E ) 0.01 and k ) 0.04, the identities are
either zeros or varying very little around zeros as functions of

q and φ leading to zero curls, whereas at E ) 0.01 and k ) 0.2,
the same identities are showing substantially larger values
essentially indicating nonzero curls.

Finally, as the representative four states tend to form a sub-
Hilbert space for a set or sets of parametric values, curls and
Yang-Mills fields of the NAC terms tend to zeros leading to
the validity of the adiabatic equation (eq 15) and the extended
BO equations (eq 16). In other words, the formulation of eq 16
from eq 14 is only possible if the subspace is complete vis a
vis NAC terms are curl free. At this juncture, we remind that
curl-free NAC terms imply the commutation among the
components of the NAC terms (i.e., the rhs of eq 11):

[τ�, τq]) 0 (24)

as well as the validity of the following identities (eqs 12a and
13a]:

TABLE 1: Elements of the Matrix F (F ) C - Z) for
Diferrent Values of k and q at Eel ) 0.01

k x (q ) 0.1) F12 F14 F23 F34

0.08 0.8 -0.000054 -0.001348 0.001996 -0.050028
0.04 0.4 -0.000003 -0.000188 0.000229 -0.012502
0.02 0.2 0.000000 -0.000025 0.000027 -0.003125
0.01 0.1 0.000000 -0.000003 0.000003 -0.000781
0.005 0.05 0.000000 0.000000 0.000000 -0.000195

k x (q ) 0.3) F12 F14 F23 F34

0.08 2.4 -0.001097 -0.007698 0.021465 -0.150657
0.04 1.2 -0.000087 -0.001355 0.002412 -0.037544
0.02 0.6 -0.000006 -0.000200 0.000269 -0.009378
0.01 0.3 0.000000 -0.000027 0.000032 -0.002344
0.005 0.15 0.000000 -0.000004 0.000004 -0.000586

Figure 16. Adiabatic-to-diabatic transformation angles as a function of q and φ where Eel ) 0.01, k ) 0.2 (green) and Eel ) 0.01, k ) 0.04 (red),
respectively.

Figure 17. Identities (the differences of the product of the cross derivatives with respect to q and φ) for each pair of ADT angles as a function of
q and φ where Eel ) 0.01, k ) 0.2 (green) and Eel ) 0.01, k ) 0.04 (red), respectively. Here I1 ) (∇ qθ12∇ φθ14 - ∇ φθ12∇ qθ14), I2 ) (∇ qθ12∇ φθ34

- ∇ φθ12∇ qθ34), I3 ) (∇ qθ13∇ φθ14 - ∇ φθ13∇ qθ14), I4 ) (∇ qθ13∇ φθ23 - ∇ φθ13∇ qθ23), I5 ) (∇ qθ14∇ φθ24 - ∇ φθ14∇ qθ24), I6 ) (∇ qθ23∇ φθ24 - ∇ φθ23∇ qθ24).
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∇ pθij∇ qθjk - ∇ qθij∇ qθjk ) 0, {i* j* k}) 1, 2, 3 (25)

Since we know that when two operators commute with each
other, they will have a common eigenfunction (G) (eq 15), i.e.,
G diagonalizes both the components of the τb matrix with
eigenvalues (iωb. In this article, we just explore the condition
to find out such sub-Hilbert space, where beyond BO equation
(eqs 15 and 16) could be valid and the required calculations on
the ground-state can be carried out.

V. Summary

The analytical derivations in the first part of this article
(section II) were carried out by considering a four-state sub-
Hilbert space. Since the ADT condition, ∇bA + τbA ) 0, is
assumed to be valid for the same sub-Hilbert space, the explicit
form of τb (eq 10), curl τ (eqs 12a and 13a), div τ (eqs 12b and
13b), EBO equation (eq 16), and differential equations for ADT
angles (eq 23a) represent the nonadiabatic coupling terms and
their nature for the space as defined by eq 1.

On the contrary, the solution of the Mathieu equation (eq
19) as defined by eq 21 are the so-called electronic eigenfunc-
tions (�is) in terms of Fourier series [where expansion coef-
ficients depend on nuclear coordinates (q and φ) and Fourier
functions are taken as functions of electronic (θ) and nuclear
(φ) coordinates] and nuclear coordinate dependent adiabatic
potential energy surfaces with conical intersections at q ) 0.
Therefore, it is worth mentioning that the present investigation
is important and the results are crucial at smaller q values (let
say e0.25). We have taken 200 bases (Fourier functions) to
reach the convergence of the solution, i.e., the numerically
“exact” electronic eigenfunctions and adiabatic PESs for any
chosen values of the parameters, q, k, and Eel. In other words,
when we solve the Mathieu equation with 200 bases for a
specific parametric values of q, k, and Eel, automatically we
have 200 electronic eigenfunctions also but we consider only
the first four electronic eigenfunctions to calculate 4 × 4 τq

and τφ matrices and thereby, monitor their curls [ (τφτq)ij -
(τqτφ)ij and (∂/∂q)τij

φ - (∂/∂φ)τij
q] and curl condition [(τφτq)ij -

(τqτφ)ij ) (∂/∂q)τij
φ - (∂/∂φ)τij

q] numerically, where the same τq

and τφ matrices are being used to evaluate ADT angles (eq 23a)
and explore the explicit form of curls (eqs 12a and 13a) in terms
of cross derivatives of ADT angles (derived by considering a
four state sub-Hilbert space). At this juncture, it has to be
categorically mentioned that our aim was to find out those
specific values of k and Eel, where the first four electronic
eigenfunctions (the numerically “exact” solution of Mathieu
equation) will form a four-state subspace of the Hilbert space.
In this regard, we wish to refer to Figures 14 and 15, where the
nonadiabatic coupling elements in the complementary space (the
fifth and sixth row-column elements) are approaching zero
(Figure 14) as k decreases from 0.2 to 0.04 with a fixed Eel )
0.01 though the first 4 × 4 NAC matrix elements (Figure 15)
are clearly nonzero at k ) 0.04 and Eel ) 0.01 leading a four
state sub-Hilbert space. Figures 10 and 13 echo the same
findings in a different manner.

On the other hand, since we know that the explicit form of
the differential equation for the ADT angle (eq. 23a) are valid
only with the consideration of four state sub-Hilbert space, the
numerically calculated τq and τφ matrix elements could be the
correct input to solve those differential equations of ADT angles
and to obtain the identities of cross derivatives only when the
values of the parameters, k and Eel, tend to form a four state

sub-Hilbert space (see Figures 10, 13, and 15). The identities
of cross derivatives (see Figure 17) are approaching zero as
functions of q and φ at k ) 0.04 and Eel ) 0.01.

As the curls (numerically calculated by considering 4 × 4
component NAC matrices) tend to zero for specific parametric
values of k and Eel, the components of NAC matrices, τq and
τφ commutes and a common G matrix (that can diagonalize τq

and τφ matrices simultaneously) is guaranteed to formulate EBO
equation.
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Appendix A: Eigenvalues of NAC Matrix for a
Four-Dimensional Hilbert Space

If the origin of the coordinate system coincides with the point
of conical intersection or even if the point of conical intersec-
tion(s) is away from the origin of the coordinate system, the
parametric representation for the vector equation of a conical
surface predicts (see Appendix B of ref 32) the validity of the
following identities: (∇ pθ13/∇ pθ12) ) (∇ qθ13/∇ qθ12), (∇ pθ14/
∇ pθ12) ) (∇ qθ14/∇ qθ12), (∇ pθ23/∇ pθ12) ) (∇ qθ23/∇ qθ12), (∇ pθ24/
∇ pθ12) ) (∇ qθ24/∇ qθ12), and (∇ pθ34/∇ pθ12) ) (∇ qθ34/∇ qθ12) for
any pair of nuclear coordinates, namely, p and q, at and around
the point of conical intersection (CI). Moreover, in this article,
the “exact” numerical solutions of the Mathieu equation for
specific values of k and Eel show the existence of zero curls,
i.e., [τφ, τq] ) 0. Such components of NAC matrices τq and τφ

lead to the validity of the above identities (see eqs 12a and 13a
and Figure 17). When we substitute these identities in eq 10,
the nonadiabatic coupling (NAC) terms takes the following
form:

τb12 )-∇bθ12[cos θ13 cos θ23 cos θ14 cos θ24 +

sin θ23 cos θ14 cos θ24(∇ pθ13

∇ pθ12
)+ sin θ24(∇ pθ14

∇ pθ12
)] (A1a)

τb13 ) ∇bθ12[cos θ13 sin θ23 cos θ14 cos θ34 +

cos θ13 cos θ23 cos θ14 sin θ24 sin θ34 -

cos θ23 cos θ14 cos θ34(∇ pθ13

∇ pθ12
)+

sin θ23 cos θ14 sin θ24 sin θ34(∇ pθ13

∇ pθ12
)- cos θ24 sin θ34

(∇ pθ14

∇ pθ12
)] (A1b)

and similarly other NAC terms. At this junction, we can recall
eq 16 to find out the following quantities (A and B) considering
the NAC elements as presented in eqs A1:
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A) τb12 · τb12 + τb13 · τb13 + τb23 · τb23 + τb14 · τb14 + τb24 · τb24 + τb34 · τb34

) ∇bθ12 · ∇bθ12{ 1+ (∇ pθ13

∇ pθ12
)2

+ (∇ pθ23

∇ pθ12
)2

+ (∇ pθ14

∇ pθ12
)2

+ (∇ pθ24

∇ pθ12
)2

+ (∇ pθ34

∇ pθ12
)2

+ 2 cos θ23 sin θ14 cos θ24(∇ pθ13

∇ pθ12
)×

(∇ pθ34

∇ pθ12
)+ 2sin θ23 sin θ14(∇ pθ13

∇ pθ12
)(∇ pθ24

∇ pθ12
)+

2 sin θ24(∇ pθ23

∇ pθ12
)(∇ pθ34

∇ pθ12
)+ 2 sin θ13(∇ pθ23

∇ pθ12
)+ 2 cos θ13 cos θ23 sin θ14(∇ pθ24

∇ pθ12
)+2(sin θ13 sin θ23 -

cos θ13 sin θ23 sin θ14 cos θ24)(∇ pθ34

∇ pθ12
)} (A2)

B) τb14 · τb23 - τb13 · τb24 + τb12 · τb34

) ∇bθ12 · ∇bθ12{( ∇ pθ23

∇ pθ12
)(∇ pθ14

∇ pθ12
)+ sin θ13(∇ pθ14

∇ pθ12
)+ cos θ13 sin θ23 cos θ14(∇ pθ24

∇ pθ12
)- cos θ23 cos θ14(∇ pθ13

∇ pθ12
) ×

(∇ pθ24

∇ pθ12
)+ cos θ14 cos θ23 cos θ14 cos θ24(∇ pθ34

∇ pθ12
)+ sin θ23 cos θ14 cos θ24(∇ pθ13

∇ pθ12
)(∇ pθ34

∇ pθ12
)+ sin θ24

∇ pθ14

∇ pθ12
(∇ pθ34

∇ pθ12
)} (A3)

and thereby

ω
b

i )�A
2
( 1

2
√A2 - 4B2

) ( ∇bθ12[-1
2{ 1+ (∇ pθ13

∇ pθ12
)2

+ (∇ pθ23

∇ pθ12
)2

+ (∇ pθ14

∇ pθ12
)2

+ (∇ pθ24

∇ pθ12
)2

+ (∇ pθ34

∇ pθ12
)2] + 2 cos θ23 sin θ14 cos θ24(∇ pθ13

∇ pθ12
)+ (∇ pθ34

∇ pθ12
)+

2 sin θ23 sin θ14(∇ pθ13

∇ pθ12
)(∇ pθ24

∇ pθ12
)+

2 sin θ24(∇ pθ23

∇ pθ12
)(∇ pθ34

∇ pθ12
)+ 2 sin θ13(∇ pθ23

∇ pθ12
)+ 2 cos θ13 cos θ23 sin θ14(∇ pθ24

∇ pθ12
)+ 2(sin θ13 sin θ23 -

cos θ13 sin θ23 sin θ14 cos θ24)(∇ pθ34

∇ pθ12
)} (A4)

( 1
2{ [1+ (∇ pθ13

∇ pθ12
)2

+ (∇ pθ23

∇ pθ12
)2

+ (∇ pθ14

∇ pθ12
)2

+ (∇ pθ24

∇ pθ12
)2

+ (∇ pθ34

∇ pθ12
)2

+ 2 sin θ13(∇ pθ23

∇ pθ12
)+ 2(cos θ13 cos θ23 sin θ14 +

cos θ13 sin θ23 cos θ14)(∇ pθ14

∇ pθ12
)+ 2(sin θ13 sin θ23 - cos θ13 sin θ23 sin θ14 cos θ24 + cos θ13 cos θ23 cos θ14 cos θ24)(∇ pθ34

∇ pθ12
)+

2 sin θ13(∇ pθ14

∇ pθ12
)+ 2(cos θ23 sin θ14 cos θ24 + sin θ23 cos θ14 cos θ24(∇ pθ13

∇ pθ12
)(∇ pθ34

∇ pθ12
)+ 2(sin θ23 sin θ14 - cos θ23 cos θ14)

(∇ pθ13

∇ pθ12
)(∇ pθ24

∇ pθ12
)+ 2 sin θ14(∇ pθ23

∇ pθ12
)(∇ pθ34

∇ pθ12
)+ 2(∇ pθ23

∇ pθ12
)(∇ pθ14

∇ pθ12
)+ 2 sin θ24(∇ pθ14

∇ pθ12
)(∇ pθ34

∇ pθ12
)]×

[1+(∇ pθ13

∇ pθ12
)2

+ (∇ pθ23

∇ pθ12
)2

+ (∇ pθ14

∇ pθ12
)2

+ (∇ pθ24

∇ pθ12
)2

+ (∇ pθ34

∇ pθ12
)2

+ 2 sin θ13(∇ pθ23

∇ pθ12
)+ 2(cos θ13 cos θ23 sin θ14 -

cos θ13 sin θ23 cos θ14)(∇ pθ14

∇ pθ12
)+ 2(sin θ13 sin θ23 - cos θ13 sin θ23 sin θ14 cos θ24 - cos θ13 cos θ23 cos θ14 cos θ24)

(∇ pθ34

∇ pθ12
)- 2 sin θ13(∇ pθ14

∇ pθ12
)+ 2(cos θ23 sin θ14 cos θ24 - sin θ23 cos θ14 cos θ24)(∇ pθ13

∇ pθ12
)(∇ pθ34

∇ pθ12
)+ 2(sin θ23 sin θ14 +

cos θ23 cos θ14)(∇ pθ13

∇ pθ12
)(∇ pθ24

∇ pθ12
)+ 2 sin θ14(∇ pθ23

∇ pθ12
)(∇ pθ34

∇ pθ12
)- 2(∇ pθ23

∇ pθ12
)(∇ pθ14

∇ pθ12
)- 2 sin θ24(∇ pθ14

∇ pθ12
)(∇ pθ34

∇ pθ12
)]1/21/2
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(22) Baer, M.; Vértesi, T.; Halász, G. J.; Vibok, A.; Suhai, S. Faraday

Discuss. 2004, 127, 337.
(23) Sadygov, R. G.; Yarkony, D. R. J. Chem. Phys. 1998, 109, 20.
(24) Abrol, R.; Kuppermann, A. J. Chem. Phys. 2002, 116, 1035.
(25) Baer, M. In Theory of Chemical Reaction Dynamics; Baer, M. Ed.;

CRC Press: Boca Raton, FL, 1985; Vol. II, Chapter 4.
(26) Baer, M.; Englman, R. Chem. Phys. Lett. 1996, 265, 105.

(27) Baer, M. J. Chem. Phys. 1997, 107, 10662.
(28) Varandas, A. J. C.; Xu, Z. R. J. Chem. Phys. 2000, 112, 2121.

Varandas, A. J. C.; Xu, Z. R. Int. J. Quantum Chem. 2004, 99, 385.
(29) Baer, M. Chem. Phys. Lett. 1975, 35, 112.
(30) Baer, M.; Lin, S. H.; Alijah, A.; Adhikari, S.; Billing, G. D. Phys.

ReV. A 2000, 62, 1032506:1-8.
(31) Adhikari, S.; Billing, G. D.; Alijah, A.; Lin, S. H.; Baer, M. Phys.

ReV. A 2000, 62, 032507:1-7.
(32) Sarkar, B.; Adhikari, S. J. Chem. Phys. 2006, 124, 074101.
(33) Sarkar, B.; Adhikari, S. Int. J. Quantum Chem. In press.
(34) MacLachlan, N. W. In Theory and Application of Mathieu

Functions; Clarendon: Oxford, UK, 1947.
(35) Arnol, V. Mathematical Methods of Classical Mechanics; Springer-

Verlag: Berlin, 1983.
(36) Horne, M.; Jex, I.; Zeilinger, A. Phys. ReV. A 1999, 59, 2190.
(37) Gaumond, C. F.; Jacobson, E. H. Phys. ReV. B 1980, 22, 3001.
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