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Regarding the Theory of the Zeno Line
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The line of thermodynamic states with a unit value of the compressibility factor was calculated for a Lennard-
Jones system using four different approaches. We show that all four approaches give rise to a straight line on
the density—temperature plane. Thus, we theoretically confirm that the Lennard-Jones system satisfies Zeno

line regularity.

Introduction

Presently, there is considerable experimental evidence con-
firming that states where the compressibility factor is a unit (i.e.,
Z = PInT = 1, where P is pressure, n is density, and T is
temperature) form a straight line on the density—temperature
plane. This empirical regularity is referred to as the Zeno line.'
Corresponding data are presented for noble gases,
hydrocarbonates,'and for water and other non-metallic materials.>3
In our earlier work,*> we studied experimental data for Hg and
Cs and showed that the Zeno line is a straight line for these
metals as well. Thus, some researchers suppose that this linearity
on the density—temperature plane is a general law analogous
to the corresponding states law. Some other researchers consider
this line as a curious coincidence. (Detailed discussion of this
question is discussed in ref 3.) The reason for the second opinion
is the absence of theoretical support for the linear dependence
in hand. Bachinskii® was the first to deduce the linear depen-
dence of the unit compressibility factor for the van der Waals
equation in 1906. It is one of the few theoretical confirmations
for this regularity.?

In this work, we used three theoretical approaches for a
Lennard-Jones (LJ) liquid to calculate the Zeno line. The first
of them is the virial expansion. The second approach is a
solution of integral equations of liquid theory. The third
approach is the direct calculation of pressure using an analytical
expression for the pair correlation function.’This analytical
expression was obtained by fitting the data of molecular
dynamics (MD) simulation.® The last approach is a direct Monte
Carlo simulation. We show that all four temperature depend-
ences of the density obtained by these distinct approaches are
straight lines. Thus, Zeno line regularity is confirmed theoreti-
cally for the LJ liquid.

Virial Expansion
Let us consider the virial expansion for pressure
P=nT(1 +B(D)n+ C(D)n* + D(D)n’ + E(Dn* + .....)
ey

Next, we use dimensionless units of the LJ system (LJ units).
The dimensional parameters are as follows: for pressure, D/o?;
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Figure 1. Zeno line calculated in different approaches. Equation 2:
calculation by eq 2with 70 virial coefficients; Equation 3: calculation
by eq 3with 2nd and 3rd virial coefficients; MSV closure: calculation
by solution of integral equations; G-analytical: calculation by eq 8;
MC: results of Monte Carlo calculations; MD: results of MD calcula-
tions of ref 3. We also present the binodal of the LJ system according
to the data of ref 16.

for temperature, D; and for density, 0—>. Here, D is the depth
of the potential, and o is the minimum distance at which the
potential is zero. Virial coefficients B, C, D, and E are known
for a LJ system.>!0 The technique for approximate calculation
of subsequent virial coefficients was developed in ref 11, and
the convergence radius for eq 1 was determined.

It follows from eq 1 that Z =1 if

(B(T) + C(Tyn+ D(Tyn*> + E(Tyn* + ...... =0 ()

The exact values for the 2nd to Sth virial coefficients were used
to solve eq 2. The values of the 6th and higher coefficients were
taken in accordance with the data of ref 11. The results are
presented as eq 2 in Figure 1. At 7 < 2 and n > 0.48, the virial
series diverges. Thus, the line obtained by the solution of eq 2
is limited by these values. At the limit of low densities, we can
use only the B(T) and C(T) terms of eq 2. We know that at
Boyle point B(Tg) = 0, consequently n(Tg) = 0. For the LJ
potential,*Tg = 3.418.

Thus, at n — 0 and 7 — T, we have the following
temperature dependence on the density:

T=—nA+T, 3)

In eq 3, the coefficient A is C(Tg)/(dB(T)/dT) (refs 3-5). (If
one sets 7 = 0 in eq 3, then for the LJ system n(7T = 0) =
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1.14.) The dependence corresponding to eq 3 is presented in
Figure 1 as Equation 3. The lines corresponding to the
dependencies in eqs 2 and 3 are close to each other. They
coincide for n < 0.3. The decay of the Equation 2 line for higher
densities indicates the convergence limit of the virial series.

Integral Equations Approach

The pressure P of any one-component system can be
calculated using a well-known formula!!-#

P=nT+ 2—ﬂn2 ” r3mG(r, n, T)dr 4)
3 0 dr

Here, ®(r) is the pair interaction potential, and G(r, n, T) is the

pair correlation function (PCF).

If the interaction potential is given, then it is sufficient to
know the PCF to find the pressure. One of the most effective
ways to find the PCF is the technique of integral equations in
the theory of liquids. Details of this technique are described in
many books and articles.!!~'® That is why here we present only
the necessary definitions. Besides the PCF, one can introduce
the following function: the total correlation function h = G —
1, the direct correlation function ¢(r), and the indirect correlation
function y(r) = h(r) — c(r). The first two of these are connected
by the well-known Ornstein—Zernike equation'?!3:18

h(F) = c(F) +n [ h(F = F)e(F)dF, Q)

This equation is the exact consequence of the Gibbs distribution
function. To find 4 (and G), we need a second equation. This
equation also is a consequence of the Gibbs distribution function

h(r) =exp(—Pr)/T+y(r)+ B(r) — 1 (6)
In eq 6, B(r) is the bridge functional. Note that the sum y(r) +
B(r) equals w(r), where w(r) is the thermal potential.!'~'¢ The
bridge functional, as well as the thermal potential, is the sum
of irreducible Mayer diagrams, which cannot be expressed in
terms of simple functions of the distance.'?!3 Moreover, it is
the functional of the potential @, (i.e., B = B[®]). The functional
B also can be considered as the functional of the PCF and c(r).
The exact form of this functional is unknown. To bypass this
problem, the exact functional was changed to some approximate
function of the coordinate. This function is referred to as the
closure. This rather crude substitution of the functional not-
withstanding, the solution of eqs 5 and 6 together with an
appropriate closure produced very accurate results. (The errors
with respect to the data of numerical simulation with Monte
Carlo or MD techniques are on the order of a few percent or
less.'213:17)  Here, we used the closure of
Martynov—Sarkisov—Vompe!4(MSV)

B(r) = —1/2((r) — ng(r))’ (N
In eq 7, ¢(r) is the perturbation part of the potential energy in
agreement with the partitioning of the potential energy into
reference and perturbation parts as introduced by Weeks et
al.’The results of the calculation with MSV closure are
presented in Figure 1 as the line MSV closure. One can see
that this approach gives a straight line for Z = 1. This line is
slightly shifted with respect to the Equation 3 line (T§>" = 1.38,
SV (T =0) = 1.09; ITg — T¥SVITg = 2.7 %; and 11 — ni¥SY
(T = 0)/np(T = 0)I = 4.4 %l).
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Figure 2. Pair correlation function at 7 = 1 and n = 0.6 calculated
according to eqs 9and 10. Line 1: with correcting multiplier and line 2:
without it.

Calculation of Zeno Line by Means of Analytical G(r)

In accordance with eq 4, the equation for the Zeno line is

L7 P92 G, 1yar =0 ®
dr

The simple analytical expression for G(r, n, T) was obtained
from ref 7. It satisfies the limiting conditions at zero density
and at infinite distance imposed by statistical thermodynamics.
Analytical G(r, n, T) contains seven functions and 21 adjustable
parameters (three parameters for each function). The functions
and parameters were fitted with good accuracy to the extensive
data of MD simulations.® The final expression is

Gy.n,DH=1+y "[gld)—1—A1+ [y — 1+ D/y] x
exp[—a(y — D] cos[A(y — 1)] X )

y=1lm =1

G(.n,T) = g(d) exp[0(y — D’]; y<1 (10)
Here, y = r/d is the dimensionless distance, and d = ho is the
distance corresponding to the first maximum of the PCF. The
formulas describing the dependence of the seven functions #,
m, g(d), 4, 5, @, and 6 on n and T are presented in ref 7. The
limit of applicability of eqs 9 and 10 also was determined by
the condition m(n, T) = 1.
If we use the dimensionless distance y from eq 9, then the
equation for the LJ potential has the form

wf ] 1 )
- L)6enn=0 (i
‘/(‘) (leh() y4

The calculation carried out according to eq 11 shows that
the result is highly sensitive to the behavior of G(y, n, T) at y
< 1, determined by eq 10 and described by the Gauss formula.
We emphasize that the Gauss approximation is not quite
adequate for PCF at y < 1 since the exact PCF must be equal
to zero at small distances. Our calculations show that the best
agreement with other approaches for the Zeno line is obtained
if a correcting multiplier of 1.2 is introduced in the exponent
in eq 10. Note that the function G(y, n, T) is weakly sensitive
to this procedure. Two functions of G(y, n, T) are presented in
Figure 2. Line 1 is calculated with this correcting multiplier.
Line 2 is calculated without it. As is seen from Figure 2, the
difference is not significant. This small difference also is
conserved at different values of densities and temperatures.

The results of the latter calculation of the Zeno line are
presented in Figure 1 as the line G-analytical. One can see that
this approach gives a straight line for the unit Z approximately.
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There are some deviations in the position of the Zeno line
calculated with different methods. However, these deviations
are small enough and lie within the limits of accuracy of using
theoretical approaches.

Monte Carlo Simulation

We also carried out Monte Carlo simulations to calculate the
Zeno line. We used the cut LJ potential on a system of 1000
particles and conventional NVT Monte Carlo. The detailed
description of this technique is presented in refs 13 and 17. The
cutoff radius was equal to the half-length of the simulation cell.
We fixed the temperature and looked for the density to obtain
Z = 1. The maximum error in the resulting pressure was ~5%.
The results of the Monte Carlo simulations are presented in
Figure 1 as black triangles. One can see that the points of Monte
Carlo simulation are in very good agreement with MSV results.

The LJ potential already was used in ref 3to describe the
Zeno line for water. MD simulations were performed with 256
particles. The cutoff radius was equal to 2.50. The parameters
o and D were fit to reproduce the viscosity data of the water.
We recalculated the data obtained in ref 3 in LJ units and
presented them in Figure 1 as empty squares. Our calculations
are more accurate because we used more particles in simulations
and our cutoff radius was the maximum possible. (The errors
of Monte Carlo as well as MD simulations decrease with growth
of the particle number and cutoff radius.'>!7) Nevertheless, the
results of our simulation and data obtained in ref 3 are located
on the same straight line.
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