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Rescattering electrons offer great potential as probes of molecular properties on ultrafast timescales. The
most famous example is molecular tomography, in which high harmonic spectra of oriented molecules are
mapped to “tomographic images” of the relevant molecular orbitals. The accuracy of such reconstructions
can be greatly affected by the distortion of scattering wave functions from their asymptotic forms due to
interactions with the parent ion. We investigate the validity of the commonly used plane wave approximation
in molecular tomography, showing how such distortions affect the resulting orbital reconstructions.

1. Introduction

When atoms or molecules are subjected to the field of an
intense laser, they can lose an electron through tunnel ionization.
The freed electron can then propagate in the laser field and
reencounter the parent ion. This rescattering process has been
observed to produce high harmonic generation, above threshold
ionization, and nonsequential double ionization.1,2 Recently,
rescattering experiments, as well as their time reversed photo-
ionization counterparts, have received much attention as probes
of molecular properties on ultrafast timescales.3-5 The best
known such technique is molecular tomography,6 which uses
high harmonic spectra from aligned molecules to reconstruct
molecular wave functions.

Rescattering electrons offer clear advantages as probes of
molecular structure. The intrinsic time scale of an ionization-
acceleration-rescattering process is on the order of a single
half-cycle of the driving laser field, typically a few fs. Because
the liberated electron is accelerated by the driving laser field,
simple formulas arising from classical physics are sufficient to
map the energy of a rescattering event to the instants in a laser
half-cycle when the electron is liberated and returns, allowing
time resolution to be pushed to the subfs level. Interactions
between electronic and vibrational degrees of freedom permit
the evolving vibrational states of the parent molecule to be
probed.7

All of these techniques rely on the same underlying physical
process, in which the rescattering electron interacts with the
parent ion. Thus, such measurements of molecular properties
are inherently limited by the degree to which this rescattering
is understood. However, to date most efforts to measure
molecular properties have treated the rescattering wave function
as a free electron plane wave, unperturbed by the electron
interaction with the parent ion. Prior work relating to such
reconstructions has dealt with bandwidth limitations arising from
the HHG spectrum,8 orthogonality of the scattering- and bound-
state wave functions,9,10 and perturbative treatments of the ionic
Coulomb potential.11-13 This paper investigates the departure
from plane wave scattering which is caused by a nonzero
molecular potential and the implications of that departure for

molecular tomography. “Tomographic images” of bound states
are calculated for a one-dimensional square well, and for two
molecules in three dimensions, N2 and F2.

2. Scattering States and Ramifications for Molecular
Tomography

At its heart, the tomographic procedure attempts to measure
the dipole matrix element

in momentum space between a continuum wave function ψkb(xb)
which asymptotically goes as eikb· xb and a particular orbital ψg(xb)
of some target molecule. In the limit where the molecular
potential is zero, the plane wave approximation for the scattering
states would be exact, and the wave function could be
reconstructed according to

A nonzero molecular potential complicates this picture. In
one dimension, the WKB approximation gives the continuum
scattering state as

where k(x) ) [2(E - V(x))]1/2. In the vicinity of the molecule,
both the amplitude and the phase of the scattering state depart
from the plane wave approximation.

Under ideal circumstances, an experiment would measure dbkb

in the absence of external perturbations. In contrast, in rescat-
tering experiments, recombination occurs in the presence of a
strong and time-varying external laser field. The magnitude of
the incoming wave function is affected by tunnel ionization from
the molecular HOMO and the propagation of the electron
between ionization and recombination. In addition, the high
harmonic spectrum is sharply peaked at frequencies which are
multiples of the driving laser frequency. For these reasons, it
would be very appealing to measure dbkb using photoionization
rather than high harmonic generation.9 It is not clear how the
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dbkb ) ∫ d3xbψkb(xb)xbψg(xb) (1)

xbψg(xb) ) ∫ d3kbe-ikb · xbdbk(xb) (2)

ψc ∝ 1

√k(x)
ei∫x

k(x′)dx′
(3)
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Figure 1. The tomographic reconstruction procedure applied to the 1D square well. (Top) Comparison of dipole matrix elements dk ) 〈ψk(x)|x|ψg(x)〉,
calculated using plane waves and scattering states for ψk(x). (Bottom) Because the scattering state matrix elements differ from those calculated
using plane waves, the reconstructed image of the orbital will differ from the true bound state wave function.

Figure 2. N2 photoionization cross sections vs photon energy. Calculations made using FERM3D and the plane wave approximation are compared
to experimental measurements taken from ref 15. Discontinuities in the calculated cross section occur at ionization thresholds for the different
orbitals of N2.
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phase of dbkb would be measured in such an experiment, but it is
at least conceivable to do so by introducing some type of
interfering pathways. However, since this paper is concerned
with the limitations to tomographic reconstruction under ideal
circumstances, we henceforth assume that such photoionization
amplitudes dbkb could in principle be found. The issues discussed

here with respect to tomographic reconstruction for a photo-
ionization experiment apply also to HHG tomography, with the
stipulation that the relevant scattering states should be calculated

Figure 3. F2 photoionization cross sections vs photon energy. Calculations made using FERM3D and the plane wave approximation are compared to
theoretical calculations taken from ref 16. Discontinuities in the calculated cross section occur at ionization thresholds for the different orbitals of N2.

Figure 4. Comparison of the Hartree-Fock orbital and associated
tomographic images for the N2 1Πu orbital. Parts a and b give the real
and (zero) imaginary components of the Hartree-Fock orbital. Parts c
and d give the real and imaginary components of the tomographic image
made from the x-polarized dipole matrix element. Parts e and f give
the real and imaginary components of the tomographic image made
from the y-polarized dipole matrix element. Parts g and h give the real
and imaginary components of the tomographic image made from the
z-polarized dipole matrix element.

Figure 5. Comparison of the Hartree-Fock orbital and associated
tomographic images for the N2 3Σg orbital. Parts a and b give the real
and (zero) imaginary components of the Hartree-Fock orbital. Parts c
and d give the real and imaginary components of the tomographic image
made from the x-polarized dipole matrix element. Parts e and f give
the real and imaginary components of the tomographic image made
from the y-polarized dipole matrix element. Parts g and h give the real
and imaginary components of the tomographic image made from the
z-polarized dipole matrix element.
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in the presence of an external laser field in order to provide an
exact description.

Problems with the tomographic reconstruction procedure arise
when the scattering states ψkb(xb) begin to deviate from the plane
waves that were assumed in the initial theoretical formulations.6

As can be seen in equation 3, this deviation becomes pronounced
when the potential experienced by the electron is comparable
to the scattering energy. In this case, the measured dbkb will depart
from the Fourier transform of xbψg(xb).

In equation 1, substitution of

and evaluating the integral over d3xb yields

where (xbψg)̃(kb′) represents the Fourier transform of xbψg(xb), the
quantity which tomographic procedures hope to measure, and ψ̃kb(kb′)
represents the Fourier transform of the scattering state ψkb(xb). In eq
5, the scattering states define a Fourier-space mapping from the

desired function (xbψg)̃(kb′) to the measured function dbkb. In gen-
eral, this mapping will not be diagonal, as the scattering states ψkb(xb)
will have Fourier components at kb′ * kb due to distortions by the
molecular potential. This mapping is not generally invertible
without knowledge of the molecular scattering states.

A 1D square well provides a simple example whose study
can document the extent to which the electronic potential energy
affects the outcome of a tomographic reconstruction based on
the plane wave approximation. A potential of the form

yields scattering states

where k2 ) [k2 - 2V]1/2.

Figure 6. Comparison of the Hartree-Fock orbital and associated
tomographic images for the N2 2Σu orbital. Parts a and b give the real
and (zero) imaginary components of the Hartree-Fock orbital. Parts c
and d give the real and imaginary components of the tomographic image
made from the x-polarized dipole matrix element. Parts e and f give
the real and imaginary components of the tomographic image made
from the y-polarized dipole matrix element. Parts g and h give the real
and imaginary components of the tomographic image made from the
z-polarized dipole matrix element.

ψkb(xb) ) (2π)-3/2 ∫ d3 kbeikb′ · xbψ̃kb′ (4)

dbkb ) (2π)-3 ∫ d3 kb′ψ̃kb(k̃′)(xbψg)̃(kb′) (5)

Figure 7. Comparison of the Hartree-Fock orbital and associated
tomographic images for the N2 2Σg orbital. Parts a and b give the real
and (zero) imaginary components of the Hartree-Fock orbital. Parts c
and d give the real and imaginary components of the tomographic image
made from the x-polarized dipole matrix element. Parts e and f give
the real and imaginary components of the tomographic image made
from the y-polarized dipole matrix element. Parts g and h give the real
and imaginary components of the tomographic image made from the
z-polarized dipole matrix element.

V(x) ) { V |x| e x0

0 |x|>x0
(6)

ψ|k|
(scat)(x) ) { Aeikx + Be-ikx x e -x0

Ceik2x + De-ik2x |x| e x0

Eeikx + Fe-ikx x > x0

(7)
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The two linearly independent solutions ψ(|k|(x) are now
chosen such that their outgoing wave components go as e ( ikx

as x f ( ∞. For ψ|k|, this corresponds to

and for ψ-|k|

Note that although k(x) takes on only two values in this
problem, each scattering solution has nonzero Fourier compo-
nents for k′ * k, k2.

The true dipole matrix elements may now be compared to
the plane wave approximation. A two-node bound state wave
function was chosen as a simple example which nonetheless
possesses nontrivial spatial structure. Setting x0 ) 2.5, V )
-1.61 yields a two-node wave function with E ) -0.5. Figure
1a compares dipole matrix elements calculated between this
bound state and continuum functions described by scattering
eigenfunctions and plane waves. Whereas the plane wave dipole
matrix elements are all purely imaginary, calculating the matrix
elements using scattering states gives both real and imaginary
components. If the dk calculated using scattering states are now
treated as “measured” dipoles and used to construct a tomo-

graphic image of the original bound state using equation 2, the
resulting image will be complex valued. Figure 1b compares
the original bound state with its tomographic image.

The principles seen in the case of the 1D square well also
limit tomographic reconstruction in true molecular systems,
although molecular systems are much more computationally
challenging due to the complicated potentials which describe
the electron-ion interaction. We calculate the electron-ion
scattering states using FERM3D,14 a code which is designed
for the highly noncentrosymmetric potentials seen in these
systems. This potential is described by Vmol ) Vs + Vex + Vpol,
where Vs is the local electrostatic potential, Vex is the exchange
potential arising from antisymmetrization of the wave function
and treated in the local density approximation, and Vpol is a
polarization potential that describes the relaxation of the target
under the influence of the incoming electron. Figure 2 compares
the total photoionization cross section for N2 calculated with
FERM3D and the plane wave approximation to a prior calcula-
tion and experiment,15 whereas Figure 3 compares cross sections
for F2 to a previous calculation.16 For both molecules, FERM3D
gives cross sections with sizes comparable to prior calculations,
with photoionization maxima shifted higher than in the com-
parison. In both molecules, the plane wave cross sections are
too large by a factor of 5.

A )
4e2i(k+k2)x0kk2

-(k - k2)
2 + e4ik2x0(k + k2)

2
(8)

B ) 0 (9)
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2
(19)

Figure 8. Comparison of the Hartree-Fock orbital and associated
tomographic images for the F2 1Πg orbital. Parts a and b give the real
and (zero) imaginary components of the Hartree-Fock orbital. Parts c
and d give the real and imaginary components of the tomographic image
made from the x-polarized dipole matrix element. Parts e and f give
the real and imaginary components of the tomographic image made
from the y-polarized dipole matrix element. Parts g and h give the real
and imaginary components of the tomographic image made from the
z-polarized dipole matrix element.
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As for the 1D square well, the dipole matrix elements
calculated by FERM3D may be used to find a “tomographic
image” of a particular orbital. To do this, it is necessary to find
dbkb ) 〈ψkb|xb|ψg〉 , where |ψkb〉 is the (momentum normalized)
scattering state whose outward-going component asymptotically
goes to eikb· xb.

For incoming-wave boundary conditions, FERM3D calculates
dipole matrix elements

where q denotes the polarization component and ψE; l, m
(-) is an

energy-normalized wave function which obeys incoming-wave
boundary conditions17

where

are energy-normalized radially outgoing/incoming Coulomb
spherical waves, as defined in ref 18 and σl ) arg(Γ(l + 1 -
i/k)) is the Coulomb phase shift.

To find d kb
q, it is now necessary to find the superposition ψkb

) Alm(kb)ψE; l,m whose outgoing component matches the outgoing
component of eikb· xb. Expanding

where jl(kr) frf∞ (2i)-1(ei(kr–lπ/2) - e-i(kr–lπ/2)) are spherical
Bessel functions, matching coefficients of Ylm(r)eikr yields

where the factor of k1/2 converts the energy-normalized
matrix elements calculated in FERM3D to momentum
normalization.

d kb
q is now given by

Figure 9. Comparison of the Hartree-Fock orbital and associated
tomographic images for the F2 3Σg orbital. Parts a and b give the real
and (zero) imaginary components of the Hartree-Fock orbital. Parts c
and d give the real and imaginary components of the tomographic image
made from the x-polarized dipole matrix element. Parts e and f give
the real and imaginary components of the tomographic image made
from the y-polarized dipole matrix element. Parts g and h give the real
and imaginary components of the tomographic image made from the
z-polarized dipole matrix element.

d E;l;m
q ) 〈ψE;l,m

(-) |ε̂q · xb|ψg〉 (20)

lim
rf∞

ψE;l,m
(-) ) ∑

l′m′
Ylm(r̂)(2i)-1(fl

+(r)δl,l′δm,m′ - f l
-(r)Sl,m;l′,m′

† )

(21)

f l
((r)frf∞e(i(kr-lπ/2+σl+1/k ln 2kr)k-1/2 (22)

Figure 10. Comparison of the Hartree-Fock orbital and associated
tomographic images for the F2 1Πu orbital. Parts a and b give the real
and (zero) imaginary components of the Hartree-Fock orbital. Parts c
and d give the real and imaginary components of the tomographic image
made from the x-polarized dipole matrix element. Parts e and f give
the real and imaginary components of the tomographic image made
from the y-polarized dipole matrix element. Parts g and h give the real
and imaginary components of the tomographic image made from the
z-polarized dipole matrix element.

eikb · xb ) 4π ∑
l,m

iljl(kr)Yl,m(x̂)Y lm
/ (k̂) (23)

Alm(kb) ) 4πile-iσlY lm
/ (k̂)k1/2 (24)
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As in the 1D square well, the tomographic image of the orbital
may now be computed by substituting the calculated dbkb for the
experimentally measured quantity in the tomographic recon-
struction procedure. As photoionization is not limited to the
molecular HOMO, tomographic images can be calculated for
all the orbitals of a molecule. For a given molecule, the same
scattering states were used to calculate dbkb for all orbitals of
interest. Such tomographic images will in general be complex-
valued, and will differ according to which polarization com-
ponent is used for the tomographic procedure.

We present tomographic images of various orbitals of N2 and
F2, calculated in the body-fixed frame using the x,y, and z
polarization components. Dipole matrix elements were calcu-
lated for an energy range of 0-5 hartree, for all partial waves
up to l ) 8. Each image is given with the real and imaginary
components, and includes an orange bar (not always visible)
extending between the two atoms of the molecule for the
purposes of scale. For N2, tomographic reconstructions for the
1Πu (Figure 4), 3Σg (Figure 5), 2Σu (Figure 6), and 2Σg (Figure
7) orbitals are shown. For F2, reconstructions were calculated
for the 1Πg (Figure 8), 3Σg (Figure 9), 1Πu (Figure 10), 2Σu

(Figure 11), and 2Σg (Figure 12) orbitals.
For these example molecules, tomographic reconstruction

tends to preserve the Σ or Π, gerade or ungerade character of

the orbitals in question. Minor asymmetries in these reconstruc-
tions may arise from slightly asymmetric potentials input to
FERM3D. The reconstructed orbitals can display additional
radial nodes not found in the original orbitals. Features which
correspond to features of the original orbitals can be distorted
in shape and size, and display a spatially varying complex phase.
Finally, tomographic images of the same orbital made using
different polarization information can produce differing images
of the same orbital. Many of these features are also seen in
refs10, 19, and 20 which treats the scattering process from a
multielectron perspective but does not consider the distorting
effects of a molecular potential.

3. Conclusions

The use of rescattering electrons as a probe of molecular
properties offers many exciting avenues for future research.
However, the rescattering process is itself more complicated
than has been recognized in early reconstruction efforts, and is
worthy of study in its own right.

For molecular tomography, the results presented in this paper
suggest that at energy scales where such distortion is significant,
tomographic reconstructions may be significantly distorted from
the “true” orbitals these methods seek to find. Nevertheless, for
the example molecules presented here the tomographic recon-
struction procedure was able to successfully reproduce the Σ
or Π, gerade or ungerade nature of the orbitals in question.

Figure 11. Comparison of the Hartree-Fock orbital and associated
tomographic images for the F2 2Σu orbital. Parts a and b give the real
and (zero) imaginary components of the Hartree-Fock orbital. Parts c
and d give the real and imaginary components of the tomographic image
made from the x-polarized dipole matrix element. Parts e and f give
the real and imaginary components of the tomographic image made
from the y-polarized dipole matrix element. Parts g and h give the real
and imaginary components of the tomographic image made from the
z-polarized dipole matrix element.

d kb
q
) ∑

l,m

d E;l,m
q (k2/2)Al,m

/ (kb) (25)

Figure 12. Comparison of the Hartree-Fock orbital and associated
tomographic images for the F2 2Σg orbital. Parts a and b give the real
and (zero) imaginary components of the Hartree-Fock orbital. Parts c
and d give the real and imaginary components of the tomographic image
made from the x-polarized dipole matrix element. Parts e and f give
the real and imaginary components of the tomographic image made
from the y-polarized dipole matrix element. Parts g and h give the real
and imaginary components of the tomographic image made from the
z-polarized dipole matrix element.
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Reconstructions made using differently polarized dipole matrix
elements gave different tomographic images of the same orbital,
while reconstructions made from a particular polarization gave
tomographic images with spatially varying complex phase. Both
of these properties could be useful as an experimental check of
reconstructed wave functions: ideal reconstructions would have
a spatially uniform complex phase and reconstructions made
with different polarization information should agree with one
another. Additionally, experiments could use higher scattering
energies to minimize the scattering state distortions due to
interactions with the molecular potential.

The sensitivity of the scattering states to the molecular
potential also offers the prospect for new types of experiments.
Such experiments could monitor the movement of charge within
the parent ion at ultrafast timescales. For example, a two-center
interference experiment of the type discussed in ref 3 might
observe the movement of charge in a diatomic molecule by
observing interference maxima/minima occurring at different
energies for the short and long rescattering trajectories.
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Appendix: Gauges and Dispersion Relations

Within the overall framework of the plane wave approximation,
several heuristic methods have been suggested to improve the
accuracy of tomographic reconstructions.3,21,22 For the 1D square
well, we considered the effects of phenomenological “dispersion
relations” and reconstructions made in the momentum, rather
than velocity, gauge.

A dispersion relation attempts to correct for an electron’s
shorter wavelength by substituting eiqb· xb for eikb· xb in eq 2, where
|qb| ) [2(k2/2 - εV)]1/2, where V is the potential felt by the
electron in the interaction region, and ε ∈ [0, 1].

Tomography can also be performed in gauges other than the
length gauge given in eq 2. If both continuum and bound wave
functions are eigenstates of the Hamiltonian, the dipole matrix
element is identical in the length

Figure 13. (a) Magnitude of the overlap between (normalized) tomographic images of a bound wave function and the true wave function, and
between different tomographic images, calculated using q(ε) ) [2(k2/2 - εV)]1/2, ε ∈ [0, 1]. (b) Comparison of the maximally overlapping tomographic
images to the true wave function. In the momentum gauge, maximal overlap was obtained for ε ) 0.26, while in the length gauge, maximal overlap
was obtained for ε ) 1. Both images have been normalized and rotated to give a purely real overlap with the true wave function.

d k
(l) ) 〈ψg|x|ψk〉 (26)
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and momentum

gauges. From the momentum gauge form of the dipole matrix
element, and employing the plane wave approximation for |ψk〉, it
is possible to generate a second tomographic reconstruction

Because a plane wave is not an eigenfunction of the scattering
Hamiltonian, this reconstruction will in general give a different
image of the target orbital than a reconstruction made using the
length gauge.

We tested both the length- and momentum-gauge tomographic
reconstructions using dispersion relations q(ε) ) [2(k2/2 - εV)]1/

2, using the overlap of the true wave function and its (normal-
ized) tomographic image as a figure of merit. The test employed
the same V ) -1.61, x0 ) 2.5 potential and E ) -0.5 target
wave function used to generate Figure 1.

Figure 13a gives the magnitude of the overlap between the
two tomographic images and the ground-state and between each
other as a function of the dispersion parameter ε. For this choice
of potential and target orbital, the tomographic reconstructions
gave a very poor overlap with the target orbital for ε ∈ [0, 1],
reaching a maximum magnitude of 0.60 at ε ) 0.26 in the
momentum gauge. In the dipole gauge, the maximum overlap
was achieved at ε ) 1.0, also giving an overlap of magnitude
0.60. Figure 13b compares the maximally overlapping recon-
structions to the true ground-state wave function.

A perfect reconstruction would give the same image regard-
less of the gauge the tomographic procedure was performed in.
However, agreement between images made in separate gauges
does not guarantee the accuracy of the reconstruction. Although
both gauges gave nearly identical tomographic images at ε )
0, the resulting images gave among the worst overlaps with the
target orbital.
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