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We present how the kinetic energy density (KED) can be interpreted on the basis of the orbital interactions
within the Kohn-Sham theory and propose how to utilize a direct space function in chemical bonding analysis,
the relative entropy density (RED), which is constructed from the KED, the Thomas-Fermi KED (TF-
KED), and the electron density. From the detailed analysis of the KED of wave functions and the TF-KED
from the free electron model, it is shown that the RED can reveal the nodal properties of individual wave
functions and provide a variationally meaningful way of accumulating chemical bonding information from
the wave functions, hence allowing quantitative bonding analysis in direct space. To substantiate the proposal,
the RED function has been tested on the tetrahedral network solids, including the group 14 elements and the
III-V binary compounds with the zinc blende structure. The direct space maps of the RED quantitatively
reflect the trend in metallicity and the polarity of their two-center, two-electron bonds in terms of the absolute
values of the RED, the location of the minimum values, and the behavior of the deformation from the spherical
symmetry of the atomic RED.

Introduction
The investigation of the chemical bonding properties of solids

is often nontrivial and requires multiple approaches, especially
for relatively covalent solids including metals.1 The problem
escalates drastically as the constituent elements become heavier
and the catenation patterns become more complicated. Not to
mention a required expertise in electronic band structure
calculations and a comprehensive understanding of various
chemical bonding types, a detailed analysis of almost an infinite
number of wave functions (crystal orbitals) is overwhelming
without any simplifying analytical tools.

The analysis of electronic band structure based on the crystal
orbital overlap population (COOP)2 or the crystal orbital
Hamilton population (COHP)3 is useful in that sense because it
does not require a thorough understanding of the reciprocal
space; it extracts bonding information from the wave functions
through an integration in the reciprocal space and in the direct
space and subsequently presents it as pairwise atomic (or orbital)
interactions spanning along the one-electron energy axis. The
strength of covalent bonding between a pair of atoms can be
estimated by the integration of the overlap populations up to
the Fermi energy. Therefore, the orbital overlap population
analysis correlates the bonding/antibonding characteristics of
the wave functions with their energies. Because it projects any
interatomic interactions into atomic pair interactions, however,
the distinction in bonding character is given through the
differences in the COOP or the COHP values between atom
pairs, even when the bonding is well delocalized among
multicenters or very polarized among different types of atoms.
In addition, the method is limited to calculation methods that
are based on atomic orbitals.

Direct space methods take an alternative approach that
emphasizes the spatial variation of bonding descriptors such as
the electron density (or its gradient),4 the electron localization
function (ELF),5 the electron localization index (ELI),6 and the

localized-orbital locator (LOL),7 which are not restricted to
specific calculation methods. A 3-D visualization of the chemical
bonding can be attractive because it may provide an instant view
of the bonding characteristics presented directly in the frame
of crystal structures. Whereas the electron density gradient
method is designed to find bonding paths in chemical structures
by utilizing electron density maps from either calculations or
measurements, the ELF (and the ELI) and the LOL focus on
locating electron pairs and domains of localized orbitals,
respectively, by employing various kinds of kinetic energy
densities of electrons as basic components, namely, the positive
kinetic energy density (KED), the Thomas-Fermi kinetic energy
density (TF-KED), and the von Weizsäcker kinetic energy
density (W-KED).

In fact, a more fundamental significance of the KED lies in
Ruedenberg’s recognition that a lowering of the kinetic energy
in the bonding region is considered to be the physical origin of
covalent bonding.8 Over the following several decades, the role
of kinetic energy (the spatial distribution of kinetic energy, in
a precise sense) in bonding formation has been studied
thoroughly via ab initio calculations of small molecules.9

However, the KED is also significant in the density functional
theory because important breakthroughs in its advances have
been made through detailed investigations of the nature of the
KED in terms of the exchange-correlation effect.10 More closely
related to this work, the KED from the Kohn-Sham calculations
has been examined in the bonding analysis through its connec-
tion to the off-diagonal elements in the spin-traced reduced, one-
particle density matrix (one-matrix)7b and also in the chemical
reactivity analysis through the thermodynamic description of
density functional theory.11

More recently, a variational meaning of the KED has been
established within local density functional theory.12 That is,
when relative entropy is defined as the measure of the informa-
tion deviation of the KED from the TF-KED, the condition that
produces a minimum energy should result in a maximum value
of the relative entropy (or the entropy functional itself; see later* Corresponding author. E-mail: dseo@asu.edu.
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sections).13 Given the fact that the Thomas-Fermi model does
not allow chemical bond formation (Teller’s molecular nonbind-
ing theorem),14 the KED may exhibit chemical bonding
information when it is compared with the TF-KED through the
definition of the relative entropy.

Despite the recurrent role of the KED in quantum chemical
and density functional theories, its meaning in view of orbital
interactions has been missing in the literature. An eminent value
of such an approach is the connection of the electronic structure
to the chemical bonding concept and the establishment of a
conceptual framework that is consistent with molecular orbital
(MO) theory through the analysis of many-electron states in
terms of the component one-electron energy levels. The work
closest to this notion is that by Burdett, who found that the
results obtained by the study of ELF maps are usually
independent of whether the wave functions and electron density
were generated by calculations that included electron-electron
interactions (such as ab initio and first principle calculations)
or those that did not (extended Hückel calculations, for
example).5d This is in accord with the general ideas of chemical
bonding; the essence of the picture may often be gained simply
from orbital overlap and electronegativity (EN) considerations.
It has been further concluded that the formal inclusion of
electron-electron interactions usually changes the bonding
picture only a little in the ELF maps.5d

The concept of the relative entropy is useful in that sense
because we shall see progressively throughout this work that,
at least within Kohn-Sham theory, it provides a solid justifica-
tion for the use of the KED for the orbital analysis based on
the variation principle. As demonstrated previously, the
Kohn-Sham orbitals are physically sound and may be expected
to be quite suitable for use in qualitative (or even semiquanti-
tative) MO theory.15 Our recent studies have extended such a
viewpoint to the studies of magnetic interactions in molecules
and solids.16

Herein, we first show that the wave function expression of
the KED indeed contains the orbital interaction information,
and we subsequently examine the plausibility of the applications
of the relative entropy density (an unintegrated form of relative
entropy) in the investigation of chemical bonding in some
tetrahedral network solids. Whereas more examples will follow
in our subsequent studies, we note that the tetrahedral network
solids represented by the group 14 elements and the III-V zinc
blende compounds are an ideal starting point in the investigation
of chemical bonding character. Although all of these solids are
understood on the basis of two-center two-electron bonds, the
metallicity of the bonds increases as the constituent elements
become heavier, and the bond polarity changes significantly
depending on the atomic pair combinations. By comparing bonds
of the same structural type it is possible to identify the essential
similarities and differences among different bonding types. We
reiterate that the close-packing structures of metals or ionic
compounds are a consequence rather than the origin of the
nondirectional nature of the metallic or ionic bonds. As an
additional benefit, the tetrahedral network solids have been
studied by other direct-space methods, particularly the ELF,5e

which allows a comparison of our new method with others.

Calculation Methods

The algebraic calculations and the analysis of the direct-space
functions were carried out by utilizing Mathematica 6 and its
graphics utilities. The numerical calculations were performed
by implementing the calculation routines in D-Grid 3.117 and
in the VASP18 programs. The modified D-Grid allows for

calculations of the direct space functions for molecules by using
the calculation results of the Gaussian 0319 package employed
in molecules. The results from the D-Grid 3.1 and VASP
calculations were visualized with the XCrysDen program.20

All VASP calculations were carried out by using the projector
augmented wave (PAW) potentials21 with a generalized gradient
approximation (GGA).22 A plane wave cutoff of 300 eV was
used for C in the diamond structure and for BN in the zinc
blende structure with their reduced two-atom unit cells. For the
other group 14 elements and III-V compounds, a plane wave
cutoff of 240 eV was used. For all of the solids, the unit cell
parameters were obtained from the literature. A k-point grid
density of 11 × 11 × 11 was used for all of the solids. For
isolated atoms, a unit cell of 15 × 15 × 15 Å3 was used with
default energy cutoffs from 100 to 400 eV (energy cutoffs of
400, 245, 174, and 103 eV for C, Si, Ge, and Sn, respectively).
An H2 molecule was contained in a unit cell of 10 × 10 × 10
Å3, and a plane wave cutoff of 400 eV was used.

With the density functional code in the Gaussian 03 program,
all of the geometries of the molecules were optimized at the
B3LYP/LANL2DZ level where the Becke three-parameter
hybrid functional23 and the Lee-Yang-Parr correlation func-
tional24 were used. Geometries were restricted to tetrahedral
symmetry for the central atom in order to simulate the tetrahedral
bonds in the crystal structures. In the LANL2DZ basis set,25

the Dunning-Huzinaga valence double-ς was employed in the
elements of the first and second periods (all-electron, full-
potential), and Los Alamos effective core potentials plus
double-ς were employed in the heavier elements.19 The geometry
optimization of H2 was carried out at the B3LYP level with a
more complete basis set, cc-pVQZ.26

Orbital Interactions in Kinetic Energy Density (KED)

Within the Kohn-Sham theory, the “positive” KED is
obtained as a summation of the kinetic energy densities of all
of the occupied Kohn-Sham orbitals, ψi(r)12

t(r))∑
i

niti(r)) 1
2∑i

ni ∇ ψi
*(r) · ∇ ψi(r)

where ni is the occupation number and ti(r) is defined as the
“orbital KED” for ψi(r). The integration of the KED, t(r), in
direct space provides the total kinetic energy of the electrons.
The Kohn-Sham orbitals can be constructed by various basis
functions including plane waves and atomic orbitals. When
atomic orbitals are employed, the Kohn-Sham orbitals are
constructed as a linear combination of the atomic orbitals, �µ(r)’s

ψi(r))∑
µ

cµi�µ(r)

where cµi is the orbital coefficient. The electron density is then
obtained as the summation of the electron densities of all of
the occupied Kohn-Sham orbitals

F(r))∑
i

niFi(r))∑
i

niψi
*(r) ψi(r)

Here, we recognize a remarkably simple mathematical
similarity between the electron density and the KED; the former
is from the absolute square of the Kohn-Sham orbitals and
the latter is from the absolute scalar square of their gradients.
Meanwhile, the well-known, pair-orbital decomposition scheme
of the electron density provides the information on how an
orbital pair-interaction, for example, between �µ(r) and �υ(r),
contributes to the electron accumulation or depletion in the
internuclear region
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F(r))∑
µ,υ

Pυµ�µ
*(r) �υ(r)

where Pυµ is the charge density matrix element27

Pυµ )∑
i

nicµi
* cυi

The spatial integrals of the overlap densities weighted by the
density matrix elements lead to the formulation of the orbital
overlap population analysis.

From the mathematical similarity between the electron density
and the KED, we now recognize that the KED also can be
decomposed into pairwise orbital interaction components

t(r)) 1
2∑µ,υ

Pυµ ∇ �µ
*(r) · ∇ �υ(r)

In other words, the electron accumulation or depletion (i.e.,
the bonding or antibonding) resulting from the overlap of an
orbital pair is directly associated with the KED component of
the orbital pair. To illustrate this, we employ H2 as an example,
for which the bonding and antibonding MOs are constructed as
in-phase and out-of-phase combinations of the 1s orbitals,
respectively

ψ+)
�A + �B

√2(1+ S)
and ψ-)

�A - �B

√2(1- S)

The corresponding orbital KEDs are given as

t+)
1

2(1+ S)
(∇ �A · ∇ �A + 2 ∇ �A · ∇ �B + ∇ �B · ∇ �B)

and

t-)
1

2(1- S)
(∇ �A · ∇ �A - 2 ∇ �A · ∇ �B + ∇ �B · ∇ �B)

It is noted that the critical difference is the signs in the
interatomic terms, ∇ �A · ∇ �B/(1 + S) in the bonding orbital KED
and -∇ �A · ∇ �B/(1 - S) in the antibonding orbital. Because these
signs are related to the absence/presence of a nodal plane
between the two hydrogen atoms for the MOs, it is expected
that the orbital KEDs should somehow reflect the nodal
properties. Figure 1a,b shows the orbital KED curves (magenta
curve) for the bonding and antibonding orbitals along the bond
axis.28 Whereas the on-site contribution (cyan curve) is always
positive in Figure 1, it is noted that the interatomic contribution
(brown curve) changes its sign along the bond axis; for bonding,
it is negative inside the internuclear region and positive outside
(the opposite is true for antibonding).29 The consequence is that
in the internuclear region along the bond axis the KED of the
bonding MO is lowered from the simple summation of the KEDs
of the individual atomic orbitals, whereas it is raised in the outer
region. For the antibonding MO, the KED behaves in the
opposite way. Much larger KED values are noted for the
antibonding MO because of the normalization condition, which
is consistent with the known behavior of MO electron densities.

The origin of the observed behavior of the orbital KEDs is
rather apparent and interesting. In the internuclear region along
the bond axis, the value of the 1sA orbital decreases as the
electron moves away from the atomic center of HA (Figure 1),
thereby resulting in a negative ∇ �A, but the same movement
increases the value of the 1sB orbital (i.e., positive ∇ �B) as the
electron moves toward the atomic center of HB. Consequently,
∇ �A · ∇ �B is negative in the internuclear region. ∇ �A · ∇ �B is
always positive outside the region because both ∇ �A and ∇ �B

have the same sign. In other words, the KED increases as the

electron passes through the nodal plane in the antibonding
orbital. The electron density is depleted in the nodal plane region
as the electrons move faster and do not stay in the region for
long. The constructive interference of the atomic orbitals in the
bonding orbital reduces the electron kinetic energy in the
internuclear region of the bond and thus allows electrodensity
to accumulate because of the slowing of the electron.

More complicated orbital overlaps will produce more complex
patterns of the orbital KED in space, and the patterns of the
KED may be analyzed among different compounds for studies
of their chemical bonding. The mathematical correlation between
the nodal properties and the orbital KED should exist generally
for other types of orbital interactions (s-p, p-p, s-d, p-d,
and so on). The same is true even for the nodal planes or spheres
of individual atomic orbitals themselves, which will be discussed
in a separate publication. Furthermore, when atomic orbitals
are orthogonal, they do not contribute to the total kinetic energy,
which is also a necessary feature for a suitable bonding
descriptor.

Figure 2a,b shows the elevation maps of the KED calculated
for a longitudinal cross section of the H2 molecule with two
and four electrons, respectively. With two electrons in the
bonding MO, Figure 2a shows a decrease in the KED from the
internuclear region, as expected from Figure 1a. The KED
increases rapidly as the electrons move closer to the nuclear
positions (the apical positions) and decreases less prominently
when the electrons are moving away from the internuclear
region. With two additional electrons occupying the antibonding
MO, the calculated KED in Figure 2b is significantly larger in
the internuclear region and decreases rapidly in the outer region.
This behavior is close to what we expect for the KED of the
antibonding MOs, which is understandable when we recognize
their much larger KED compared with the KED of the bonding
MO (Figure 1a vs b).

Figure 1. KED plots along the bond axis of H2 for (a) bonding and
(b) antibonding MOs from 1s STOs. The total contribution is magenta,
the on-site contribution is cyan, and the the interatomic contribution is
brown. Atomic units are employed.
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Thomas-Fermi Kinetic Energy Density (TF-KED)

From the previous discussions, it is clear that the KED can
be interpreted on the basis of orbital interactions for chemical
bonding analysis. However, the KED has the same problem that
the electron density has; that is, the KED is largest close to the
nuclei rather than in the internuclear region, so the subtle
deformation of the KED upon chemical bond formation may
not be clearly differentiated among different compounds. This
problem is partially resolved in the previous studies of the KED
by a comparison of the KED of compounds with the KEDs of
individual constituent atoms that are calculated separately.9d In
other words, the direct-space map of the superimposed atomic
KEDs can serve as a reference for examining the spatial
variations of the KED of the compounds. Because we are more
interested in the bonding analysis from single calculations for
given compounds, however, we pursue a different approach.
We utilize the TF-KED as our reference because it contains
the major part of the KED that can be readily obtained from
the electron density.30 Indeed, serious efforts have been devoted
to finding better models of the KED by adding smaller
components to the TF-KED as the starting point.31

The aforementioned orbital interpretation of the KED is useful
in contrasting the nature of the TF-KED with the chemical point
of view. As the simplest approximate form of the KED, the
TF-KED is obtained by assuming that the electrons feel only a
constant electrical potential (free electron or jellium model).32

tTF(r)) 3
10

(3π2)2⁄ 3F5⁄ 3(r)

From the equation, the TF-KED is an increasing function of
the electron density; that is, any electron accumulation in space

produces a larger TF-KED value at the position. This is a direct
consequence of the free electron approximation in the Thomas-
Fermi theory. In the free electron model, there is an infinite
number of continuous energy levels whose relative positions
are determined solely by their kinetic energy component. For
an electron density value at a position in a real system, such as
an atom or a compound, we then imagine a hypothetical free
electron system that has the same density that is constant
throughout the chemical structure. The Thomas-Fermi theory
simply takes the uniform kinetic energy of the hypothetical
system as an approximate KED (TF-KED) at the specific
position in the real system. The increase in the electron density
means that the electrons further populate the higher-energy
levels, hence resulting in larger TF-KED values. As described
previously, however, proper KEDs behave more or less in the
opposite way. When the electron density deforms because of
chemical bond formation, the electron accumulation (depletion)
in the interatomic region is associated with the lowering
(increasing) of the KED in the region as a result of the nodal
properties. The same contrasting behaviors are expected at the
nodal planes of individual atomic orbitals. The unreasonable
characteristic of the TF-KED is not inconsistent with the well-
known Teller’s molecular nonbinding theorem that states the
implausibility of the TF-KED as the correct KED for any
molecular system.14 For our purpose, the contrasting behaviors
of the TF-KED and the KED should be beneficial when we
examine the chemical bonding in the internuclear regions.

Figure 3a,b presents the elevation maps of the TF-KED that
correspond to the KED maps in Figures 2a,b, respectively. In

Figure 2. Elevation maps of the KED in a longitudinal cross section
containing the bond axis of H2 for the occupancies of (a) two electrons
in the bonding MO and (b) four electrons, two in the bonding MO and
two in the antibonding MO from 1s STOs. Atomic units are employed.

Figure 3. Elevation maps of the TF-KED in a longitudinal cross section
containing the bond axis of H2 for the occupancies of (a) two electrons
in the bonding MO and (b) four electrons, two in the bonding MO and
two in the antibonding MO from 1s STOs. Atomic units are employed.
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Figure 3a, the rise of the TF-KED is clearly seen in the
internuclear region where the electron density builds up in the
bonding MO density. In the same region, the electron accumula-
tion in the bonding MO and the electron depletion in the
antibonding MO compensate for each other so that there is no
relatively significant deformation of the TF-KED around the
nuclei when the H2 has four electrons (Figure 3b).

Relative Entropy Density (RED)

A mere comparison between the TF-KED and the KED will
remain obscure in chemical bonding analysis because the total
electronic energy change upon bonding, which includes both
kinetic and potential energy components, matters most. How-
ever, a quantitative comparison is indeed possible when we
employ the relative entropy defined by Nagy and Parr.12 The
relative entropy is the difference between the entropy functional,
S, and the corresponding Thomas-Fermi entropy, STF, within
the local density functional theory

S- STF )
3
2

k∫ dr F(r) ln
t(r)

tTF(r)

where k is the Boltzmann constant. It is noted that the integral
contains the ratio of the KED and the TF-KED in a natural
logarithmic form multiplied by the electron density. The entropy
functional and the Thomas-Fermi entropy are the integrals of
the entropy density, s(r), and the Thomas-Fermi entropy
density, sTF(r)

s(r)) 3
2

kF(r) ln
t(r)

tTF(r)
+ sTF(r)

and

sTF(r)) 3
2

kF(r)

The Thomas-Fermi entropy is defined as the model entropy
functional obtained by approximating the KED to be the TF-

KED, and thus, it is given as 3kN/2, in which N is the total
number of electrons.

Figure 4. (a) ARED and (b) RED plots across the nucleus of an H
atom. Dark-blue curves are algebraically from 1s STOs, purple curves
are from the Gaussian 03 program, and brown curves are from the
VASP calculations. Atomic units are employed.

Figure 5. (a) ARED and (b) RED plots across the nucleus of C (dark
blue), Si (purple), Ge (brown), and R-Sn (dark green) atoms, obtained
from the VASP calculations. The x axis is in angstroms. The ARED
has no units, and the RED is in angstroms-3.

Figure 6. (a) ARED and (b) RED plots along the bond axis of H2

algebraically from 1s STOs. The blue curves are for the occupancy of
two electrons in the bonding MO, and the orange curves are for four
electrons, two in the bonding MO and two in the antibonding MO.
Atomic units are employed. The kinks at the nuclear positions are due
to the cusp condition.
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Importantly, the entropy of a system has a maximum value
under the same condition that produces a minimum value for
the electronic energy (a variation principle called the Nagy-Parr
theorem hereafter).

δ2S < 0

Because the total number of electrons does not change when
atoms form a compound, the STF is constant no matter what
electron density the compound has.12 Therefore, the relative
entropy also follows a variation principle

δ2(S- STF) < 0

It states that under the Nagy-Parr theorem the TF-KED is a
unique reference for the KED in that their corresponding entropy
values are maximally different when the system has a minimum
electronic energy. Through Teller’s molecular nonbinding
theorem, the TF-KED is desirable as a special reference that

shows no chemical bonding effect even though it is constructed
from the electron density of the real system that is already
formed by chemical bonding.

For a variationally meaningful comparison between the KED
and the TF-KED in direct space, therefore, we define a direct
space function called the relative entropy density (RED).

σ(r)) 3
2k[s(r)- sTF(r)])F(r) ln

t(r)
tTF(r)

The prefactor 3/2k is multiplied in the first equation for the
sake of convenience, particularly when the RED is compared

Figure 7. RED contour maps in a longitudinal cross section containing
the bond axis of an H2 molecule (a) from 1s STOs, (b) from the
Gaussian 03 program, and (c) from the VASP calculations. The most
intense blue color, around the center of the bond, corresponds to -13.5
Å-3, and the contour interval is 2.7 Å-3 after the first contour from the
center. The white color corresponds to zero. The slightly different colors
in part a are due to the differences between the Mathmatica 6 graphic
utilities and the XCrysDen program. Figure 8. RED contour maps for the (110) cross section containing

(a) C-C, (b) Si-Si, (c) Ge-Ge, and (d) Sn-Sn bonds in the elements,
from the VASP calculations. The contour intervals are (a) 0.50, (b)
0.17, (c) 0.10, and (d) 0.07 Å-3, and the minimum RED values are
given in Table 1. All of the Figures use the same color scheme with
the most intense blue color in (a) corresponding to -2.48 Å-3. The
white color corresponds to zero.
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with the electron density map. The ratio between the RED and
the electron density provides the RED value per single electron,
which we call the average relative entropy density (ARED).

σ(r)) ln
t(r)

tTF(r)

In Figure 4a,b, the dark-blue curves show the radial depen-
dence of the ARED and the RED of an isolated H atom with

one electron occupying the Slater-type 1s orbital (1s STO) with
the orbital exponent ς ) 1 (in atomic units). The ARED is
positive when a single electron is far from the nucleus, and it
decreases linearly as the electron comes closer to the nucleus
and becomes bound to it. It is reiterated that the ARED
essentially represents the relative value of the KED with respect
to the TF-KED. The negative value of the ARED indicates that
the KED of the electron is lower than what we expect from the
free electron model at this position, which is reasonable for the
bound state of the electron. The RED curve, the electron-density-
weighted ARED, shows the same behavior, but the value
decreases far from the nucleus (Figure 4b).

The striking linear behavior of the ARED is due to the
exponential dependence of the radial component of the 1s STO;
in fact, the slope is calculated algebraically as 4ς/3 in atomic
units. The ARED and RED curves are more complex for the
orbitals in the upper shells because of the orthogonalization
condition. However, we find that for the radial part of any
single-ς orbitals the slope of the ARED approaches 4ς/3
asymptotically away from the nucleus, whether they are
hydrogenlike or Slater-type, and this result can be utilized as a
reference for the ab initio or first principle calculation results.33

The purple and brown curves in Figure 4 are obtained for the
hydrogen atom from Gaussian 03 and VASP calculations,
respectively. The two methods are distinctly different so that
the generality of the new functions can be examined to a great
extent. For the inner part of the atom in Figure 4, both the ARED
and RED curves are drastically different among the three data
sets because of their disparate ways of constructing the basis
functions. However, it is important that they are similar in the
outer region where the chemical bonding takes place. In Figure
4a, the numerical results are indeed consistent with the algebraic
result that is from the ideal ς value of 1 for the 1s STO of the
hydrogen atom. The variational ς value of 1.197 for H2 in
Figures 1 and 2 is much larger than 1, which is due to the orbital
contraction upon bond formation.

The oscillatory behavior of the ARED from the VASP results
may be due to the nature of the plane waves that the VASP
program employs or simply because of numerical errors, yet
the deviation is quite small in the corresponding RED curve.
The oscillation is much less in the VASP results for heavier
elements, as we can see in Figure 5 where the ARED and RED
curves are shown for the valence electrons of isolated C, Si,
Ge, and Sn atoms in their hypothetical spin-unpolarized ground
state with equally populated p orbitals. All of the ARED curves
show linear behavior with positive values in the outer region,
whereas they are significantly different in the inner region for
different valence shells. For the heavier atoms, the ARED is
more or less constant in the inner region. The corresponding
RED curves have similar values in the outer region except for
the C atom, the lightest in the group. The corresponding
calculations were not carried out with the Gaussian 03 program
because of its occupation number restriction for open-shell
systems. In Figure S1 of the Supporting Information, the RED
contour maps are produced from the VASP calculations for all
of the atoms in groups 13-15 down to the fifth period.

A comment on the pseudopotential methods is given here
before we continue the discussion of our results. In describing
atoms by the pseudopotential or effective-core-potential meth-
ods, pseudoatomic orbitals are generated by smoothing the inner
part (core-penetrating tail) of the atomic orbitals so that they
essentially describe only the part of the orbitals that are alterable
in bond formation. As far as the KED is concerned, the effect
is that a significant portion of the high kinetic energy of the

TABLE 1: Minimum RED Values and the Bond Distances
for the Solids and Molecules

RED from VASP

bond distance
(Å) for

VASP calc.a
RED from

Gaussian 03

bond distance
(Å) from

Gaussian 03

C-C -2.48 1.545 -2.10 1.556
Si-Si -0.874 2.352 -0.775 2.355
Ge-Ge -0.525 2.450 -0.587 2.491
Sn-Sn -0.368 2.810 -0.425 2.841
B-N -1.88 1.566 -1.21 1.614
Al-N -1.35 1.880 -0.763 1.983
Al-P -0.872 2.365 -0.612 2.518
Al-As -0.677 2.442 -0.553 2.619
Al-Sb -0.486 2.654 -0.425 2.818
Ga-N -1.28 1.931 -0.756 2.006
Ga-P -0.845 2.360 -0.616 2.514
Ga-As -0.645 2.448 -0.560 2.611
Ga-Sb -0.426 2.640 -0.433 2.806
In-N -1.12 2.136 -0.676 2.183
In-P -0.725 2.532 -0.571 2.676
In-As -0.593 2.623 -0.521 2.772
In-Sb -0.382 2.806 -0.400 2.971

a The bond distances are calculated from the unit cell parameters
in refs 35 and 36. It was found that the RED maps and values did
not change significantly by the slight unit cell differences in the
literature.

Figure 9. (a) ARED and (b) RED contour maps for the (110) bond
cross section of the zinc-blende-type BN from the VASP calculations.
In part a, the plot range is from -1.01 to 1.01 with the contour interval
of 0.34. In part b, the contour interval is 0.35 Å-3, and the minimum
RED value is -1.88 Å-3 (Table 1). In part b, the color scheme follows
that of Figure 8.
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orbitals in the inner atomic region is treated essentially as an
additional positive electrostatic potential that cancels most of
the large negative attractive potential from the nucleus.9e

Consequently, the kinetic energy of the pseudoatomic orbitals
does not change as rapidly close to the nuclei and thus simplifies
the ARED and RED maps, as shown later. It is noted that the
pseudoatomic orbitals have an electron density that is different
from the original atomic orbitals and that in our studies the TF-
KED is obtained from this pseudo-orbital density. Such treat-
ment of the TF-KED is not new and can be found in previous
applications of the Thomas-Fermi model for molecules in
which the effective nuclear charges were employed.34 In those
studies, the exclusion of the core-electron density was found
to provide a better utilization of the TF-KED, which is
reasonable considering the nature of the free electron model.

Much more recently, it has been shown that the kinetic energy
from the pseudopotential methods is sound in the studies of
chemical bonding mechanisms: covalent bonding, polar charge
transfer, and electron correlations, within both ab initio and
density functional formalisms.9e This is because the pseudopo-
tential methods effectively eliminate complex core effects,
simulate the core penetration of the valence electrons, and
provide pseudopotentials that recover the chemical similarity
and trends in the groups of the periodic table.

When two hydrogen atoms form a molecule, their ARED and
RED are affected by the orbital interaction. From the KED and
TF-KED of the hydrogen molecule in Figures 1 and 2, the
corresponding ARED and RED are drawn respectively in Figure
6a,b for the two different electron occupancies, two and four
(in blue and orange). They are also given in the elevation maps

Figure 10. RED contour maps for the (110) bond cross section of binary III-V compounds in the zinc blende structure from the VASP calculations.
The contour intervals are (a) 0.25, (b) 0.17, (c) 0.12, (d) 0.09, (e) 0.25, (f) 0.16, (g) 0.12, (h) 0.08, (i) 0.21, (j) 0.14, (k) 0.11, and (l) 0.07 Å-3, and
the minimum RED values are given in Table 1. For all of the Figures, the color scheme follows that of Figure 8.
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in the Supporting Information (Figure S2). When only the
bonding orbital is filled, both the ARED and RED are lowered
in the bonding region compared with the values in the
off-bonding region. The lowering is so significant that the values
are strongly negative with their minimum at the center of the
bond. With both of the bonding and antibonding orbitals being
completely filled in a hypothetical case, the ARED and RED
values around the bond center are much larger than the values
in the off-bonding region. This is consistent with the net
antibonding character found for the closed-shell atoms in simple
MO theory.

In Figure 7, the RED contour maps are compared for the H2

molecule from (a) the variational optimization of the 1s STOs
(as in Figures 2 and 3), (b) Gaussian 03, and (c) VASP
calculations. In the blue-white-red color gradient in the RED
maps, a blue color indicates a negative value of the RED (that
is, the KED is lower than the TF-KED), whereas a red color
indicates the opposite. The color gradient scheme in all of the
RED contour maps herein is symmetric so that the most intense
blue and red in the color bar always have the same absolute
values. The RED maps in Figure 7 are consistent; they all show
strongly negative values in the bonding region with the
minimum at the bonding center. The maximum values are
positive but very close to zero in the comparison (0.206, 0.205,
and 0.232 Å-3 in a-c, respectively), as represented by an
almost-white color off the bonding region. The major difference
in the VASP result from the others is that it does not show
kinks or ripples around the nuclei because of the pseudopotential
treatment of the 1s orbital. The smooth monotonic change in
the RED around the nuclei reflects the fact that the pseudo-1s
orbitals represent only the alterable part of the electronic motion
in the hydrogen atoms.

Metallicity in Chemical Bonding of the Group 14
Elements

We now examine the RED maps of C, Si, Ge, and R-Sn in
their diamond structure, especially with respect to how the
originally spherically symmetric RED of atoms becomes altered
(or deformed) in the bond formation. In addition to the atomic
RED curves in Figure 5, we refer to their 2-D cross-sectional
views in Figure S1 in the Supporting Information for the

comparison. It is noted that for the lighter atoms, C and Si, the
RED is positive in the inner region; that is, the electrons in
the pseudoatomic orbitals move faster in the inner region than
what is expected from the TF-KED. For the heavier atoms, Ge
and Sn, the electrons are slower, giving negative values of the
RED, which is the case of the pseudo-1s orbital of the hydrogen
atom. For all of the atoms, the outer part of the pseudo-orbitals

Figure 11. Overlay of the minimum RED values from the VASP in
Table 1 on the map of the tetrahedral network solids according to the
average atomic radius and Mulliken’s electronegativity (EN) differ-
ence.36 The isolines of the minimum RED serve only as crude
guidelines. The conventional ionic regime resides beyond the maximum
∆EN on the map.

Figure 12. RED contour maps of Si(SiH3)4, (a) and (c), and Ge(GeH3)4,
(b) and (d), from Gaussian 03 calculations. Parts a and c are from the
all-electron calculations at the B3LYP/6-311G level. Parts b and c are
obtained from the effective core potential calculation results at the
B3LYP/LANL2DZ level. The contour intervals are 0.17 Å-3 for parts
a and c and 0.10 Å-3 for parts b and d. The minimum RED values
along the central bonds are -0.698, -0.318, -0.775, and -0.587 Å-3

for parts a-d, respectively. The color scheme follows that of Figure 8.
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shows positive RED values. The RED changes drastically in
the bonding region in Figure 8, in which the RED contour maps
are given for a cross section in the diamond structures of the
elements. In all of the maps, the most intense blue and red are
set to -2.48 and 2.48 Å-3, respectively, so that the same color
intensity corresponds to the same absolute RED value. The
lowest RED values (the most intense blue region) are located
at the center of the bonds, except for R-Sn. The contour lines
show a symmetric shape, and the RED values increase gradually
from the center of the bond axis toward two neighboring atoms
in the case of C, Si, and Ge. In an ascending order, the minimum
RED values are -2.48, -0.874, -0.525, and -0.368 Å-3 for
C, Si, Ge, and R-Sn (Table 1). The C-C bond is considered to
be the strongest bond with the largest negative RED value. The
absolute decrease in the minimum RED values for the heavier
elements is consistent with their weaker bonding character.

For R-Sn, the heaviest element in Figure 8, the most-negative
RED values are spread around each Sn atom rather than at the
center of the bonds, and the values are much closer to zero, the
free electron limit. In addition, the RED values in the bond
region are close to those in the inner region of the Sn atoms.
These features reflect the metallic nature of the weak covalent
bonding in R-Sn. In essence, the alterable part of the pseudo-
atomic orbitals of Sn becomes deformed in such a way that the
electrons in those orbitals are more or less freely moving through
the nuclear positions. In the case of C, the blue region is strongly
localized in the bonding region, indicating a strong nonmetallic
behavior, and the electrons are strongly scattered (increase in
the KED) by the presence of the nuclei and core electrons in
the bonding path. These observations are consistent with the
general trend of the orbital interactions among the group
elements. Namely, whether a diamond structure of the group
14 elements is insulating or metallic depends on the extent of
the s-p hybridization, which is in turn governed by the energy
difference between the s and p orbitals and the diffuseness of
these orbitals. For the case of a metallic diamond structure,
which occurs when the energy and diffuseness are very different
between the s and p orbitals, the bonding and antibonding s
bands lie below the p bands and are completely filled, hence
leading to partially filled p bands. The diffused nature of the p
orbitals of the heavier elements and their weak interactions is
evident in the overall low negative RED values in Figures S1
and 8. The opposite is true for the case of an insulating diamond
structure, and the bottom portion of the conduction bands has
substantial s orbital character.

Bond Polarity in the III-V Zinc-Blende-Type
Compounds

When electrons are partially transferred from one atom to
another during the covalent bond formation, the orbital contrac-
tion is more severe for the cationic atom than for the anionic
one. In the model studies of H2

+-like heteronuclear diatomic
cations in which each atom has a 1s STO with a different
effective nuclear charge, it has been found that the variationally
optimized � values show a more severe increase from the
original value for the atom with a lower nuclear charge (the
more electropositive atom, cationic) than for the one with a
larger charge (the more electronegative atom, anionic).8e Because
the slope of the ARED is directly proportional to the �, the
charge transfer will make the positive ARED region expand
around the cationic atom significantly, but that will not be the
case around the anionic atom. Certainly, this expansion may
become negated along the bonding path by the lowering of the
ARED as a result of the covalent bonding component.

The fundamental origin of the ARED changes is the behaviors
of the KED and the TF-KED upon charge transfer. The KED
increases (decreases) in the inner region as the orbitals contract
(expand) because of the charge transfer from the inner (outer)
region to the outside (inside). Because the TF-KED is a
monotonic function of the electron density, however, it behaves
in the opposite way; the decrease (increase) in the electron
density in the inner region produces a decrease (increase) in
the TF-KED. In any event, the sign of the RED values is strictly
determined by the ARED, and hence, the electron transfer from
an atom to a more electronegative atom will increase the positive
RED area around the former, whereas it may increase or keep
the negative area around the latter.

Figure 9a,b shows the ARED and RED maps of BN in a
zinc blende structure. In the comparison to the neutral carbon
atoms in Figure 8a, the nitrogen atoms in Figure 9b have more
significantly negative RED regions, whereas the boron atoms
increase the area of the positive region around them. This is
consistent with our prediction based on the behavior of the
kinetic energy densities. The deep blue regions close to the
nitrogen nuclei point toward the neighboring boron atoms,
reflecting the directional nature of the B-N bond. The origin
of the lowest RED values localized on the nitrogen atoms can
be examined by comparing the ARED (Figure 9a) and the RED
(Figure 9b) maps. In Figure 9a, the modulation of the ARED is
much stronger around the boron atoms than the nitrogen, as
more intense blue and red colors coexist around the boron. The
electron transfer from the boron atom to the nitrogen raises the
ARED to more positive values, but around the B-N bonding
axis, this effect is overridden by the covalent bonding formation.
Although not shown here, this is observed in general for the
other polar bonds and the electron transfer appears to modify
the ARED more on the cationic sites than on the anionic sites.
When the ARED is weighted with the electron density to
produce the RED, however, the most negative RED values
become localized around the anionic sites because of the higher
valence electron density.

When the electronegativity difference becomes larger, the
covalency of the bond decreases, and the bond becomes more
polar. Compared with the BN, the RED map of the AlN (Figure
10a) shows much more localized negative regions around
the nitrogen atoms. The relatively spherical symmetry of the
RED values around both aluminum and nitrogen atoms suggests
a relatively strong ionic bonding character. With the decrease
in the electronegativity difference in AlN to AlSb down group
15, the deepest-blue region moves toward the center of the bond,
and the colors become gradually less intense (Figure 10a-d).
The minimum RED values from the VASP calculations are
-1.35, -0.872, -0.677, and -0.486 Å-3 for AlN, AlP, AlAs,
and AlSb, respectively, as shown in Table 1, indicating a
stronger metallicity for the heavier elements. For the comparison,
the RED values were calculated from the Gaussian 03 program
by employing geometry-optimized molecular anions, X(YH3)4

3-,
in which the group 15 atom, X, is tetrahedrally bonded to four
Y atoms (group 13) that are saturated by an additional three
hydrogen atoms. The RED maps for the X-Y bond cross
section are shown in Figure S3 in the Supporting Information.
Despite the fact that our Gaussian 03 calculations employ the
discrete molecular models, the VASP and Gaussian 03 results
are consistent, showing the same trend in the minimum RED
values except for the slightly opposite behavior between AlSb
and GaSb. The RED values from the Gaussian 03 calculations
are found to be somewhat smaller in magnitude than those from
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the VASP. More significant deviations for the nitrides in Table
1 will be explained in the next section.

The RED trend in the aluminum compounds is found also
for the gallium and indium compounds (Figure 10e-l). For both
GaN and InN, the minimum RED values are more strongly
localized, and the RED distribution is more symmetrical around
the nitrogen atoms compared with AlN, which is consistent with
the electronegativity trend giving a higher bond polarity in GaN
and InN. The indium atoms in the InN show a broad but weakly
negative RED region around the nuclei, and it is reminiscent
of the metallic character of the Sn (Figure 10i). The InSb shows
the strongest metallicity overall with the least-intense colors
while still displaying the bond polarity between the In and Sb
atoms.

In Figure 11, the minimum RED values from the VASP
calculations are plotted for the tetrahedral network solids
according to the average atomic radius and the Mulliken
electronegativity difference.37 Overall, the trend of the RED
values is consistent with the commonly expected bond metal-
licity. The minimum RED values decrease in negative with the
increase in the average atomic radius so that the covalent bond
strength decreases. It is noted in Figure 11 that the minimum
RED values range widely among different polar bonds, and
hence the RED values may not be an indicator of bond polarity.
Rather, the bond polarity affects the deformation of the atomic
RED upon the bond formation, as described in the previous
discussions. The more significantly the eletronegativities are
different, the more the atomic RED deforms around the cationic
sites and the more strongly the minimum RED positions shift
to the anionic sites.

Pseudopotential versus All-Electron Methods

As previously mentioned, the RED can be calculated with
only the valence electrons, especially through the pseudopo-
tential methods, which is preferred in our implementation of
the RED concept. However, this approach contrasts the observa-
tion in the studies of ELF in that the inclusion of the core
electrons leads to more reasonable values.5e Therefore, we make
a comparison of the Gaussian 03 results from the effective core
potential (pseudopotential) and the all-electron methods using,
as an example, the Si(SiH3)4 and Ge(GeH3)4 compounds in
which the central atom is tetrahedrally bonded to four identical
atoms (isostructural to the X(YH4)3

3- anions in the previous
section). In Figure 12a,b, the RED maps are shown for the
silicon and germanium compounds, respectively, from all-
electron calculation results. The inner part of the heavy atoms
shows an apparent ring structure with very strong undulations
of the RED because of the core electrons. Because the core
electron region overlaps significantly with the valence part, the
RED values in the bonding region are severely affected by the
core electron contribution, particularly for the germanium
analogue.

In the RED maps from the Gaussian 03 pseudopotential
calculation results (Figure 12c,d), a contrasting feature is that
the effect of the bond formation by the valence electrons is
clearly seen even in the close proximity of the nuclei. In the
pseudopotential results, the minimum RED values are -0.775
and -0.587 Å-3 at the center of the bond for the silicon and
germanium compounds, respectively (Table 1). Being far from
the nuclei, those values are still significantly reduced to -0.698
and -0.318 Å-3 in the all-electron results because of the
interfering positive contribution from the core electrons. These
observations embellish the advantage of the pseudopotential
method for the utilization of the RED concept in addition to

the computational efficiency of the method for heavy elements.
The carbon analogue is not discussed here because the LANL2DZ
basis set, or any others in the Gaussian 03 program, includes
core orbitals (full potential) for the first and second period
elements. However, the all-electron result for the carbon
analogue is close to the outcome of the VASP calculations
(Table 1), indicating that the core electrons are highly localized
in the inner region and do not affect the RED values significantly
in the internuclear region. However, the deviation becomes
significant when the negative RED region is highly localized
close to the more electronegative atoms such as in all of the
nitrides in Table 1.

Concluding Remarks

Whereas the spatial distribution of the variationally obtained
kinetic energy (or the KED in this work) has been recognized
as an essential representation of the chemical bonding, it is
striking to note that the mathematical structure of the KED
inherently allows its interpretation on the basis of the orbital
interactions even at the level of one-electron theory. The
elemental components for the interpretation are both the
quantitative manifestation of the nodal properties of the orbitals
by the KED and the intrinsic composition of the KED from the
pairwise orbital interactions through the density matrix. The TF-
KED from the free electron model contrasts the KED because
its predicted behavior is opposite to that of the KED as a result
of its relationship with the electron density. Upon our utilizing
the Nagy-Parr theorem, an algebraic combination of the
electron density, the KED, and the TF-KED produces a
variationally meaningful direct space function, RED, that can
differentiate divergent types of chemical bonding with different
degrees of metallicity and polarity, as demonstrated in this work.
This initial success warrants more extensive applications and
an examination of the RED function in the studies of chemical
bonding, which are under way in our current research, especially
on challenging electronic systems such as intermetallics, metal
hydrides, and Zintl-border compounds.
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