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Kinetic energy release distributions (KERDs) for the benzene ion fragmenting into C4H4
+ and C2H2 have

been recorded by double-focusing mass spectrometry in the metastable energy window and by a retarding
field experiment up to an energy of 5 eV above the fragmentation threshold. They are compared with those
resulting from the HCN loss reaction from the pyridine ion. Both reactions display a similar variation of the
kinetic energy release as a function of the internal energy: the average release is smaller than statistically
expected, with a further restriction of the phase-space sampling for the C5H5N+ dissociation. Ab initio
calculations of the potential-energy profile have been carried out. They reveal a complicated reaction
mechanism, the last step of which consists in the dissociation of a weakly bound ion-quadrupole or ion-dipole
complex. The KERDs have been analyzed by the maximum entropy method. The fraction of phase space
effectively sampled by the pair of fragments has been determined and is similar for both dissociations. Both
reactions are constrained by the square root of the released translational energy, ε1/2. This indicates that in the
latter stage of the dissociation process, the reaction coordinate is adiabatically decoupled from the bath of the
bound degrees of freedom. For the C6H6

+ fragmentation, the analysis of the experimental results strongly
suggests that, just as for a spherically symmetric interaction potential, the translational motion is confined to
a plane. For the dissociation of the pyridine ion, the main dynamical constraint is also a restriction to a
two-dimensional subspace. This dimensionality reduction of the translational phase space is due to the fact
that the Hamiltonian of both weakly bound complexes contains a cyclic coordinate.

1. Introduction

In the study of unimolecular reaction dynamics by statistical
methods,1-4 it is essential to distinguish between the analysis
of rate constants and that of product energy distributions. In
the particular case of dissociations taking place in an ion beam,
a variety of experimental techniques are available to measure
translational kinetic energy release distributions (KERDs)
relatively easily and accurately.5,6

The conventional view1 is that the calculation of a rate
constant by transition state theory requires consideration of the
properties of the system at short values of the reaction
coordinate, up to the transition state only. By contrast, the
analysis of product energy distributions, especially of KERDs,
requires consideration of the long-range dynamics, that is,
beyond the transition state (if any).

During the past few years, our group has argued7-9 that an
analysis of KERDs by the maximum entropy method (MEM)10-12

is a powerful tool to investigate unimolecular dynamics and
provides complementary information to a fit of the rate constant
by a Rice-Ramsperger-Kassel-Marcus (RRKM) equation.1-4

However, our previous investigations have mainly focused
on simple bond cleavage reactions. The halogen loss reaction
of the bromo- and iodobenzene cations13,14 as well as the

hydrogen loss reactions from the benzene15 and toluene16 cations
have been extensively studied. We now wish to examine more
complicated dissociations leading to the release of molecular
fragments. Two similar reactions have been selected,

C6H6
+fC4H4

+ + C2H2 (1.1)

and

C5H5N
+fC4H4

++HCN (1.2)

which both require a substantial rearrangement.
We have the following questions in mind.
(i) To what extent is the KERD influenced by preliminary

rearrangements occurring before the dissociation itself?
(ii) It is usually assumed that the KERD reflects the details

of the potential-energy surface after passing through the
transition state.1 But how is this to be interpreted when there is
no saddle point during the last stretch of the reaction coordinate,
that is, no reverse-activation-energy barrier?

(iii) Furthermore, at very large values of the reaction
coordinate, the interaction can be expressed as a multipolar
expansion of the interfragment potential. In the pyridine
dissociation, C4H4

+and HCN are linked by a charge-permanent-
dipole interaction. In the benzene dissociation, the leading term
of the expansion is a charge-quadrupole interaction that links
C4H4

+ and C2H2. Moreover, the anisotropic dependences differ
for reactions 1.1 and 1.2. Is this difference in the long-range
forces reflected in the KERD?
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Previous experimental results are available for reaction 1.2.9,17

Reaction 1.1 has been extensively studied before. Its experi-
mental rate constant is properly accounted for by the RRKM
theory.18-23 This result has been taken as evidence that the
dissociation is statistical. The energy profile along the reaction
coordinate of reaction 1.1 has been determined: ab initio
calculations24 have shown that the reaction mechanism is very
complicated. It involves a sequence of extensive rearrangements
that lead to the generation of a C4H4

+ ion that is generally
thought to have a methylene cyclopropene structure, at least at
the dissociation threshold.9,25

In the present paper, new experimental data on the fragment
energy distributions for reaction 1.1 are reported, compared with
those of reaction 1.2, and analyzed by the MEM with the help
of ab initio calculations. The experimental techniques and the
data handling procedures are outlined in Section 2. The essential
relevant thermochemical issues are critically discussed in Section
3. The MEM is briefly described in Section 4 and is applied to
our experimental results in Section 5. Ab initio calculations of
the reaction mechanisms are reported in Section 6. A general
discussion is given in Section 7. Conclusions then follow.

2. Experiment

The KERD, denoted as P(ε|E), is the probability of releasing
a kinetic energy ε on the dissociation fragments if E is the excess
energy with respect to the dissociation asymptote. Both spec-
trometers used to measure it in specific energy ranges have
already been described in previous publications,26 and only the
most salient features are reminded here. The experimentally
recorded KERD is an average over the internal energy distribu-
tion of the parent ion, which depends on the kind of spectrometer
used and on the experimental working conditions. This average
KERD is noted P̃(ε).

A. Metastable Dissociations. The experimental setup used
to sample the metastable energy range is a two-sector forward
geometry instrument; that is, the electrostatic analyzer is
followed by the magnet. The internal energy sampled, E,
depends on the dissociating ion but is usually in the 0.5-1.2
eV range above the dissociation asymptote. Parent ions are
produced upon electron impact in the spectrometer source and
then accelerated by a voltage difference Vacc. Scanning Vacc, with
fixed electric and magnetic fields, leads to a mass spectrum of
parent ions dissociating to a given fragment ion in the first field-
free region of the spectrometer.27-29 In this ion kinetic-energy
spectrum measured in the laboratory reference frame, peaks are
broadened by the kinetic energy released during the fragmenta-
tion. Because the residual pressure in the field-free region is in
the 10-8 mbar range, collision-induced processes may be
ignored.

KERDs are deduced from the experimental peak shape by a
differentiation procedure followed by a change of variables from
the laboratory to the center-of-mass reference frame.6,30,31

Because the peak width is equal to about 50 eV in the laboratory
reference frame compared to a translational energy of the center-
of-mass of about 7.5 keV in the direction of the spectrometer
optical axis, angular discrimination effects may be neglected.
Otherwise, they could be taken into account by a more elaborate
procedure.32-34 A deconvolution step is included in the data
handling in order to remove the broadening by the experimental
apparatus function.16

Benzene (commercially available from Merck with 99.9%
purity) and benzene-d6 (available from Aldrich with 98% stated
purity) were used without further purification. In the spectrom-
eter source, the kinetic energy of the ionizing electron is equal
to 70 eV, and the emission current is set at 10 µA. The
accelerating voltage Vacc is scanned around 7.5 kV. The
electrostatic analyzer exit slit (�-slit) width is adjusted to 0.25
mm to reach a translational energy resolution ∆E/E of 10-3.

Fragmentations taking place in the spectrometer first field-
free region occur in a time window characterized by the entrance
time (τ1) into and by the exit time (τ2) out of this region.
Through the rate constant k(E), this time selection is equivalent
to the selection of a relatively narrow range of internal energies.
Accordingly, the internal-energy distribution of the parent ions
is given by the product of a transmission function, T(E), that
depends on the rate constant k(E),20,23,35-37 and of the branching
ratio R(E)38 corresponding to the selected dissociation channel
(here, C4H4

+ + C2H2), that is, the ratio between the ion current
for the fragment of interest and the total ion current at internal
energy E

T(E))A[exp(-k(E)τ1)- exp(-k(E)τ2)]R(E) (2.1)

where A is a normalization constant.

B. Photoionization/Retarding Field Analysis. This tech-
nique provides access to a more extended internal energy range
of a few electron Volts.26,39 The sample, introduced by effusion

Figure 1. Comparison of the experimental KERD (solid line) to the
2-dimensional (dotted line) and 3-dimensional (dash-dotted line) prior
distributions for the C6H6

+ f C4H4
+ + C2H2 reaction studied in the

metastable time window. The surprisal calculated with respect to the
3-dimensional prior distribution (eq 5.2) is also displayed (full circles,
to be read on the right scale) and fitted to a λ0 + λ1ε1/2 law (dotted
line).

Figure 2. Fit (solid line) of the experimental KERD (full circles)
obtained by using the MEM for the C6D6

+ f C4D4
+ + C2D2

fragmentation recorded in the metastable time window. The 2-dimen-
sional (dotted line) and 3- dimensional (dash-dotted line) prior
distributions are also plotted for comparison.
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in a reaction chamber, is ionized by photons emitted by a rare-
gas discharge lamp. The resonance lines Ne(I) (16.67-16.85
eV) and He(I) (21.21 eV) were used in the present case, so that
internal energies up to a few electron Volts can be accessed.
Photoelectron spectra are recorded by a Lindau-type electron
energy analyzer, and ions (C6H6

+ or C4H4
+) are analyzed by

an ion-retarding potential device, followed by a quadrupole mass
spectrometer. The measurement principle is that only ions with
enough kinetic energy are able to surmount the retarding-
potential barrier and are thus detected. Therefore, by scanning
the retarding potential while focusing on a given fragment ion,
the kinetic energy of which is denoted εf, one gets a retarding
curve, I(εf): its derivative leads then to the kinetic energy
distribution. Taking into account the fact that angular discrimi-
nation affects high kinetic energy ions, the relationship between
the retarding curve and the ion translational energy distribution
P̃(εf) has been shown to be:

P̃(εf) ∝ εf
µdI(εf)

dεf
(2.2)

where µ ) 0.43 ( 0.03.39 For every measurement, fragment-
ion and parent-ion retarding curves have been recorded
sequentially.

The internal energy distribution, T(E), of the C6H6
+ ions that

dissociate via reaction 1.1 is given by the He(I) or Ne(I)
photoelectron spectrum multiplied by the branching ratio, R(E),
for the selected dissociation channel.38

In such retarding field experiments, the thermal energy of
the parent ion provides a non-negligible contribution to the
fragment kinetic energy, and a deconvolution step is compul-
sory.9 The velocities corresponding to the thermal motion [with
a distribution P̃T(v)] and to the kinetic energy released [with a
distribution P̃KER(v)] are vectorially added to give the observed
fragment velocity [with a distribution P̃f(v)]. For this reason,
the deconvolution procedure must consider the velocity vectors
and not the kinetic energies.

P̃f(v)) P̃TX P̃KER(v) (2.3)

The thermal distribution P̃T(v) is obtained by a fit of the
parent-ion retarding curve based on a Maxwell velocity distribu-
tion

P̃T(v) ∝ exp(-RTV
2) (2.4)

To proceed further, we need an analytical form for P̃KER(v).
As detailed in Section 4, the maximum entropy formalism
provides us with a suitable analytical form for P̃(ε) (eq 4.3 after
averaging over T(E)) and thus also for P̃KER(v). This form
depends on constraints Ai and associated Lagrange multipliers
λi. It can be shown that these constraints and multipliers can be
determined by fitting the following equation to the experimental
data

P̃f(V;λi,Ai)) (Nf ⁄ V)∫0

∞
V′ sinh(2RTVV′) ×

exp[-RT(V2 +V′2)]P̃KER(V′;λi,Ai) dV′ (2.5)

where Nf is a normalization factor. Once these parameters have
been obtained, the deconvoluted distribution, expressed in terms
of kinetic energy, can be easily reconstructed by using eq 4.3.

The results for the pyridine fragmentation studied by the
retarding-field experiment have already been published,9 but they
were flawed by a small mistake in the deconvolution procedure.
In rectifying them, it appeared that the correction does not affect
the validity of our previous discussion. Note that the procedure

was already put right in our following publications.15,40 The
corrected experimental results are displayed in the present article,
together with the benzene results.

3. Thermochemistry

Does C4H4
+ formation from either the benzene or the pyridine

cations involve a reverse activation barrier? Two experimental
pieces of information are briefly reviewed: appearance-energy
data and KERDs.

A. C5H5N+f C4H4
+ + HCN. Appearance-energy measure-

ments have been performed by various groups, extending from
the microsecond41,42 up to the millisecond time range.43-46 From
all available data, we adopt a 0 K threshold of 12.1 ( 0.1 eV
as a cautious conclusion.

Burgers et al.47 have shown by neutralization-reionization
mass spectrometry that the neutral moiety has the H-CtN
structure. There seems to be a consensus that the C4H4

+ ions
produced upon fragmentation of many precursors consist of a
mixture of the methylenecyclopropene (MCP) and the viny-
lacetylene (VA) isomers.48 The population ratio is 68:32 for
the C6H6

+ fragmentation, but no such data have been reported
for C5H5N+. On the basis of photoelectron spectroscopy
results,25 known thermochemical49 and vibrational spectroscopy
data,50 as well as recent G3 level ab initio data,51 a threshold of
12.0 eV can be calculated for MCP+ + HCN, in good agreement
with the 0 K appearance-energy data. We therefore conclude
that C4H4

+ is produced in the MCP geometry at its thermo-
chemical threshold. If any reverse activation barrier exists, its
height should be limited to ∼0.1 eV.

Arakawa et al.46 also estimated the average kinetic energy
released, 〈ε〉 , from the width at half maximum of the metastable
peaks. 〈ε〉 displays a clear trend toward zero as the lifetime of
the metastable ions increases, suggesting that there is no reverse
activation barrier.

B. C6H6
+f C4H4

+ + C2H2. The situation is less convincing
for the dissociation of the benzene cation than for that of the
pyridine cation. The available appearance energy measurements
span a wide range: from 13.38 eV36 to 14.22 eV.38 The most
recent threshold, determined by Holland et al. by using time-
of-flight mass spectrometry is equal to 14.22 eV.38 These authors
interpret this relatively high appearance energy as corresponding
to the production of the VA cation, stating that cyclic C4H4

+

fragments would be produced at lower energy. It is, however,
unclear why the most abundant isomer, ionized MCP, would
give rise only to a vanishingly small signal below 14.2 eV. In
addition, with a flight time in the microsecond range, a kinetic
shift of a few tenth of an electron Volt can be predicted.36 Our
own recent measurements by quadrupole photoionization mass
spectrometry lead to an appearance energy of 13.93 ( 0.15 eV,52

a value also affected by a kinetic shift. According to Neusser,36

a rate constant of 500 s-1 corresponds to this appearance energy,
which is compatible with our detection sensitivity. Neusser’s
rate constant measurements combined with RRKM modeling
lead to a threshold of 13.38 eV,36 which can be assigned to the
production of the most stable MCP ionized isomer. The
difference between 14.22 and 13.38 eV, that is, 0.84 eV, is,
however, about twice the calculated isomerization energy
relating the MCP and the VA cations,9,53,54 which again pleads
against Holland’s assignment. The extrapolation procedure
performed by using the RRKM equation, which, in principle,
accounts for the kinetic shift, might, however, not be reliable
enough for our purpose because the measured data cover only
the microsecond range.

On the basis of available data,25,49 the thermochemical
threshold for the MCP+ + C2H2 fragments is estimated at 13.54
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eV, suggesting the absence of any reverse activation barrier.
The ab initio calculations of van der Hart24 lead to a reverse
barrier of 0.09 eV. In addition, as discussed in the next sections,
the analysis of the KERDs by the MEM indicates that no reverse
activation energy needs to be introduced to account for the
experimental data.

4. Maximum Entropy Method

Consider a unimolecular dissociation where the ergodic
assumption is perfectly fulfilled, that is, where all quantum states
at total energy E are equally probable. The probability of
observing a given kinetic energy release ε is proportional to
the number of quantum states that give rise to this particular
value of the kinetic energy. Therefore, the corresponding KERD,
termed the prior distribution P3D

0 (ε|E), is provided by the density
of states of a pair of fragments that separate with a relative
translational energy ε at total energy E.6-17

P3D
0 (ε|E))A(E)ε1⁄2Fint(E- ε) (4.1)

The subscript 3D serves as a reminder that the density of
translational states, ε1/2, has been calculated for a three-
dimensional motion. A(E) is a normalization factor, and Fint is
the density of internal states (rotational and vibrational) of the
fragments. The internal energy E is always measured with
respect to the dissociation asymptote.

However, the experimental KERD, P(ε|E), is in practice never
identical to the prior distribution. The MEM relates their ratio
to a certain number of dynamical constraints Ai(ε) that prevent
the reaction from being fully ergodic.10-12

P(ε|E))P3D
0 (ε|E) exp[-λ0(E)] exp[-λ1(E)A1(ε)] ×

exp[-λ2(E)A2(ε)] ... (4.2)

where λi(E) is the Lagrange multiplier conjugated to the
constraint Ai(ε). The quantity exp[-λ0(E)] is a normalization
constant. Fortunately, eq 4.2 often reduces to a single corrective
factor:

P(ε|E))P3D
0 (ε|E) exp[-λ0(E)] exp[-λ1(E)A1(ε)] (4.3)

The simplest way to identify the constraint is then to plot
the surprisal

I(ε|E)) ln[P3D
0 (ε|E) ⁄ P(ε|E)]) λ0(E)+ λ1(E)A1(ε) (4.4)

as a function of ε at a given value of E and to look for the
analytical form of A1(ε) that correctly fits I(ε|E).

The number of configurations in phase space that generate a
given distribution is measured by the entropy S of the distribu-
tion. The entropy is thus maximum for the most statistical
distribution, that is, for the prior distribution P3D

0 (ε|E). The
discrepancy between the experimental and the prior distributions
is measured by the value of the entropy deficiency DS, which
can be extracted from the experiment and which is inversely
related to the efficiency of phase-space sampling.

DS(E)) S[P3D
0 (ε|E)]- S[P(ε|E)]

)∫0

E
P(ε|E) ln[P(ε|E) ⁄ P3D

0 (ε|E)] dε

)-λ0(E)-λ1(E)〈A1(ε)〉-λ2(E)〈A2(ε)〉 (4.5)

A major interest of the concept of entropy deficiency is that
it can be used to estimate the fraction of phase space effectively
sampled by the pair of fragments.55,56

F(E)) exp[-DS(E)]) exp[λ0(E)+ λ1(E)〈A1(ε)〉 + ...]

(4.6)

F is an index that is determined by the coupling between the
reaction coordinate and the bath formed by the remaining
oscillators: the stronger the coupling, the more ergodic the
KERD and the higher the F index. Because restrictions to phase-
space sampling that do not affect the kinetic-energy release are
not taken into account in its definition, it provides an upper
limit for the ratio between two volumes of phase space: that
actually explored by the dissociating system and that in principle
available at the total energy E.

A two-dimensional prior distribution, denoted P2D
0 (ε|E), will

also be used in our analysis. It corresponds to the most statistical
planar motion and is especially appropriate when the interaction
potential between fragments is spherically symmetric because
the nuclear trajectories that generate the KERD are then
constrained to be planar.40,57 Because the density of translational
states of a particle moving in a two-dimensional subspace is
constant, eq 4.1 is now replaced by:

P2D
0 (ε|E))A ′ (E)Fint(E- ε) (4.7)

5. Results

A. Density of States. The density of states of the pair of
fragments has been calculated by a Beyer-Swinehart direct-
count method including rotation.1,3 The required vibrational
frequencies and rotational constants of the MCP ion are available
from a previous calculation.9 Actually, only two-thirds of the
C4H4

+ fragments resulting from benzene ion fragmentations
have the MCP geometry, the last third displaying the VA
conformation.48 However, as discussed in our earlier work,9 the
rate of increase of the density of states as a function of the
internal energy is similar for the VA and the MCP ions.
Therefore, the branching ratio between the two isomers of C4H4

+

has a negligible influence on the calculated prior distribution.
B. KERD and Surprisal Fit. The measured distribution P̃(ε)

for reaction 1.1 is an average of P(ε|E) over the distribution
function T(E) defined in Section 2.

P̃(ε))∫ε

∞
P(ε|E)T(E) dE (5.1)

In the metastable window, T(E) is fairly narrow. An average
surprisal can be computed as

Ĩ(ε)) ln[P̃3D
0 (ε) ⁄ P̃(ε)] ≈ λ0 + λ1A1(ε) (5.2)

where λ0 and λ1 are assumed to be independent of E. Figure 1
displays the metastable KERD for reaction 1.1 and the corre-
sponding surprisal fit. For reactions 1.1 and 1.2 including also
the perdeuterated species, Ĩ(ε) is found to vary linearly with
ε1/2. This leads to the identification of A1(ε) with ε1/2. Figure 2
illustrates the good quality of the fits for reaction 1.1.

The retarding-field experiments involve a much broader range
of internal energies: eq 5.2 is then no longer useful. The
relationship between λ1 and the total energy E has to be taken
into account, but this function is a priori unknown. Two
assumptions were tried9 for the function λ1(E): either constant
in the whole energy range or expressed as a linear function of
E. Both choices lead to approximately the same value of λ1 at
the average internal energy of the parent ion, 〈E〉 .

Furthermore, the measured retarding-field curves are the result
of a convolution product that smoothes the shape of the
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distribution. This smearing prevents us from discriminating
between two possible assumptions for the constraint A1(ε): ε1/2

or ε.
Altogether, the fits are very satisfactory. Figure 3 shows some

examples of deconvoluted KERDs. They are narrower than the
prior distribution. The error bars take into account both the
experimental reproducibility and the uncertainty about the data
handling procedure.

C. Average Kinetic-Energy Release and Efficiency of
Phase-Space Sampling. Finally, the values of the average
kinetic energy 〈ε〉 and of the index F are calculated at the energy
〈E〉 by averaging over all fits (λ1(E) constant or linear and A1(ε)
equal to ε1/2 or ε).

〈ε〉(E) for reaction 1.1 is displayed in Figure 4a along with
the first moments of the three- and two-dimensional prior
distributions (defined by eqs 4.1 and 4.7). The dynamics happens
to generate less kinetic energy than expected statistically on
the basis of a three-dimensional motion. The two-dimensional
expectation is, however, close to the experimental findings. Few
experimental data are available for comparison. From Jarrold’s
data19 on benzene in the metastable window of the second field-
free region of a ZAB-2F instrument, an average kinetic-energy
release of 0.055 eV can be inferred at an internal energy E which
we estimate (on the basis of their measured branching ratios)
to lie around 0.7 eV. This agrees quite well with our own
metastable data at somewhat smaller lifetimes: 〈ε〉 ) 0.066 eV
at E ) 0.95 eV. The data previously reported by Baer et al.18

about the dissociations of two other C6H6
+ isomers (2,4

hexadiyne and 1,5 hexadiyne) into C4H4
+ and C2H2 show a

similar trend but are offset by about +30 meV. They lie,
however, clearly close to a canonical two-dimensional prior
expectation, too (see Figure 5 of ref 18).

The same data handling procedure has been used for the
retarding-field curve of the pyridine dissociation (reaction 1.2).9

The resulting data are displayed in Figure 4b. A strong similarity
with the C6H6

+ dissociation emerges.
The fraction of phase space effectively explored, as measured

by the index F(E), is displayed in Figure 5. At threshold, F is
necessarily equal to 1 because the accessible phase space reduces
to one cell which must then be sampled. The grouping of the
data obtained for the four reactions 1.1 and 1.2 including the
perdeuterated species stresses the similarity between the be-
havior of benzene and pyridine ions. Despite an important
scattering of the data points, F(E) decreases monotonically as

Figure 3. Solid lines with error bars: deconvoluted KERDs obtained
by using the retarding-potential method with NeI excitation. The
2-dimensional (dotted line) and 3-dimensional (dash-dotted line) prior
distributions are also displayed for comparison. Top: C6H6

+ f C4H4
+

+ C2H2. Middle: C6D6
+f C4D4

+ + C2D2. Bottom: C5H5N+f C4H4
+

+ HCN.

Figure 4. Average kinetic energy release in the metastable time
window and obtained by using dissociative photoionization coupled
with a retarding-field device compared with the 3- and 2-dimensional
prior predictions (solid line: nondeuterated species; dashed line:
perdeuterated species). Filled circles: undeuterated species; open
squares: deuterated species. Top: dissociation of the benzene and
perdeuterated benzene cations. Bottom: dissociation of the pyridine and
perdeuterated pyridine cations.

Figure 5. Evolution of the F index with internal energy for the C4H4
+

loss from ionized benzene and pyridine and their perdeuterated
isotopomers. The gray area is a guide for the eye to highlight the global
decrease of F. The star at (E ) 0, F ) 1) corresponds to the
(nonmeasured) threshold situation where only one phase-space cell is
available and is necessarily occupied.
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E increases and reaches a value of about 80% at E ) 4.5 eV.
As already noticed in the case of the pyridine dissociation,9 no
isotope effect is detectable.

6. Ab Initio Calculations

A large number of ab initio calculations were undertaken in
order to determine the lowest energy pathway for the formation
of the C4H4

+ fragment and, especially, in order to check whether
its formation from either the benzene or pyridine cation involves
a reverse activation-energy barrier. Unfortunately, this turned
out to be a very difficult task. An insight into the difficulties is
given below.

The computations were carried out with the GAUSSIAN
system of programs58 by using basis sets of increasing size to
ascertain the stability of the analysis. Density functional theory
calculations performed by using the B3LYP functional were
compared with quadratic configuration interaction calculations
including single and double excitations (QCISD). (The meaning
of the acronyms is explained in standard textbooks.59) The
results were often disappointing because, as noted in a recent
discussion60 of the reliability of barrier-height calculations, there
exists a “tendency of many density functionals to underestimate
potential barriers [...] in contrast to ab initio methods, which
tend to overestimate (them)”. In many cases, the transition state
of a rearrangement was found to lie below the dissociation
asymptote when calculated at the B3LYP/6-31G(d) level.
However, when the calculation was repeated at the (more
accurate) QCISD level, the isomerization barrier was found to
be higher than the asymptote, irrespectively of the size of the
basis set of atomic orbitals.

Furthermore, when the reverse activation barrier is very small,
the zero-point energy correction to be added is of decisive
importance. However, the calculated vibrational frequencies of
the transition state are often overestimated, because they are
calculated as if the potential energy surface were harmonic in
the neighborhood of the saddle point, which is not often the
case.

Finally, we also detected an interconversion between 2A′ and
2A′′ electronic states of the pyridine cation involving a conical
intersection. For nonplanar geometries, the two electronic states
belong to the same representation and the genuine crossing
converts to a saddle point.

A. Benzene Cation. Multireference configuration interaction
ab initio calculations with a 6-31G(d,p) basis set of atomic
orbitals aiming at determining the lowest-energy pathway for
the formation of the C4H4

+ fragment from the benzene radical
cation have been carried out by van der Hart.24 The last part of
the reaction path was found to start from a stable C6H6

+ isomer
having the structure of a charged MCP+ conformation linked
to an acetylene molecule. This structure evolves adiabatical-
ly to the fragments via a simple CC-bond stretching motion, in
the course of which a transition state is next encountered along
the reaction path, followed by a shallow minimum resulting from
an ion-induced dipole interaction. van der Hart’s calculations
locate the energy of the last transition state 2 kcal mol-1 above
that of the dissociation asymptote. This is probably an overes-
timate because of the unreliability of the zero-point energy
correction. The transition state was found to be characterized
by the existence of four equivalent conformations that easily
interconvert via a very anharmonic force field.

Altogether, the picture that emerges is consistent with a
complicated reaction mechanism, the last step of which consists
of the dissociation of a weakly bound ion-quadrupole complex
MCP+•C2H2 by a simple CC-bond stretching motion without a

reverse activation energy barrier. The stability of the complex
was calculated by the QCISD/6-311G(d,p)//QCISD/6-31G(d)
procedure and led to a value of 0.14 eV.

B. Pyridine Cation. A large number of calculations were
attempted in order to determine the dissociation pathway of the
pyridine ion.

Six different kinds of stable structures were detected: (i) the
normal pyridine geometry, (ii) two six-membered rings with a
hydrogen shift, presenting one carbon atom with no hydrogen
and another one linked to two of them, (iii) a five-membered
pyrrolic ring, (iv) an open chain having the HC-N-CH-
CH-C-CH2

+ structure (another much less stable open chain
isomer was also detected), (v) an ion-ipole complex where an
HCN molecule is loosely bound to a MCP+ ion, and (vi) a
similar weakly bound complex where HCN interacts with a VA
ion.

Unfortunately, the complete reaction mechanism leading from
the original pyridine structure to the lowest dissociation
asymptote could not be reconstructed. No less than 21 transition
states were found to connect these stable structures. Many of
them describe numerous isomerization possibilities among
floppy structures. Only the last step is secure: the ion-dipole
complex MCP+•HCN dissociates without any reverse activation
energy barrier. Its most stable structure is calculated at the
QCISD/6-311G(d,p)//QCISD/6-31G(d) level to be 0.53 eV
below the dissociation asymptote. (A value of 0.52 eV was
derived from a QCISD/6-31++G(d,p)//QCISD/6-31G(d) cal-
culation.) The nuclear framework belongs to the Cs point group,
and the ground electronic state is 2A′′ . However, its structure
is floppy because the potential-energy surface is very flat: the
two moieties have considerable freedom to stroll about each
other.

7. Discussion

The experimental results displayed in Figures 1-5 highlight
three major pieces of information which will now be discussed
in detail.

(i) Although reactions 1.1 and 1.2 require large structural
rearrangements, their KERD shapes are not only similar to each
other but also to those previously obtained for simple bond
cleavage reactions leading to an atom loss.13,14,17 Moreover, the
dissociations of two C6H6

+ isomers (2,4-hexadiyne and 1,5-
hexadiyne) into C4H4

+ and C2H2 behave similarly.18 When a
constraint can be unambiguously identified, it is found to be
equal to the square root of the released translational energy,
ε1/2, as for simple-bond dissociations.13,14,17 The average kinetic-
energy release 〈ε〉 is lower than the value 〈ε〉0 expected from
the three-dimensional prior model.

(ii) A finer comparison between parts a and b of Figure 4
shows, however, that the pyridine cation behaves even less
statistically than the benzene cation.

(iii) For the benzene ion dissociation 1.1, the two-dimensional
prior distribution P2D

0 (ε|E) is found to be in good agreement
with the experimental KERD at least up to an internal energy
of 3 eV (Figures 1, 2, 3, and 4a), even though the ion-quadrupole
interaction potential between the receding fragments is not
spherically symmetric. Even for the less statistical fragmentation
of the pyridine cation, Figure 4b shows that the two-dimensional
prior distribution is closer to the experimental data than the
three-dimensional one.

We examine these three points in turn in the following
discussion. We first show how the decoupling of the reaction
coordinate from the internal degrees of freedom of the fragments
accounts for the ε1/2 constraint (Section 7.A) and for the sign
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of λ1 (Section 7.B). Not only the similarity between the KERDs
of reactions 1.1 and 1.2 (point (i) above) but also their
specificities (point (ii)) follow naturally from this MEM analysis,
as shown in Section 7.C. In the last subsection (Section 7.D),
an argument based on the classical Hamiltonian of a model
system is presented to justify the dimensionality reduction (point
(iii)) suggested by Figures 1-4.

A. Adiabatic Separation of the Reaction Coordinate. The
commonly accepted view is that KERDs should provide
information on the long-range dynamics.1 Section 6 has
emphasized that the last step of the fragmentation mechanism
consists in a simple barrierless cleavage of a MCP+•C2H2 or
MCP+•HCN complex. However, the asymptotic expression of
the interaction potential is very different for the two reactions
studied here. The leading term in the expression of the long-
range potential between C4H4

+ and C2H2 describes the charge-
quadrupole interaction

V(r,θ)) qQ

2r3
(3 cos2 θ- 1) (7.1)

where θ denotes the angle between the principal axis of the
neutral fragment and the line joining both fragments, q is
the charge of the ion, r is the interfragment distance, and Q
is the quadrupole moment of acetylene. For the C4H4

+ +
HCN interaction, the leading term is the charge-permanent-
dipole contribution

V(r,θ))-
qµD

r2
cos θ (7.2)

where µD is the permanent electric dipole moment of hydrogen
cyanide.

At large values of the separation coordinate r, the neutral
fragment, either HCN or C2H2, undergoes free rotation in the
field of the ion. As pointed out by Bates61 and by Schlier,62 the
cyclic action integral Ipθ dθ, where pθ is an angular momentum,
is an adiabatic invariant of the problem; that is, the reaction
coordinate is adiabatically decoupled from rotation. Recent
research63,64 has shown that the Poisson bracket of the adiabatic
invariant is proportional to pr µ r-3 for the ion-dipole interaction
and to pr Q r-4 for the ion-quadrupole case. This short-range
behavior of the Poisson bracket implies that the quality of the
adiabatic approximation is expected to be quite good, at least
at asymptotically large values of r. However, because it also
increases linearly with the translational momentum pr, the
validity of the adiabatic separation becomes questionable at high
translational energies.

When the reaction coordinate is adiabatically decoupled from
the bath, the dynamics is equivalent to a one-dimensional motion
along the reaction coordinate in an effective potential.62-64 The
equation of motion obeys Jacobi’s form of the least-action
principle, which is particularly simple when the dynamics is
one-dimensional.63-65 This principle asserts57,66 that the actual
trajectory between two points r1 and r2 minimizes the integral
∫r1

r2 ε1/2 dr. This accounts63-65 for the fact that, for both reactions
1.1 and 1.2, the dynamical constraint to be used in the MEM is
ε1/2, in conformity with the experimental findings at low internal
energy (metastable domain, Figures 1 and 2).

B. Statistics and Dynamics. The MEM clearly distinguishes
between the roles played by statistics and by dynamics in energy
partitioning problems. At not too high internal energies at least,
KERDs have been found to obey eq 4.3 with A1 ) ε1/2 (Figures
1 and 2).

P(ε|E))P3D
0 (ε|E) e-λ0 e-λ1ε1⁄2

(7.3)

Note the physical meaning of each of the three factors. The
statistical information is contained in the prior distribution P0.
The third factor, exp(-λ1ε1/2), is a dynamical correction, and
the middle one, exp(-λ0), is a mere normalization constant.

Equation 7.3 accounts for the fact that, even though the long-
range forces are very different, similarity in the KERD shapes
for reactions 1.1 and 1.2 is to be expected. The reasons are as
follows.

First, the prior distributions P3D
0 (ε |E) of reactions 1.1 and

1.2 are similar. This results from the fact that the vibrotational
degrees of freedom of HCN and of C2H2 form two roughly
equivalent sets so that the density of internal states Fint to be
used in eqs 4.1 and 4.7 is quite similar for both reactions.

Second, as explained in Section 7.A, both the ion-dipole
and ion-quadrupole electrostatic potentials lead to an asymp-
totic adiabatic separation and hence to a common constraint
ε1/2. For both interactions, the dynamical factor of the MEM is
expected to be exp(-λ1ε1/2), in conformity with the low-energy
experimental findings.

Third, the Lagrange multiplier λ1 must be positive for the
following reason. Within the ion-neutral potential well, all
oscillators may be assumed to nearly (but not completely) freely
exchange energy. They are therefore in a state of quasi-
equilibrium and may be characterized by a common effective
temperature,1,67 Because the ion-neutral complex in reactions
1.1 or 1.2 dissociates without any reverse activation barrier, the
potential energy increases steadily, and the effective tempera-
ture decreases as fragmentation proceeds. As the reaction
coordinate reaches large values, it decouples from the bath
formed by the other degrees of freedom. The entropy deficiency
derives from this decoupling. The reaction coordinate now tends
to form a closed subsystem, where the total energy is constant.
As a result, the effective temperature reached at the end of the
fragmentation process will be smaller for the relative transla-
tion than for the internal degrees of freedom. Therefore, the
translational energy necessarily decreases with respect to the
reference statistical situation, where a common effective tem-
perature would govern all degrees of freedom. In the language
of the MEM, λ1 > 0, and the measured translational energy
release 〈ε〉 must be less than the statistical expectation. This
accounts for the experimental findings.

C. Role of Long-Range Forces. Let us now compare
the C4H4

+ + C2H2 and C4H4
+ + HCN dissociation channels.

The ion-dipole complex is found to be more stable than the
ion-quadrupole one (0.53 eV versus 0.14 eV, according to the
ab initio calculations presented in Section 6). A deep potential
well induces a strong cooling in the reaction coordinate and a
strong discrepancy between the final effective temperature for
the relative translation and that for the internal degrees of
freedom of the fragments. This correlates with the experimental
data. In the spirit of Section 7.B, the Klots equation1,67 may be
slightly modified by assigning a different effective temperature
to the relative translation and to the remaining degrees of
freedom. Both effective temperatures can then be easily
extracted from the experimental average translational energy
and from the complementary average fragment internal energy,
respectively. In the 0-3 eV total energy range, the ratio between
the fragment translational effective temperature and that for the
internal degrees of freedom is 0.93 ( 0.07 for the benzene
dissociation. In the pyridine case, this ratio decreases to 0.78
( 0.10. These data show that, especially for reaction 1.2, the
relative translation contributes more to the conversion of kinetic
energy into potential energy along the dissociation path than
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the vibrotational bath, a situation which is compatible with the
progressive decoupling of the reaction coordinate from the
remaining degrees of freedom. Coming back to the MEM
language, one must therefore have, at a given internal energy,
λ1

pyr > λ1
bz and 〈ε〉pyr/〈ε〉0

pyr < 〈ε〉bz/〈ε〉0
bz. This accounts for the

differences between Panels a and b of Figure 4.
D. Dimensionality of the Dynamics. In order to analyze the

influence of anisotropy of the long-range potential, it is useful
to compare our results with those previously derived in a case
where the interaction potential between fragments is spherically
symmetric.40 In that case, that is, when it can be expressed as
the sum of an ion-induced-dipole interaction and a centrifugal
term, the conservation of the orbital angular momentum in a
central force field constrains the relative motion of the two
fragments to take place in a plane.57,66 Then, the two-
dimensional prior distribution P2D

0 (ε|E) (eq 4.7) is found to
provide an excellent approximation to the experimental KERD.
The only necessary additional correction consists in truncating
it at low values of ε, because of the additional requirement that
the translational energy be large enough to overcome the cen-
trifugal barrier.1,40

The argument based on the conservation of the orbital
angular momentum breaks down when the interaction
potential is anisotropic. Surprisingly enough, the experimental
data for reaction 1.1 are close to the two-dimensional prior
expectations. This observation arouses the presumption that,
for nonobvious reasons, the nuclear trajectories that generate
the KERD for reaction 1.1 have a propensity to be confined
to a two-dimensional space even though the interaction
potential is not spherically symmetric.

The use of eq 4.7 as a two-dimensional prior distribution that
satisfies the conservation of angular momentum has been
advocated by Quack and Troe.68 It must be emphasized,
however, that evaluating the correction linked with the truncation
at low values of ε is far from straightforward because the
calculation of the barrier height requires the assumption that
the total angular momentum can be decomposed into two
decoupled momenta, rotational and orbital. This is impossible
in a nonrigid system.69 This is the reason why we carried out
our MEM analysis with the more secure three-dimensional prior
distribution.

Instead, we propose to analyze the classical Hamiltonian of
a model system. Consider the interaction between an ion of mass
M and a diatomic molecule consisting of two masses m separated
by a distance 2d. The nine degrees of freedom are reduced to
five by fixing the origin of the coordinates at the center of mass
of the whole system and by freezing the internuclear distance
d. For the five remaining degrees of freedom, we use a double
system of spherical coordinates (Figure 6): the distance r
separating the ion and the center of mass of the diatomic
molecule, the polar and azimuth angles ω and � denoting the
orientation of that segment, and the polar and azimuth angles �
and η specifying the orientation of the diatomic. The following
expression can be derived for the kinetic energy:57,70

T) 1
2µ(pr

2 +
pω

2

r2
+

p�
2

r2 sin2 ω)+ 1
2I(p�

2 +
pη

2

sin2 �) (7.4)

where µ ) 2 mM/(M + 2m) denotes the reduced mass of the
two fragments and I ) 2md2 is the moment of inertia of the
diatomic molecule.

Expression 7.4 is valid for both reactions 1.1 and 1.2 if we
accept to reduce C2H2 and HCN to a rigid diatomic molecule.
This should be acceptable at large values of r and at energies
low enough for the neutral fragment to retain a rigid structure.

The expression of the potential energy results from inserting
the following standard formula into eqs 7.1 or 7.2:

cos θ) cos ω cos 
+ sin ω sin 
 cos(η-�) (7.5)

The important point is that the Hamiltonian involves five
momenta but only four generalized coordinates: r, ω, �, and
the difference η - �. Thus, one of the coordinates is cyclic,
and as a result, it is possible to define a generalized momentum
that is a constant of the motion.

To see this explicitly, let us define a new angle δ ) η - �.
The kinetic energy can be rewritten as

T) 1
2µ(pr

2 +
pω

2

r2
+

(p� - pδ)2

r2 sin2 ω )+ 1
2I(p�

2 +
pδ

2

sin2 �) (7.6)

The gratifying result is that � vanishes from the expression
of the potential energy because

cos θ) cos ω cos 
+ sin ω sin � cos δ (7.7)

The angle � is now a cyclic (or ignorable) coordinate.57,70

Thus, its conjugate momentum p� is a constant of the motion
in addition to the energy. The relative translational motion of
the pair of fragments is described in spherical coordinates by
the three variables r, ω, and �. If the latter degree of freedom
is now frozen, the translational phase-space volume is reduced
to two dimensions, both for the ion-dipole and ion-quadrupole
interactions. More explicitly, the translational phase space
volume is determined by integration over three coordinates (r,
ω, �) but over the two variable conjugate momenta (pr and pω)
only. Each integration over a momentum increases the exponent
of ε by 1/2, whereas each integration over a coordinate leaves
it unchanged.1 Thus, the translational phase-space volume is
proportional to ε, and its derivative, that is, the density of states,
is a constant. This justifies the use of the two-dimensional prior
distribution P2D

0 (ε|E) in the MEM analysis and accounts for the
lowering of the experimental translational energy with respect
to the statistical expectation.

That the charge-quadrupole interaction exerts only a weak
influence on the orbital motion should not be too surprising. Its
main effect is to create a precession of the quadrupole about an
axis perpendicular to the orbital plane. This result has an
astronomical analogy because of the similarity between the
electrostatic and the gravitational potentials. As a matter of fact,
because of its rotation, the Earth is an oblate spheroid and
therefore presents a gravitational quadrupole moment.57 Its
equatorial bulge induces a torque that leads to a precession of
the rotational axis about the normal to the ecliptic (termed the

Figure 6. Definition of the coordinate system used for the classical
Hamiltonian analysis of the atom-diatom model of Section 7.D.

Loss of C4H4
+ from the Benzene and Pyridine Cations J. Phys. Chem. A, Vol. 112, No. 41, 2008 10093



precession of the equinoxes) but which does not prevent the
Earth’s orbit from remaining planar.

8. Concluding Remarks

Previous research has shown that virtually all of the dissocia-
tions with no reverse barrier present a KERD typical of a two-
dimensional interfragment motion. The present paper has
attempted to explain why this is the case. Insight into the
problem comes from the introduction of the concept of adiabatic
separation of the reaction coordinate and from an understanding
of the mechanism leading to a dimensionality reduction of the
translational degrees of freedom.

The central theme of this work is the comparison between
the KERDs characterizing reactions 1.1 and 1.2, including the
perdeuterated species. The reaction mechanism consists of a
complicated sequence of rearrangements leading to an ion-dipole
or ion-quadrupole complex that dissociates without any reverse
activation energy. Our measurements and calculations shed light
on the last step only, that is, on the dissociation of the weakly
bound species. A major finding is that in all of these reactions,
less translational energy is released than what is statistically
expected.

The asymptotic part of the potential energy surface of the
molecular ion thus governs the KERDs for all these reactions:
long-range forces are instrumental. Do then the KERDs reveal
the specificity of theses forces? Hardly. This paradox is in fact
only apparent. The KERD shapes of reactions 1.1 and 1.2 are
alike because the corresponding long-range potentials have, in
spite of their dissimilarity, an essential common feature: they
both lead to an adiabatic separation of the reaction coordinate.
The validity of this adiabatic approximation is demonstrated
by the experimental observation that the KERDs for both
reactions are related to P3D

0 (ε|E) with the momentum ε1/2 acting
as a constraint. This is a consequence of Jacobi’s version of
the least-action principle.

On the other hand, the KERD has been shown to be simply
related to P2D

0 (ε|E) whenever the interaction potential is simple
enough to depend only on a number of angles less than the
originally required set. When this reduction is valid, a cyclic
variable appears in the Hamiltonian, and its conjugate momen-
tum is a constant of the motion. A reduction of the number of
translational degrees of freedom has often been suggested in
the rationalization of unimolecular reaction dynamics,1 but we
believe the argument developed in Section 7.D to be more
straightforward.

The question may be raised whether there exists a connection
between the concepts of adiabatic separability and variational
principle, which lead to the exp(-λ1ε1/2) correction, on one side,
and the reduction to two translational dimensions, on the other
side. Additional work is beyond doubt required to reach a deeper
understanding. We suggest that such a link might be found in
Gauss’s variational principle of least constraint71 applied to the
case of a charge-dipole interaction. Among three possible
trajectories, a linear one, a planar one, and a gauche one, it can
be shown that the planar one happens to minimize the constraint.

These two simplifications, adiabatic separability and dimen-
sionality reduction of the translational phase space, apply to all
ion-molecule reactions where a diatomic-like fragment sepa-
rates from a point-like entity. These circumstances are very
general and can be expected to be applicable to the dissociation
of the numerous ion-neutral complexes and weakly bound
species that have been detected in the chemistry of gas-phase
ions.72-74

Finally, attention should be drawn to an unexpected conclu-
sion, derived from the invariance properties of the entropy.
Although the analytical expression of the dynamical constraint
identified by the MEM analysis of our experimental KERDs is
linked to the properties of the electrostatic potential in the
asymptotic range of the reaction coordinate (eqs 7.1 ans 7.2),
its influence persists throughout the entire reaction process.
Alhassid and Levine75 have analytically demonstrated that the
entropy deficiency is a constant of motion, and this is also
supported by quantum dynamical calculations of reactive
scattering.76 This means that the influence of the constraint
subsists at smaller values of the reaction coordinate, in particular
in the ion-neutral complex, where it prevents the oscillators
to completely freely exchange their energy, as already alluded
to in Section 7.B. Thus, in contradistinction to summary sketches
of the RRKM theory, the system never forgets its previous
history. The analytical expression of the constraint for an
ion-molecule reaction is simple and involves only the reaction
coordinate when rf ∞. However, it becomes more complicated
and less conspicuous at shorter distances where many degrees
of freedom can be affected, so that the restrictions to phase-
space sampling and to energy randomization act everywhere
along the reaction coordinate.
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