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The kinetics of fluorescence quenching by both charge transfer and exciplex formation is investigated, with
an emphasis on the reversibility and nonstationarity of the reactions. The Weller elementary kinetic scheme
of bimolecular geminate ionization and the Markovian rate theory are shown to lead to identical results,
provided the rates of the forward and backward reactions account for the numerous recontacts during the
reaction encounter. For excitation quenching by the reversible exciplex formation, the Stern-Volmer constant
is specified in the framework of the integral encounter theory. The bulk recombination affecting the
Stern-Volmer quenching constant makes it different for pulse excited and stationary luminescence. The theory
approves that the free energy gap laws for ionization and exciplex formation are different and only the latter
fits properly the available data (for lumiflavin quenching by aliphatic amines and aromatic donors) in the
endergonic region.

I. Introduction

The quantum yield of A* fluorescence in liquid solutions is
conventionally described by the Stern-Volmer law

η) 1
1+ cκτA

(1.1)

where c is the concentration of quenchers assumed to be
reasonably small, while τA is the lifetime of the excitation in
the absence of them. When the quenching is carried out by
electron transfer from electron donor D to excited acceptor, A*,
it is expected that the Stern-Volmer constant dependence on
the free energy of ionization, κ(∆Gi) should reproduce the free
energy gap (FEG) law established by Marcus for the elementary
rate of electron transfer.1 This expectation was not confirmed
by a crucial experiment by Rehm and Weller2 who found that
the top of the predicted FEG parabola is cut by a plateau, later
on recognized as a diffusional one.3 Still it remained unclear
why this plateau is extended so far in the exergonic region. This
was the long standing Rehm-Weller paradox that was subjected
to a number of hypothetical explanations. Finally it was proved
that even the most exergonic reaction is really under diffusion
control.4 Since the Rehm-Weller paradox takes place in the
highly exergonic region (-∆Gi , kBT), the transfer there is
actually irreversible and for that a non-Markovian theoretical
description of the unified theory (UT) was actually used.5

Here we concentrate on another paradox in the opposite, near
resonant and even endergonic region, where the reversibility
of electron transfer can not be ignored. Here only the integral
encounter theory (IET) should be employed since it is the only
theory capable of accounting for the electron transfer revers-
ibility and the transient effects.6 The reversible charge separation
can be interrupted by either recombination to the ground state
or formation of exciplex, ruined by its luminescence. In both
cases such processes control the reaction when it becomes too
slow, shifting the descending branch of the curve left or right.

Such an effect found recently in charge transfer reactions was
called “the multiple Rehm-Weller” effect7 first explained in
ref.8 Now we are going to do the same for quenching by the
exciplex formation and compare both phenomena, having
qualitatively different κ(∆Gi) dependence. Assuming that the
transfer in any case is contact, the problem is solved analytically,
even taking into account the spin-conversion in radical-ion pairs
and the reversible production of triplet excitations.

It is shown in section II that the elementary kinetic scheme
of bimolecular geminate ionization (Weller) and the Markovian
rate theory of the same give identical results, provided that the
forward and backward rates similarly account for the numerous
recontacts during the reactant encounter. The same relationship
exists also for the rate constants of exciplex association/
dissociation. It was first pointed out by Berg, studying reversible
complex dissociation and extended to exciplex dissociation in
section III by means of non-Markovian IET. There the exciplex
separation into counterions or neutral (excited) particles was
studied and the Berg results for stable complex dissociation were
confirmed. In section IV the IET is applied to the quenching of
excitation by reversible exciplex formation and the free energy
dependence of the Stern-Volmer quenching constant is speci-
fied. The rest of this article is devoted to the quenching of
photoexcitation by bimolecular ionization. In section V, it is
just the geminate one which proceeds in diluted solutions and
in restricted time interval after δ-pulse excitation. In the next
section it is done taking into account the bulk recombination
of photogenerated free ions, which takes place in more dense
solutions and under stationary illumination. The Stern-Volmer
constants are shown to be different for pulse excited and
stationary luminescence. In the last section, VII, both the
geminate and stationary reactions are considered taking into
account the spin states of the ions and recombination products
(either singlet or triplet). The yields of the products of the
geminate reaction are analytically specified, assuming the
incoherent spin conversion in ion pairs and the stationary
Stern-Volmer constant is shown to be independent of whether
there is or is not the reversible production of triplet excitation.
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II. Markovian (rate) theories

A. Reversible geminate ionization. The archaic reaction
scheme for the reversible charge transfer from electron donor
(D) to excited acceptor (A*) is usually written as follows:2

A * +D
VτA

y\z
kD

k-D

[A * · · · D] y\z
krip

k*
[A- · · · D+]

Vkr

(2.1)

The Stern-Volmer constant of the impurity quenching carried
out by D is

κ)
kD

1+
k-D

krip [1+ k*
kr ]

(2.2)

Here kD is the diffusional rate constant of bimolecular formation
of the encounter complex [A* · · ·D] subjected to monomo-
lecular dissociation (k-D) and charge separation (krip), as well
as radical ion pair (RIP) recombination, to either the excited
(k*) or ground state (kr) of neutral products. Unfortunately the
interparticle distance in a pair [A- · · ·D+] and its precursor
[A* · · ·D] remains an enigma and neither of these rates can
be specified. As a matter of fact, this distance varies from the
minimal (contact) up to infinity and all of the transfer rates are
functions of this distance. An adequate description of the remote
transfer can be only obtained with differential or integral
encounter theories (DET or IET).6

The only exception is the contact transfer that can be
described by the reduced scheme

A*
I0vVτA

+D y\z
ki

kb

[A- · · · D+]
Vkr

(2.3)

The corresponding set of rate equations with time-independent
rate constants, constituting the formal basis of the conventional
chemical kinetics

dN*
dt

)-(cki +
1
τA

)N* + kbP+ I0N (2.4a)

dP
dt

) ckiN* - (kb + kr)P (2.4b)

Here c ) [D] is the concentration of donors, N* ) [A*] is the
concentration of excited acceptors, I0 is the rate of the stationary
light pumping, N is the ground-state population being unchanged
at low light intensity, and P ) [A-] ) [D+] is the concentration
of the counterions. This is the Markovian theory:

Getting Ns* from the stationary solution of eqs 2.4 and using
it for the conventional definition of the fluorescence quantum
yield

η)
Ns*

I0NτA
(2.5)

we confirm the Stern-Volmer law with the following quenching
constant:

κ)
kikr

kb + kr
(2.6)

Here the stationary (Markovian) rate constant of bimolecular
ionization

ki )
kD

k0 + kD
k0 (2.7)

is expressed via the kinetic constant of bimolecular ionization
k0 ) kripV and the diffusional one, kD ) 4πσD (σ is the contact

distance, D is the encounter diffusion coefficient, V ) 4πσ2∆
is the volume of the reaction layer with a width ∆ , σ).
Equation 2.6 is equivalent to the expression 2.2, provided

kD ) k-DV (2.8)

and

kb )
kD

k0 + kD
k* (2.9)

The relation 2.8 presumes that there is no potential interaction
between reactants reaching and leaving contact by a free
diffusion. The nature of the backward rate, eq 2.9, is more
complex. It accounts for the numerous recontacts of ions during
a single encounter, i.e., for repeated attempts of recombination
to the excited state (with rate k*) which are separated by a
diffusional motion in between.

B. Reversible Exciplex Formation. Only a consistent dif-
fusional theory of a reversible contact reaction confirms and
clarifies the definition of the multicontact backward transfer rate
kb. In the particular case of reversible exciplex formation, the
reaction proceeds according to the following scheme

A*
I0vVτA

+D y\z
ki

kb

[A-δD+δ]
Vτexc

(2.10)

The rate equations similar to (2.4a) describe the time evolution
of the excited-state and exciplex populations

dN*
dt

)-(cki +
1
τA

)N* + kbN
e + I0N (2.11a)

dN e

dt
) ckiN* - (kb + 1 ⁄ τexc)N

e (2.11b)

Here Ne is the concentration of exciplexes, while

ki ) ka

kD

ka + kD
(2.12a)

kb ) kd

kD

ka + kD
(2.12b)

where ka ) kexcV is the kinetic rate constant of exciplex
formation (analog of k0) but for association and kd is the rate of
a single exciplex dissociation (analog of k*).

The fluorescence quantum yield may be obtained from either
the stationary experimental data, from eq 2.5, or from the δ-pulse
excitation providing the quenching kinetics N*(t) is traced up
to complete decay of A*. Setting I0 ) 0 in eqs 2.11 and solving
them with the initial condition

N*(0)) 1 N e(0)) 0 (2.13)

one can get the fluorescence quantum yield integrating N*(t)
over time

η)∫0

∞
N*(t) dt ⁄ τA ) Ñ*(0) ⁄ τA (2.14)

where the tilde denotes the Laplace transformation

Ñ(s))∫0

∞
e-stN(t) dt (2.15)

Expression 2.14 is actually the Stern-Volmer dependence 1.1
with
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κ)
ki

1+ kbτexc
)

{ ki irreversible charge separation kbτexc , 1
K ⁄ τexc reversible electron transfer kbτexc . 1 (2.16)

where K ) ki/kb is the equilibrium constant. The ionization rate
constant ki is defined in (2.12a) as usual, although the kinetic
constant of ion association into the exciplex, ka, has a different
nature than that of electron transfer (k0) and the recombination
rate kr is now substituted by the exciplex decay 1/τexc. However,
the full identity of expressions 2.16 and 2.6 is reached under
the assumption that the backward transfer rate relates to the
dissociation rate, as in eq 2.12b. There kd is the monomolecular
rate of a single exciplex dissociation. The dissociation repeats
after any subsequent association, and eq 2.12b, similar to (2.9),
accounts for all the recontacts.

This important relationship was first derived by Berg con-
sidering the dissociation/association equilibrium in a nonexcited
system:9

A+D y\z
ki

kb

[AD] (2.17)

with the equilibrium constant

K)
ki

kb
)

ka

kd
(2.18)

The Berg relationship (2.12b) follows from the last equality.
According to this equation kb reaches its maximal value, kd, if
the restoration of the exciplex in recontacts is ineffective (kaf
0). In the opposite limit, under diffusional control (kD , ka),
the total rate of dissociation is much less.

III. The Non-Markovian Kinetics of Exciplex
Dissociation

A. Reversible Dissociation into Ions. The kinetics of the
exciplex dissociation can be investigated separately assuming
that there is just a single exciplex that decays and dissociates
reversibly into an ion pair which either recombines or separates
into free ions that never meet afterward

A-δD+δ

I0vVτexc

y\z
kd

ka

[A * · · · D]
VkR

fA-+D+ (3.1)

Here kR = krV and ka are kinetic constants of charge recombina-
tion and association, respectively, while kd is the rate of a single
exciplex dissociation via charge separation.

The pioneering investigation of this phenomenon by Berg9

showed that the dissociation of a stable complex (τexc ) ∞) to
neutral components is not exponential under diffusional control.
The same is true for exciplex dissociation to an ion pair in a
highly polar solvent (allowing to neglect the Coulomb attrac-
tion). In such a case, the exciplex population Ne(t) obeys the
equation10

dN e

dt
)-(kd+1 ⁄ τexc)N

e + kd∫0

t
F(t- τ)N e(τ) dτ (3.2)

For the absence of recombination (kR ) 0) such an equation
was first obtained by Berg who specified F(t) in the contact
approximation (see eq 2.6 in ref 9). The Laplace transformation
of this kernel is rather simple even in the general case
(kR+0):10

F̃(s))
ka

ka + kR + kD(1+ √sτd)
(3.3)

where τd ) σ2/D is an encounter time of any neutral fragments
as well as counterions in highly polar solvent. In the kinetic
control limit (kD . ka) Ff 0 and the integral kernel approaches
zero. Then eq 3.2 reduces to the following

dN e

dt
)-(kd + 1 ⁄ τexc)N

e (3.4)

where

N e(0)) 1

from which follows the pure exponential decay

N e ) e-kdt-t⁄τexc (3.5)

However, this is not the case when the diffusion is slow and
controls the dissociation.

The Berg equation (3.2) was the first integral equation in
chemical kinetics which substitutes the rate equation, eq 3.4.
Later on, the well-grounded and matrix formulated IET did the
same with reactions of arbitrary complexity, either contact or
remote.6 To the problem on hand, IET gives a similar kinetic
equation6,10

dN e

dt
)- N e

τexc
- kd∫0

t
F(t- τ)N e(τ) dτ (3.6)

which is identical to eq 3.2 provided

F(t)) δ(t)-F (t) (3.7)

i.e.

F̃(s)) 1- F̃ (s)

In the contact approximation the kernel has the form

F̃(s))
kR + kD(1+ √sτd)

ka + kR + kD(1+ √sτd)
(3.8)

The effect of the recontacts leading to the restoration of the
exciplex makes the charge separation kinetics nonexponential.

B. Reversible Dissociation into Neutral Fragments. If the
instantaneously created exciplex reversibly separates into excited
acceptor and electron donor, the reaction follows the scheme
(from right to left):

A*
VτA

+D y\z
ka

kd

[A-δD+δ]
I0vVτexc

(3.9)

The exciplex population obeys eq 3.2 with the same initial
condition (Ne(0) ) 1) but with another kernel

F) kaG(σ, t) (3.10)

expressed through the Green function of the relative diffusion
and association of A* and D. The latter obeys the equation
substituting eq 51 in ref10

∂

∂t
G(r, t))D

1

r2

∂

∂r
r2 ∂

∂r
G(r, t)- G(r, t)

τA
(3.11)

at

G(r, 0)) δ(r- σ) ⁄ 4πr2

with the boundary condition
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4πσ2D
∂

∂r
G(r, t)|r)σ ) kaG(σ, t) (3.12)

The solution of this equation can be easily obtained by its
Laplace transformation5

G̃(σ, s))
G̃0(σ, s+ 1

τA
)

1+ kaG̃0(σ, s+ 1
τA

)
(3.13)

where

G̃0(σ, s)) 1

kD(1+ √sτD)

From eqs 3.10 and 3.13 we obtain instead of eq 3.3

F(s))
ka

ka + kD(1+ √(s+ 1 ⁄ τA)τd)
(3.14)

As has been noted, the exciplex population obeys eq 3.2 as
well as the equivalent IET eq 3.6 but with a new kernel
following from the last result

F̃(s)) 1-F(s))
kD(1+ √(s+ 1 ⁄ τA ⁄ )τd)

ka + kD(1+ √(s+ 1 ⁄ τA)τd)
(3.15)

Using it in eq 3.6 we obtain

Ñ e(s)) [s+ 1 ⁄ τexc +
kd

1+ ka ⁄ kD(1+ √(s+ 1 ⁄ τA)τd)]
-1

.

(3.16)

Since the exciplex created by a light excitation of precursor
complex decays by either fluorescence or dissociation into
fragments, the dissociation is the only quenching mechanism
lowering the fluorescence quantum yield

η e )∫0

∞
N e(t) dt ⁄ τexc )

Ñ e(0)
τexc

(3.17)

Using here Ñe(0) 3.16, we obtain instead of the Stern-Volmer
law:

η e )
1+ ka ⁄ kD(1+ √τd ⁄ τA)

1+ ka ⁄ kD(1+ √τd ⁄ τA)+ kdτexc

(3.18)

When τexc f 0, the fluorescence yield turns to 1, while at τexc

f ∞ the exciplex fluorescence is fully quenched (ηe f 0).
This result is concentration independent and can be deduced

at c ) 0 from the more general one obtained in ref11 but
presented in a different way

1- η e )
kd

ka
κτexc (3.19)

where

κ)
ka′

1+
ka′

kD(1+ √τd ⁄ τA)

and

ka′ )
ka

1+ kdτexc
(3.20)

In the kinetic control limit

κ) ka′ (3.21)

1- η e )
kdτexc

1+ kdτexc

while under diffusional control

κ) kD(1+ √τd ⁄ τA) (3.22)

1- η e )
kDτexc

K
(1+ √τd ⁄ τA)

where K ) ka/kd and the correction factor (1 + (τd/τA)1/2)
accounts for the transient effect in the diffusional ionization of
the excitation discovered by Smoluchowski.12

The particular case τexc ) τA ) ∞ is the most often studied
phenomenon of complex dissociation, scheme 2.17, when all
the reactants are stable and the corresponding IET equation has
the simplest form

dNc

dt
)-kd∫0

t
F(t- τ)Nc(τ) dτ (3.23)

where Nc is the concentration of [AD], initially equals 1 while
the kernel is

F̃(s))
kD(1+ √sτd)

ka + kD(1+ √sτd)
) 1

1+ ka ⁄ kD(1+ √sτd)
(3.24)

Making the Laplace transformation of eq 3.23, one can easily
find

Ñc ) [s+
kd

1+ ka ⁄ kD(1+ √sτd)]
-1

(3.25)

The same follows from eq 3.16 at τexc ) τA ) 0. Making the
inverse Laplace transformation of this result, we obtain the
dissociation kinetics Nc(t) shown in Figure 1A for a few different
values of the diffusion coefficient. When the association rate
constant is equal to zero (ka ) 0, the lowest solid line), the
population decay is exponential with the kinetic rate kd + 1/τexc.
For nonzero ka, the dissociation is not exponential (all upper
curves). The deviation from the exponent is greater when the
diffusion coefficient is smaller. For the smallest values of the
diffusion coefficient, when dissociation is under diffusional
control (kD , ka) the decay is the slowest and its nonlinearity
in the ln Nc/t plot is huge. The asymptote of this decay is known
to obey the power law11

Nc(t))
K

(4πDt)3⁄2
(3.26)

This conclusion is confirmed by presenting the same result
in the ln Nc/ln t plot (Figure 1B). It clearly shows that the linear
asymptote (dashed line) has a slope -3/2 as predicted in eq
3.26 for reversible dissociation (K * 0).

The situation is more complex when the fragments of
dissociation are not stable. In particular, the dissociation
following reaction scheme 3.9 is represented by its Laplace
transformation in eq 3.16, which depends on both lifetimes, τexc

and τA. The former just facilitates the decay of the exciplex,
while the latter significantly affects its kinetics, as shown in
Figure 2. At τA ) ∞ it coincides with that obtained for complex
dissociation at the diffusion coefficient D ) 5 Å2/ns. With
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shortening of τA the number of recontacts restoring the exciplex
decreases, accelerating its decay. At τd/τA . 1 it becomes highly
irreversible and turns to be kinetically controlled at τA ) 0.
Such a transient effect is absent in the Markovian theories as
well as the nonexponential asymptotic law 3.26.

IV. Excitation Quenching by Exciplex Formation

The Markovian description of this reaction schematically
represented in eq 2.10 is given by the set of equations 2.11,
whose IET analog is11

dN*
dt

) N*
τA

- cka∫0

t
F(t- τ)N*(τ) dτ+ kd∫0

t
F(t- τ) ×

N e(τ) dτ+ I0N (4.1a)

dN e

dt
) N e

τexc
- cka∫0

t
F(t- τ)N*(τ) dτ+ kd∫0

t
F(t- τ)

× N e(τ) dτ (4.1b)
Here the kernel F(t) is defined by its Laplace transformation
3.15. The last integrals representing exciplex dissociation are

the same as before, while those proportional to the donor
concentration c ) [D] correspond to the bulk formation of the
exciplex. When c f 0, these terms disappear and eq 4.1b
becomes eq 3.6.

If the light pumping is permanent (as well as fluorescence),
then I0 ) constant and the stationary populations of A* and
exciplexes are obtained from eqs 4.1a, setting dN*/dt ) dNe/
dt ) 0. In particular, the stationary density of excitations is

Ns* )
1+ kdF̃(0)τexc

1+ kdF̃(0)τexc + ckaτAF̃(0)
I0NτA (4.2)

Using this result in the quantum yield definition 2.5 together
with F̃(0) from eq 3.15, we confirm the Stern-Volmer law, η
) (1 + cκτA)-1, having the constant

κ)
ka′

1+
ka′

kD(1+ √τd ⁄ τA)

≡
κi

1+ κiτexc ⁄ K
(4.3)

where ka′ is the same as in eq 3.20 while the Stern-Volmer
constant of irreversible quenching

κi )
ka

1+ ka ⁄ kD(1+ √τd ⁄ τA)
(4.4)

Although the quantum yields of A* and exciplex fluorescence
are different, both of them depend on one and the same
quenching constant κ (see eqs 3.19 and 4.3).

This constant depends on both lifetimes, τA and τexc. The
former accounts for the transient effect while the shortening
of the latter makes the fluorescence quenching more effective,
since the energy transfer to exciplexes becomes irreversible.
The quantum yield of exciplex fluorescence ηe ) 1 - η
because in the scheme 3.9 there is no recombination to the
ground state: the energy dissipation is possible only via
fluorescence, through either one or another channel. It should
be noted that the same results were obtained in ref 11 from
the alternative definition of η, eq 2.14, where the total
nonstationary solution of eq 4.1a (after δ-pulse excitation)
is really integrated in an infinite time interval (up to t ) ∞).
In the same way the yields of fluorescence after pumping
the exciplex were also calculated in ref 11, as well as the
equilibration of the system at τA ) τexc ) ∞.

The free energy dependence of the Stern-Volmer constant
4.3 is different for irreversible and reversible formation of the
exciplex

κ) { κi at κiτexc ,K (irreversible)
K ⁄ τexc at κiτexc .K (reversible)

(4.5)

The irreversible one, given by eq 4.4, depends on the association
rate constant ka representing not electron transfer but heavy atom
penetration into the first coordination sphere of the partner. This
is an elementary step of the encounter diffusion accompanied
by adiabatic rearrangement of the excited state of the solvent
separated pair into the exciplex ground state.13 In the “black
sphere” approximation

ka . kD (4.6)

the irreversible quenching constant 4.4 reduces to the diffusional
one accounting for the transient effect:

κi ≈ kD(1+ √τd ⁄ τA) (4.7)

In the opposite limit, the Stern-Volmer constant dependence
on the free energy is determined mainly by the equilibrium
constant of reversible association/dissociation

Figure 1. (A) Complex dissociation kinetics for different encounter
diffusion, D, of its fragments. The other parameters are kr ) 0, kd ) 1
ns-1, σ ) 7 Å, τd ) σ2/D, kD ) 4πσD, ka ) 0 (solid line), ka ) 1000
Å3/ns for all the rest of the curves. The values of the diffusion
coefficient, D, are given in the figure in Å2/ns. (B) The power law
asymptotical dependence of reversible complex dissociation, presented
by the dashed straight line (for D ) 50 Å2/ns and K ) ka/kd ) 1000
Å3, the rest of the parameters are the same as in (A).

Figure 2. The kinetics of the exciplex dissociation at different τA and
D ) 5 Å2/ns (τd ) σ2/D ) 9.8 ns).
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K) ka ⁄ kd ) kexcV ⁄ kd ) 4πσ2∆e-∆E-⁄T (4.8)

where ∆E- is the energy gap between the excited acceptor and
exciplex (the Boltzmann constant kB ) 1). This gap depends
on both the free energy of complete ionization, ∆Gi, and the
coupling V between the A-D+ state and A*D:14

∆E()∆Gi ⁄ 2( √(∆Gi ⁄ 2)2 +V2 (4.9)

Two solid curves representing these dependencies in Figure 3
show the transition of the contact ion pair to the neutral excited
complex and vice versa. Only in the narrow strip |∆Gi| < V are
they essentially mixed, and the lower curve within these limits
represents the energy of the lower exciplex state. It should be
stressed that this is the simplest approach to the problem The
particular shape of these curves can be essentially corrected

accounting for the mutually correlated medium reorganization
and charge shift as was sometimes done.15-17

The energy shift of the upper exciplex state, ∆E+, determines
the extent of the charge separation in the exciplex, A-δD+δ

δ) V2

V2 +∆E+
2

(4.10)

The less the charge separation, the stronger the exciplex
fluorescence affording the exciplex decay18

1
τexc

) 1
τA

1

1+ (∆E- ⁄ V)2
(4.11)

However, |∆E-| ≈ |∆Gi| should not be so large that K . 1.
Assuming c ) constant, the present theory excludes the
saturation effect (when all D transform to exciplexes) which is
inevitably the case when K f ∞.

The free energy dependence of the Stern-Volmer constant
for quenching by the exciplex is specified in eq 4.3 and depicted
in Figure 4 for a few values of the exciplex lifetime. At negative
∆Gi, it approaches a plateau a bit lower than its Markovian
height kD (due to a transient effect), while at positive ∆Gi goes
down smoothly approaching the value V/τA. A similar behavior
was established earlier by means of the elementary Markovian
theory19

κ)
ki

1+ kiτexc ⁄ K
(4.12)

where

ki ) kD

ka

ka + kD

is substituted for the Stern-Volmer constant in eq 4.3. In the
Markovian limit (τA . τd) our result (4.7) is hardly distinguish-
able from the Markovian one. The experimental data provide
evidence that κi ≈ ki ≈ kD since they were well fitted with this
accuracy in ref 19 for a number of reactant families, having a
descending branch of κi in essentially endergonic region ∆Gi

> 0.

V. Reversible Geminate Photoionization

The rate description of photoionization presented by the
reaction scheme 2.3 not only excludes the transient effect but
does not account for ion pair diffusional separation according
to the general scheme of the geminate reaction:

The kinetics of this process as well as the yield of the free
ions, �j , were first calculated by means of UT which is also the
encounter theory.5,20

A. Remote Electron Transfer in IET. Another great
advantage of all encounter theories compared to their Markovian
analogs (section II.A) is their capability of dealing with the
remote electron transfer presented by the position-dependent
rates WA(r), WB(r), and WR(r), instead of the bimolecular
constants of forward and backward transfer and charge recom-
bination

Figure 3. The energies of the adiabatic collective states, ∆E+ and
∆E- (solid lines), and their diabatic precursors (at V ) 0, dashed lines),
as well as the free energy dependence of the excitation decay rate 1/τexc

(dotted line).

Figure 4. The free energy dependence of the Stern-Volmer constant
(in 1/M) from eq 4.3. The values of the varying parameter are as
follows: τA ) 100τd (1), 10τd (2), τd (3). The rest of the parameters are
kD ) 4πσD ) 1010 M-1 s-1 )1.66 × 104 Å3 ns-1 as σ ) 7.5 Å and D
) 176 Å2 ns-1; τd ) σ2/D ) 0.32 ns; V ) 8T ) 0.2 eV and V ) 4πσ∆,
where ∆ ) 0.1σ is the reaction layer width.

Figure 5. The energetic scheme of the reversible geminate photoioniza-
tion.
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k0 )∫WA(r)d3r

kB )∫WB(r)d3r

and

kR )∫WR(r)d3r ≈ krV

These rates are pointed out in Figure 5 which is equivalent to
scheme 2.1. Such a reaction was first considered by means of
IET in ref 21 where the following equations were obtained
(instead of the Markovian set 2.4)

dN*
dt

)-c∫0

t
R*(τ)N*(t- τ) dτ-N*

τA
(5.2a)

dP
dt

) c∫0

t
R†(τ)N*(t- τ) dτ (5.2b)

The kernels (memory functions) of these equations are specified
by their Laplace transformations

R̃*(s)) (s+ 1
τD

)∫ [WA(r)Ṽ(r, s)-WB(r)µ̃(r, s)] d3r

(5.3a)

R̃†(s)) (s+ 1
τA

)∫ [WA(r)Ṽ(r, s)-WB(r)µ̃(r, s)-

WR(r)µ̃(r, s)] d3r (5.3b)

while the originals of ν and µ obey the following auxiliary
equations

ν̇)-WA(r)ν+WB(r)µ- 1
τA

ν+D∆ν (5.4a)

µ̇)WA(r)ν-WB(r)µ-WR(r)µ+D∆µ (5.4b)

with initial conditions ν(r, 0) ) 1 and µ(r, 0) ) 0 and reflecting
boundary conditions at contact. Solving these equations at the
initial conditions for N(0) ) 1, P(0) ) 0, one can find the total
ion yield ψ and the yield of free ions φ21-23

η) Ñ * (0) ⁄ TA )
1

1+ cκgTA
) 1-ψ (5.5)

and

φ)P(∞)) lim
sf ∞

sP̃(s))ψ�̄

Here the Stern-Volmer constant is

κg ) R̃*(0) and φ̄)R̃†(0) ⁄ R̃*(0) (5.6)

is the charge separation quantum yield, the most often studied
quantity.

B. Contact Approximation. In the case of proton transfer
or electron transfer in the normal Marcus region, the reactions
occur at the closest approach of the reactants making quite
reasonable the contact approximation of their rates. This
simplification allows the analytical solution of the problem,
specifying the kernel of IET

R̃*(s)) k0F̃*(s) (5.7)

where

F̃*(s))

1+ kR ⁄ kD(1+√sτd)

[1+ k0 ⁄ kD(1+√(s+ 1 ⁄ τA)τd)](1+ kR ⁄ kD(1+√sτd))+ kB ⁄ kD(1+√sτd)

Using this result in eq 5.6 the following Stern-Volmer
constant is obtained

κg )
k0′

1+ k0′ ⁄ kD(1+ √τd ⁄ τA)
≡

κi

1+
κi

Keq(kD + kR)

(5.8)

where

k0′ )
k0

1+ kB ⁄ (kD + kR)
(5.9)

while

κi )
k0

1+ k0 ⁄ kD(1+ √τd ⁄ τA)

is the Stern-Volmer constant for the irreversible charge transfer,
including the transient effect accessible for only non-Markovian
theories. The sum kD + kR is the rate constant of transfer
interruption by either ion pair separation (kD) or their geminate
recombination (kR). It plays the same role as the exciplex decay
1/τexc in eq 3.20, where kd is the analog of kB.

An exclusive advantage of IET is accounting for the backward
transfer in eq 5.8, either through k0′ * k0 or via the equilibrium
constant

Keq ) k0 ⁄ kB ) e-∆Gi⁄T

At highly exergonic ionization ∆Gi f -∞(Keq f ∞) and in
the opposite limit of endergonic electron transfer (∆Gi f ∞,
Keqf 0) the Stern-Volmer constant is given by the alternative
expressions

κg ) { κi exergonic transfer
Keq(kD + kR) endergonic transfer

(5.10)

The usually considered irreversible ionization is peculiar to only
exergonic transfer while the endergonic one is not controlled
by ionization but either ion pair separation (kD) or recombination
(kR). This Stern-Volmer constant increases with exergonicity
due to Keq The kinetics of geminate ionization can be studied
by inversion of its Laplace transformation obtained from eq 5.2a
and eq 5.7

Ñ* ) N*(0)

s+ ck0F̃*(s)+ 1 ⁄ τA

(5.11)

The inversion is easier and simpler for analysis in the absence
of geminate recombination (kR ) 0) when

F̃*(s)) 1

[1+ k0 ⁄ kD(1+ √(s+ 1 ⁄ τA)τd)]+ kB ⁄ kD(1+ √sτd)

In this case only backward electron transfer (with subsequent
excitation decay) competes with diffusional ion pair separation.
In the highly exergonic limit there is no backward transfer at
all and the irreversible quenching proceeds exponentially (with
the rate 1/τ0 + ck0) after short transient effect (the lower dotted
line in Figure 6). At moderate exergonicity (curve a) the fast
quenching of luminescence is followed by a delayed fluores-
cence backed by the reverse electron transfer from the survived
(nonseparated) ion pairs. Due to this transfer, the quenching
becomes less efficient at resonance (b) and even more in the
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endergonic region (c) while delayed luminescence is more
pronounced. At further increase of endergonicity the quenching
practically disappears leaving only natural decay. Hence the
quasi-resonance region (∆Gi ≈ 0) is an exceptional situation
where the curvature of transfer kinetics is the maximal one. As
has been shown in this very region the exciplexes creation
becomes possible when the electron coupling V is large enough.

The kernels of eqs 5.2 are related to each other as follows:21

R̃*(s)) R̃†(s)[1+ kR ⁄ kD(1+ √sτd)] (5.12)

Consequently the averaged charge separation yield from eq 5.6
is

�̄) R̃†(0) ⁄ R̃*(0)) 1
1+ kR ⁄ kD

(5.13)

as in the elementary Markovian theory.5,6 Unlike ψ ) cκgτA/(1
+ cκgτA), this yield does not depend on whether the ionization
is reversible or irreversible until it is contact.

All the results of the present section, which follow from eq
5.5, relate to the fluorescence measured after δ-pulse excitation
in a limited time interval. At a low initial concentration of A*
and low concentration of counterions, their recombination in
the bulk occurs after detection of fluorescence is finished. In
other words, only the geminate backward transfer is accounted
for while the bulk recombination contributed into long delayed
fluorescence is cut off.

VI. Bulk Recombination following Ion Separation

At. Stationary fluorescence. The situation is different when
the fluorescence is detected stationary and its yield is calculated
from eq. 3.17. The corresponding reaction scheme accounting
for the bulk recombination was first considered in ref 24.

The following set of corresponding IET equations was
obtained there

Ṅ* )-c∫0

t
R*(τ)N*(t- τ) d3r+∫0

t
R#(τ)[P(t- τ)]2 d3r-

N*
τA

+ I0N (6.2a)

Ṗ)-c∫0

t
R†(τ)N*(t- τ) d3r-∫0

t
R‡(τ)[P(t- τ)]2 d3r

(6.2b)

Here we imply that the light excitation is weak enough to not
affect the ground-state population, which remains approximately
equal to the total number of acceptors, N.

The Laplace transformations of the two additional kernels,
representing the bimolecular recombination to the ground and
excited states, are

R̃‡(s)) s∫ [WR(r)f̃(r, s)+WB(r)f̃(r, s)+WA(r)g̃(r, s)] d3r

(6.3a)

R̃#(s)) s∫ [WB(r)f̃(r, s)+WA(r)g̃(r, s)] d3r (6.3b)

where the auxiliary pair distributions obey the following set of
equations:

ḟ)WA(r)g-WB(r)f-WR(r)f+L′ f (6.4a)

ġ)-WA(r)g+WB(r)f- 1
τA

g+Lg (6.4b)

Here L′ and L are the diffusional operators for ions (D+ · · ·A-)
and the neutral products of their recombination, (D · · ·A*).
The initial conditions are f(r,0) ) 1, g(r,0) ) 0.

Setting Ṅ* ) Ṗ ) 0, we obtain from eqs 6.2a and 6.2b two
algebraic equations for the stationary populations Ns* and Ps.
Resolving them for Ns* and using the result in eq 2.5, we
confirm the Stern-Volmer law 1.1 with the quenching constant

κ) κg[1- 	�̄] (6.5)

where the geminate Stern-Volmer constant, κg, and the charge
separation yield, �j , were defined in eq 5.6, while the restoration
of the acceptor excitation in the bulk occurs with a probability

	) R̃#(0)

R̃‡(0)
(6.6)

at any reencounter. If the recombination to the ground state is
impossible (WR ) 0), then the excitation decays only via
fluorescence with η ) 1. If the recombination proceeds as usual
but the backward transfer is not possible (WB ) 0), then the
quenching is irreversible and η is minimal, i.e.

κ) { 0 at WR ) 0
κg at WB ) 0 (6.7)

To get more detailed information about the Stern-Volmer
constant, one has to specify all four kernels of integral eqs 6.2.
This has been done analytically in the contact approximation.25

B. Contact Approximation. In addition to the kernels
considered earlier, eqs 5.8 and 5.13, two others were also
calculated in the contact approximation, assuming the solvent
to be highly polar, i.e., L′ ) L ) D∆:25

Figure 6. Kinetics of the excited-state dissipation (at N*(0) ) 1) due
to reversible geminate ionization followed ion pair separation. The
lowest dotted quasi-exponential curve represents the irreversible (though
nonstationary) quenching while the upper dotted straight line is the
exponential natural decay (no ionization). The lowest solid line (a)
represents ionization at modest exergonicity (∆Gi ) -2T), the middle
one (b) describes the resonant transfer (∆Gi ) 0), and the upper solid
curve relates to the endergonic ionization (∆Gi ) 2T). Even more
endergonic transfer is represented by the dashed curve (∆Gi ) 4T)
which is straightening approaching the natural decay. The rest of the
parameters are as follows: c ) 1 M, τd ) 0.4 ns, τA ) 0.1 ns, kD ) 3
× 104 Å3/ns, k0 ) 5 × 104 Å3/ns, σ ) 10 Å, D ) 250 Å2/ns.
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R̃#(0))
kB

(1+ k0 ⁄ kD(1+ √τd ⁄ τA))(1+ kR ⁄ kD)+ kB ⁄ kD

(6.8a)

R̃‡(0))
kB + kR + k0kR ⁄ kD(1+ √τd ⁄ τA)

(1+ k0 ⁄ kD(1+ √τd ⁄ τA))(1+ kR ⁄ kD)+ kB ⁄ kD

(6.8b)

Using these kernels in eq 6.6, we obtain

	)
kB

kB + kR[1+ k0 ⁄ kD(1+ √τd ⁄ τA)]
(6.9)

Substituting this result together with κg and �j from eq 5.6 into
the general definition eq 6.5, the following Stern-Volmer
constant is obtained

κ)
k0′ ′

1+ k0′ ′ ⁄ kD(1+ √τd ⁄ τA)
≡

κi

1+
κi

KeqkR

(6.10)

where κi is the same as in eq 5.9 but

k0′ ′ )
k0

1+ kB ⁄ kR
(6.11)

and

Keq )
k0

kB
) e-∆Gi⁄T

Contrary to geminate k0′ from eq 5.9, there is no kD in k0′′ or
in the last expression in eq 6.10. The diffusional separation of
ion pairs does not stop the backward electron transfer but just
interrupts it, until the ions reencounter in the bulk. Thus the
whole energy stored in the free ions returns back to the
luminophore which is stationary quenched only by recombina-
tion to the ground state

kR ) kR
0 exp{- (-∆Gi - ε+ λ)2

4λT } (6.12)

where ε is the energy of acceptor excitation equal to the sum
of the ionization and recombination free energies

ε)-∆Gi -∆Gr

As a matter of fact, stationary quenching by formation of
unstable exciplex has Stern-Volmer constant 4.3 equivalent to

that for ionization quenching, eq 6.10, provided kB/kR in the
latter is substituted by kdτexc. In both cases IET accounts for
the reversibility of transfer (via kB or kd) as well as for the
transient effect which becomes stronger as τA becomes shorter.

VII. Spin-Assisted Transfer

A. Geminate Recombination of RIPs. Up to now we were
concerned with only the spin-less theory, although the real ion
pairs gain the same spin state as their excited precursor. Being
subjected to spin conversion, the geminate ion pairs either
recombine into singlet or triplet neutral products or separate
into free ions.

The yields of neutral and charged products of geminate
recombination were calculated with IET,8,26,27 as well as with
UT,28,29 which is an excellent alternative to IET but only for
irreversible ionization (kB ) 0). The incoherent model of spin
conversion (proceeding with the rate ks between the spin
sublevels of the singlet and triplet RIP) is most often used in
both theories, but in UT it was finally substituted by the coherent
(HFI) mechanism.30-32

The RIP recombination to the ground or triplet states of the
neutral products proceeds with rates kS and kT, respectively. The
quantum yields of all products are equal to 1 in the sum:

φ̄T + φ̄S + φ̄)
ZT

D+ Z
+

ZS

D+ Z
+ D

D+ Z
) 1 (7.2)

For contact electron transfer, all of them were calculated
analytically, as well as the singlet and triplet recombination
efficiencies (ZS, ZT) and Z ) ZS + ZT. The diffusional depend-
ences of all of them were specified with UT and well fitted to
the experimental ones.29

The set of IET equations for singlet and triplet excitations,
NS ) [1A*] and NT ) [3A*], together with charge population,
P, is given below8

Ṅs )-c∫0

t
R*(t- τ)Ns(τ) dτ-

NS

τA
(7.3a)

Ṗ) c∫0

t
R†(t- τ)NS(τ) dτ (7.3b)

ṄT ) c∫0

t
RO(t- τ)NS(τ) dτ (7.3c)

There is one more equation and integral kernel compared to
eqs 5.2, but all of them were given the generalized definitions
and specified in the contact approximation.

Instantaneous light pumping creates the usual initial condi-
tions

NS(0))N0; P(0))NT(0)) 0 (7.4)

Solving with them eqs 7.3, one can find the yields of
fluorescence and ions (ψ), as well as of free ions (φ) and triplets

η)∫0

∞
NS(t) dt ⁄ τA )

1
1+ cκgτA

) 1-ψ (7.5a)

P(∞))ψ�̄) φ (7.5b)

Figure 7. The free energy dependence of quenching by charge
separation at different rates of their subsequent recombination given
by eq 6.12 with kR

0 ) 1012 M-1 s-1 (1), kR
0 ) 1010 M-1 s-1 (2), and

kR
0 ) 108 M-1 s-1 (3) at ε ) 2.8 eV and k0 ) 1013 exp{-(∆Gi +

λ)2/4λT} M-1 s-1.
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NT(∞))ψ�̄T (7.5c)

The last yield, �jS, follows from the relationship 7.2, as well as
all recombination efficiencies.

In the present context we are mainly interested in how the
spin conversion affects the Stern-Volmer constant. Although
the general dependence κg(ks) was actually specified in ref 8,
only the opposite limits of fast (ksτd . 1) and slow (ksτd , 1)
spin conversion are worthy of analysis. Coming to the extreme,
we get

κg ) { κi

1+ κi ⁄ Keq(kD + kS + 3kT)
at ksf∞

κi

1+ κi ⁄ Keq(kD + kS)
at ksf 0

(7.6)

In the absence of backward transfer, Keq ) k0/kB f ∞, that
makes κg (at any ks) identical to the irreversible Stern-Volmer
constant κi from eq 5.9. In the absence of spin conversion (ks

) 0) the result is also identical to that obtained in eq 5.8 with
the spinless theory. No geminate production of triplets is possible
in such a condition: �jT ) 0 at ks ) 0.

B. Stationary Fluorescence. The situation changes dramati-
cally if the bulk charge recombination follows the geminate one.
The kinetic equations substituting eq 7.3a, include six more
integral terms and corresponding kernels

ṄS )-c∫0

t
R*(t- τ)NS(τ) dτ+∫0

t
R#(t- τ)P2(τ) dτ+

c∫0

t
R§(t- τ)NT(τ) dτ-

NS

τA
(7.7)

Ṗ) c∫0

t
R†(t- τ)NS(τ) dτ-∫0

t
R‡(t- τ)P2(τ) dτ+

c∫0

t
R)(t- τ)NT(τ) dr

ṄT )-c∫0

t
R4(t- τ)NS(τ) dτ+∫0

t
R9(t- τ)P2(τ) dτ-

c∫0

t
Rf(t- τ)NT(τ) dτ-

NT

τT

All the kernels expressed generally via the transfer rates, and
pair correlation functions were also specified in the contact
approximation (see ref 8 and Appendix available online: http://
www.rsc.org/suppdata/cp/b2/b201784a/).

Looking for stationary luminescence, one has to add the light
pumping term I0N to the upper equation right-hand side and
find the stationary solution of the whole set27

N̂S )
I0NGτS

1+ cκ0τS
(7.8a)

P̂2 ) c
R̃†(0)

R̃‡(0)[N̂S +
R̃)(0)

R̃†(0)
N̂T] (7.8b)

N̂T ) N̂S
R̃ 4(0)R̃‡(0)+ R̃ 9(0)R̃†(0)

R̃f(0)R̃‡(0)- R̃ 9(0)R̃ )(0)
(7.8c)

Here NS, NT, and P are the stationary concentrations of the
excited states and ions while κ is the Stern-Volmer constant
of the quantum yield 1.1 defined in eq 2.5 via NS* ≡ N̂S

κ) R̃ * { 1- R̃#(0)

R̃‡(0)

R̃†(0)

R̃*(0)
-

[R̃§(0)R̃‡(0)+ R̃#(0)R̃)(0)][R̃ 4(0)R̃‡(0)+ R̃ 9(0)R̃†(0)]

R̃‡(0)R̃ * (0)[R̃f(0)R̃‡(0)- R̃ 9(0)R̃ )(0)] }
Everything becomes much simpler if we neglect the spin

conversion setting ks ) 0. The geminate production of a triplet
in such a limit becomes impossible, but they appear nevertheless
due to bulk encounters of uncorrelated radical ions forming the
triplet ion pair with a stochastic weight 3/4.

This scheme enables studying the luminescence quenching
(and its Stern-Volmer constant) proceeding from left to right,
as well as the triplet quenching going from right to left.27

In the absence of a spin conversion in the ion pairs

R̃§(0)) R̃∆(0)) 0

and the expression for the Stern-Volmer constant takes the form
of eq 6.5, with the following microscopic definitions of all its
components

κg ) R̃*(0) (7.10)

	) R̃#(0)

R̃‡(0)

R̃f(0)R̃‡(0)

R̃f(0)R̃‡(0)- R̃ 9(0)R̃ )(0)

�̄) R̃†(0)

R̃*(0)

It should be noted that N̂T * 0 at ks ) 0 unlike �jT, because the
triplet excitations are produced from triplet RIPs during bulk
encounters of the spin uncorrelated free radical ions.

The contact approximation makes the probability of singlet
restoration in the absence of spin conversion much simpler27

	) R̃#(0)

R̃‡(0)- R̃ 9(0)
)

kB

kB + kS[1+ k0 ⁄ kD(1+ √τd ⁄ τA)]

(7.11)

It is remarkable that all three kernels in this expression
accounting for the forward and backward transfer between the
triplets are much more complex than their spin-less analogs in
eq 6.6. However, the result is nevertheless exactly the same as
in the spin-less theory, eq 6.9, which is kt and k-t independent.
This is because the stable triplets do not participate in the
fluorescence quenching, although there are permanently a lot
of them: N̂T in eq 7.8c. They can be detected by either light
absorption or phosphorescence, as well as the stationary density
of ions given in eq 7.8b can be found from the electric current
measurements.

Hence, the reversible triplet production does not affect the
luminescence quenching which proceeds only through the singlet
RIP recombination. The Stern-Volmer constant 6.10 with kR

≡ kS remains valid, regardless of whether stable triplets are
formed or not
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κ)
κi

1+ κi ⁄ KeqkS
)

{ κi )
k0

1+ k0 ⁄ kD(1+ √τd ⁄ τA)
as KeqkS . κi

(ionization control)

KeqkS
asKeqkS , κi

(recombination control)

(7.12)

Under ionization control, the electron transfer being irrevers-
ible is either diffusional or kinetic. The kinetic rate constant k0

) ∫WA(r) d3r is free energy dependent (unlike ka). In the contact
approximation,5,27

k0 ) k0
0e-(∆Gi + λc)2⁄4λcT (7.13)

where λc is the solvent reorganization energy at contact.
The quenching by reversible transfer is controlled by recom-

bination, when the latter becomes too slow. Its rate constant is
also free energy dependent. When calculated in the contact
approximation, it is

kS )∫WR(r) d3r) kS
0e-(ε+∆Gi-λc)2⁄4λcT (7.14)

The recombination is enhanced by the equilibrium constant Keq

) e-∆Gi/T.
If the product KeqkS is large enough, then κ ) κi and ln κ

reproduces the parabolic free energy dependence of ln k0 (the
Marcus FEG law) the top of which is cut off by a diffusional
plateau.3 This plateau reduces with slowing recombination
giving way to a rapid decrease of ln κ ) ln Keqks. This can
happen earlier or later depending on the value of kS which is
different in different ion pairs. This was the explanation given
in ref 27 to the multiple Rehm-Weller effect discovered
experimentally.7

VIII. Fitting to the Singlet and Triplet Quenching by
Aliphatic Amines and Aromatic Donors

In this section we apply the theory we developed to fit the
experimental data on the electron transfer quenching of the
excited molecules of lumichrome (LC) and lumiflavin (LF), by
a series of aliphatic amines and aromatic donors in methanol,
presented in Figures 1 and 2 of ref 35. Before proceeding to a
fitting, let us compare the excitation quenching rate constant
dependence on the ionization free energy presented in Figures
4 and 7. One may see a very important feature. For the
photoionization mechanism, a decrease in the quenching rate,
with the rise of the ionization free energy, universally starts in
the region of negative values of ∆Gi. At ∆Gi ) 0 the quenching
rate constant becomes much smaller than its maximum value
at the plateau. For excitation quenching by exciplex formation,
the rate constant decrease appears much later and mainly
proceeds in the region of positive ∆Gi.

Addressing the experimental data on quenching of LC and
LF by aromatic donors, we may anticipate that these data can
be fitted only to the exciplex formation mechanism (see Figures
8 and 9). An earlier attempt to fit this data to the ionization
theory was unsuccessful near the endergonic edge of the FEG
law. For the sake of similarity the excess of the free energy in
cases of singlet and triplet ionization was denoted in ref 35 and
article 27 by a single argument, ∆G0. For the ionization of
singlets ∆G0 ≡ ∆Gi, while for the triplets ∆G0 ≡ ∆Gtrip ) ∆Gi

+ ε, where ε is the singlet-triplet splitting. The excellent
reproduction of the FEG law for both singlet and triplet

quenching was reached, assuming that exciplex formation is a
dominant mechanism of energy quenching (see triangles in
Figures 8 and 9). For singlet quenching the known values of
the excited acceptor lifetimes (τA ) 1 ns for LC and τA ) 6.8
ns for LF) were used.35 In such a case the electronic coupling
was the only variable parameter of the fitting. Unfortunately,
we could not find in the literature the lifetimes of triplet LC
and LF, but those obtained from our fitting are 3 × 105 to 1.5
× 104 times as much as the singlet ones and look very
reasonable.

It should be mentioned that for singlet and triplet quenching
the same mechanism was assumed. The differences concern only
the values of the excitation lifetimes and electronic couplings.
In addition, we neglected the singlet-triplet conversion in the
exciplexes that can considerably affect the reversible photoion-
ization kinetics.27 In the systems under study, the spin and
magnetic interactions inducing conversion are too weak in
comparison with the singlet-triplet splitting in exciplexes which
is approximately the same as in neutral acceptors (ε ∼ 0.4 eV).

The quenching by aliphatic amines is well fitted (see line 1
in Figure 9), assuming that it is carried out by a weak ionization

Figure 8. The dependence of the quenching rate constants, κ in M-1

s-1, for excited states of LC on the ionization free energy, ∆Gi, in
methanol. The experimental data:35 (2) singlet quenching by aromatic
donors; (4) triplet quenching by aromatic donors. Solid and dashed
lines are the fitting to eqs 4.3, 4.7, and 4.11 with the following
parameters: singlet quenching, kD ) 2 × 1010 M-1 s-1, V ) 0.2 eV,
τA/τd ) 6; triplet quenching, kD ) 1010 M-1 s-1, V ) 0.35 eV, τA/τd )
3 × 105.

Figure 9. Dependence of the quenching rate constants, κ in M-1 s-1,
for the excited states of LF on the ionization free energy, ∆Gi, in
methanol. The experimental data:35 (2) singlet quenching by aromatic
donors; (4) triplet quenching by aromatic donors; (b) singlet quenching
by aliphatic amines; (O) triplet quenching by aliphatic amines. Line 1
is the fitting to eqs 6.10, 5.9, and 7.13 with the parameters: kD ) 2 ×
1010 M-1 s-1, λ ) 0.8 eV, kR ) 3 × 109 M-1 s-1, k0

0 ) 3 × 109 M-1

s-1. Lines 2 and 3 are the fittings to eqs 4.3, 4.7, and 4.11 with the
following parameters: singlet quenching, kD ) 2 × 1010 M-1 s-1, V )
0.1 eV, τA/τd ) 41; triplet quenching, kD ) 1010 M-1 s-1, V ) 0.25
eV, τA/τd ) 15 × 103.
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of either the singlet or triplet states of LF. In this case the
reaction proceeds under kinetic control and the experimental
points lay on the bell-shaped curve, obeying the famous Marcus
free energy gap law. The curve is very weakly sensitive to
variation of kR when it alters from 1012 up to 108 M-1 s-1, thus
confirming that the quenching is executed by the kinetic
controlled electron transfer.

IX. Conclusions

If the excitation quenching by bimolecular charge separation
is rather exergonic, it is usually irreversible and under diffusional
control but gives way to a kinetic one at moderate exergonicity,
provided the recombination of charged products is fast enough.
In the opposite case the charge separation becomes reversible
and the quenching is controlled by their recombination. On the
other hand the quasi-resonance and weakly endergonic transfer
lead to a reversible formation of the exciplexes resulting in
quenching of excited reactants.

These alternative mechanisms of the luminescence quenching
are compared here, as well as the corresponding Stern-Volmer
constants and their free energy dependencies. The noncontact
electron tunneling responsible for the charge separation is
usually weak at least at large distances. This allows employing
perturbation theory over electron coupling V, to estimate the
rates of electron transfer and the corresponding kinetic constants.
On the other hand, the exciplexes are created only at a contact
due to penetration of heavy particles (reactants) into the first
coordination sphere. There V is much larger, and the resulting
collective states and their energies have to be specified far
beyond perturbation theory.

The most delicate question is how these mechanisms relate
to each other. The answer can be obtained only looking at the
spectroscopic manifestation of the excitations and exciplexes.
Only at large V is their luminescence represented by two split
lines and the yields of luminescence can be measured separately
for both, ηA and ηexc. Here, everywhere we looked only for η
) ηA, but at V f 0 this is η ) ηA + ηexc because the lines
cannot be distinguished any more and the exciplex does not
work as a specific quencher. It transforms to a usual ion pair
whose creation and recombination, even at ∆Gi ≈ 0 is described
by an alternative charge transfer mechanism, using conventional
perturbation theory.

The key question still remains: why from some reactants the
exciplexes are formed helping their quenching, while from other
they do not form and the charge separation mechanism is the
only one working? Most probably the answer to this question
is not possible in the framework of the chemically (spherically)
isotropic model of the elementary act, which is used in this paper
as in most others. The creation of exciplexes demands the special
orientation of its fragments making active only the limited black
spot on the white (inactive) reaction sphere. Such a chemical
anisotropy discovered long ago in a wide class of fast radical
reactions was thoroughly investigated and reviewed.33 The
numerous recontacts during encounter and mutual rotation of
reactants, average partially the anisotropy of the reactions,
making them “pseudodiffusional” with a constant

ka )RkD

which is less than the diffusional one, as R < 1. Just recently
the first experimental evidence appeared that even remote charge
transfer reactions can be pseudodiffusional.34 The same should
be even more true for contact exciplex formation, but here we
are the concerned with only the isotropic case, where ka is a
maximal one, eq 4.6, and the quenching by exciplexes domi-
nates. In the opposite case (R , 1) the exciplex formation does
not contribute essentially in the excitation quenching, leaving
the charge transfer to operate alone.
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