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Theoretical Investigation on the Concentration Dependence of the Landolt Time
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Based on the modified kinetic model of the Landolt and the Dushman reactions published recently, an exact
expression has been derived for the concentration dependence of the Landolt time. It is also shown that all
the apparently contradictory formulas, regarding the concentration dependence of the Landolt time, reported
previously at quite different experimental circumstances can easily be reconciled from the simplification of
the newly proposed equation. It also means that the formula derived may satisfactorily be applied to calculate
the Landolt time basically with no restrictions for the concentration of the reactants.

Introduction

The hydrogen sulfite—iodate reaction or even better known as
the Landolt reaction named after its discoverer, is probably one
of the most familiar chemical reactions for any chemists all around
the world."? As long as the initial total sulfite concentration is held
less than thrice the initial iodate concentration, blue color appears
after a well-defined time lag in the presence of starch indicator
due to formation of the starch triiodide complex. This feature of
the reaction has been extensively used as a popular lecture
demonstration to interpret the basic definitions of the reaction
kinetics. The reaction is thought to be simple, started by the slow
oxidation of hydrogen sulfite by iodate

3HSO,” +10,” —3S0,” +1 +3H" (1)
Iodate can oxidize iodide by the well-known Dushman reaction?
SI +105 + 6H" — 31, +3H,0 2)

but iodine is quickly removed* by hydrogen sulfite

HSO, +1,+H,0—S0,” +2I +3H" 3)
It is easily seen that, if the stoichiometric constraint 3[1037 ]
> [HSO37 ]y is fulfilled, then the iodine formed from the excess
of iodate is no longer removed by hydrogen sulfite resulting in
the appearance of the following equilibrium
I +L=1 4)
The time necessary for the removal of all the hydrogen sulfite
molecules is therefore unambiguously determined by the rate
laws of the rate-determining steps (eqs 1 and 2) having much
slower rate constants than that of eq 3, and is usually called as
the Landolt time (#;). This quantity has been thoroughly studied
since Landolt’s original discovery, but survey of the literature
has revealed rather diverse concentration dependence of the
Landolt time. In 1917, Eggert showed® that #; is independent of
the concentration of sulfite ion, and inversely proportional to
the square of the concentration of both the iodate and the
hydrogen ions. Even an approximate formula was established

__ 1 |k
t,= =) m(kl) (3)

where k; and k, are the rate constants assigned to the Landolt
and Dushman reaction, respectively. It was also demonstrated
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qualitatively that iodide ion decreases #;, but no exact formula
was derived indicating the dependence of #; on the concentration
of iodide. Half a decade later, Skrabal showed® in both buffered
and unbuffered media that if all the concentrations (iodide,
iodate, and hydrogen ions) were chosen large with respect to
hydrogen sulfite then #; is linearly proportional to the concentra-
tion of hydrogen sulfite, but inversely proportional to the
concentration of iodate and inversely proportional to the square
of the concentration of both the iodide and the hydrogen ions

[HSO, ]
ti=R—————— (6)
(O, 1[I I'[H™]
where R is a constant. In 1968, Church and Dreskin established’
a simple relationship between #; and the concentration of the
reactants in unbuffered medium:

2
f= 0.0937 M s_ )
10, ][HSO; |
Our recent study?® has just revealed that though the inverse of #;
depends linearly on the concentration of iodate, 1/¢; is propor-
tional to the combination of the concentration and the square
of the concentration of both iodide and hydrogen ions in buffered
medium. The hydrogen sulfite dependence, however, was found
to be even more complex; the Landolt time went through a
minimum as a function of hydrogen sulfite concentration.® As
easily seen, these observations on the concentration dependence
of t; or at least part of them apparently contradict to each other.
Therefore, one would really expect that there must exist a
general formula for the concentration dependence of the Landolt
time based on which majority of these seemingly contradictory
observations may be adequately explained. Derivation of such
a complex formula, however, requires exact knowledge of the
rate equations of the subsystems.

The apparent simplicity of the iodate—hydrogen sulfite
reaction would suggest relatively simple rate equations for eqs
1 and 2, but survey of the literature has revealed several
alternative recommendations for them. The rate law for eq 1
was first proposed independently by Eggert® and Skrabal® to be

o) = k[SO;” 105 1[H ] (8)
Shortly later, it was slightly modified by Skrabal and Zahorka:®
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v/ =K[HSO; ][I0, 1[H ]+ k}[HSO,1’[10;"]  (9)

After a considerable period of inactivity, the extensive studies
on the oscillating reactions have brought the Landolt reaction
into the focus of interest. Large-amplitude pH oscillations were
discovered!? in the Landolt reaction perturbed by ferrocyanide
in continuously stirred tank reactor (CSTR) and soon after its
detailed mechanism was published by two independent research
groups!12 in which the rate equation published originally by
Skrabal® was used to interpret the dynamical behavior of the
system. Shortly after that, Rdbai and Beck!'>!'* observed large-
amplitude batch oscillations in the Landolt reaction in the
presence of thiosulfate. An empirical rate law was also suggested
to explain the batch oscillation in which a complicated rate
equation was used for the Landolt reaction:

oy =10, 1[HSO; (K, [H']+ & [HSO; ]+
k[S,05> 1IH T + k' [S,05° 1IH'T) (10)

Our recent studies®!'> have, however, just revealed that simple
supercatalytic effect of hydrogen ion is sufficient to take all
the major experimental facts into account quantitatively. We
suggested the following rate equations for the Landolt (eq 1)
and Dushman (eq 2) reactions:!?

! =k,[HSO, 1[I0, ]+ &' ,[HSO, ][I0, ][H'] +
k" ,[HSO, 1[I0, 1[H']* (11)
b =k,[T17[10, 1H > + £',[T 1[I0, 1[H']  (12)

Having these rate equations in hand, numerical integration
of our model has predicted all the concentration dependence of
the Landolt time well.® The question, however, still remained
to be answered whether a general formula may be derived
indicating the exact concentration dependence of the Landolt
time. The aim of our paper is, therefore, to find an exact formula
for #; and to show how the earlier, apparently contradictory,
observations may be explained and reconciled. Recent renewed
interest of spatio-temporal behavior of the iodate—hydrogen
sulfite system also justifies the efforts to understand the intimate
details of the kinetics of the Landolt reaction.!6=20

Results

We have recently shown in our previous paper® that the
following kinetic model is capable of good description of the
concentration dependence of the Landolt time:

3A+B—3H+C; vy =(k +k'[H+k",[H[A][B]

(RT)

B+5C+6H—3J; vy, = (k[CI[H]+£',)[H][C][B]
(R2)
A+Jﬁ'2C+3H; Ups = K[A][T] (R3)

where A, B, H, C, and J correspond to hydrogen sulfite, iodate,
hydrogen ion, iodide ion, and iodine, respectively. Note that
sulfate and water are not included for the sake of simplicity.
The values of the rate constants were determined as follows: k;
=0146 M 's Lk =3970 M 2571, k") =3.02 x 10° M3
sTLky =221 x 10° M *s ! and k', = 24.9 M2 s~ . During
the induction period steady-state approximation may be applied
to species J:
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k;[A][J] = 3[H][CI[BI(k,[H][C] + k',) (13)

According to steps R1—R3, the concentration of C (iodide) is
governed by the following differential equation after substitution
of eq 13:

d[C]

o = Uk~ St 20 = (ky + K [H] +

k" [HP)[A][B] + (k,[CI[H] + k' )[HICI[B] (14)

Two separate cases should be distinguished before solving the
differential equation, namely the one in which [H] is kept
constant (buffered solutions) and the other where [H] changes
as the reaction proceeds (unbuffered solutions).

Buffered Medium. If [H] is kept constant, i.e., buffer is
applied, then the following differential equation is valid:

% = K ([Aly = 3)([B]y = x) + ([Cly +x) X

([Blp — 0)(KH([C]y +x) + K3) (15)
where x is the reaction coordinate, and subscript zero means

the initial concentration of the given reactant. K;, K, and K3
are defined as follows:

K, =k +Kk\[H],+ k" [H): K,=k[H]; K,=k,[H],

(16)
Taking into account that the appearance of the sudden color
change takes place when x reaches [A]o/3, and rearranging eq

15 followed by separation of the variables and integration leads
to the following equation:

f[A]o/3 1
0

([B], — x)(K,x* + Vx + K, [A], + W)

1
dx= 0 dr

(I7)
where

V=2K,[C],+ K, —3K,, W=K,[C],+K,[C], (18)

It should be kept in mind that the Landolt time can only be
defined if the 3[B]y > [A]p inequality is fulfilled that results in
keeping A (hydrogen sulfite) as the limiting agent. By using
the equality for the arctangent function below

M+N
l—M'N) 19

and solving eq 17 leads to the following expression:

arctan(M) + arctan(N) = arctan(

o n( (B, \/ Ky[Al2+ 3V[A]y + 9(W+K, [A]O)) N

"1 "\3iBl, - Al WEK|AL

V+2K,[B], %[A]o\/4K2(W+ K\[A]) — V?

arctan

VAR (WK, [A]) — V2 AW+ K,[Aly) + %V[A]O
(20)
whereas
fy=F[Al [Bly, [Cly, [H]y) = K,[Bl," + V[B], + W+
Ki[A], 21)

To our best knowledge this is the most comprehensive exact
formula for calculating the Landolt time (#;) that involves all
the concentration dependence (hydrogen sulfite, iodate, iodide,
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Figure 1. Reciprocals of the calculated (symbols and solid lines) Landolt
time at different conditions in buffered media: (A) [A]y changes [B]y =
0.004 M, [C]o = 0.0 M, [H], = 0.001 M; (®) [B], changes [A], = 0.004
M, [C]p = 0.0 M, [H], = 0.001 M; (@) [C]p changes [A]y = 0.004 M,
[Blo = 0.004 M, [H]o = 0.001 M; (<) [H]o changes [A]o = 0.004 M, [Bo
= 0.004 M, [C]o = 0.0 M.
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Figure 2. Reciprocals of the calculated (symbols and solid lines) Landolt
time at different conditions in unbuffered media: (&) [A]y changes [B]y =
0.004 M, [C]p =0.0 M, [H]p =1 x 107> M; (@): [B]y changes [A], =
0.004 M, [C]o = 0.0 M, [H]o =1 x 107> M; (@): [C]o changes [A]y =
0.004 M, [B]o = 0.004 M, [H]o = 1 x 107> M. Note that the curve showing
the dependence on [B] is shifted along the Y-axis by 0.05 to see the trends
better.

and hydrogen ions) in buffered medium. Figure 1 shows the
reciprocal of the Landolt time (#;) calculated from eq 20 as a
function of the concentration of the reactants. As seen, the
inverse of the calculated Landolt time shows a maximum as a
function of sulfite concentration, a mixed first- and second-order
dependence on both the hydrogen and the iodide concentrations
as well as a perfect linear dependence on the iodate concentra-
tion. These calculations are in complete coincidence with all
the main characteristics of the experimental findings published
recently.®

Unbuffered Medium. In absence of buffer, eq 15 can be
rewritten as

% =k, ([A], — 3x)([B], — x) + k', ([H], + x)([A], —

3x)([Bly — x) + k", ([H];+x)°([A], — 3x)([B], — x) +
ky([H]y+x)*([Cly+x)*([B], — x) + k'5([H], + x) X
(ICly + X)([Bl, —x) (22)

Rearranging eq 22 followed by integration from O to [A]o/3 leads
to the following expression:
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h= [ (AT~ 3Bl ~ 00,0+ (Cly 1)

([Blp — x)([H]y +x)Qy(x)} 1 dx (23)
whereas

0,(x) =k, + k' ([H],+x) +&" ([H], + x)*
0,(x) = ky([H], +x)([C], +x) + k', (24)

Unfortunately, no closed formula can be obtained from the right-
hand side of eq 23 that would indicate the exact concentration
dependence of the reactants in unbuffered medium. However,
substituting the corresponding initial concentrations and the rate
constants into eq 23 allows us to calculate numerically the
Landolt time at any given experimental circumstances. Figure
2 shows the results of the numerically calculated reciprocals of
the Landolt time as a function of different reactant concentra-
tions in unbuffered solutions. The difference between the
strikingly different shape of the concentration dependence of
the reciprocal of #; in buffered and unbuffered conditions (see
Figures 1 and 2)—especially the hydrogen sulfite dependence—
clearly justifies the separation of these two cases.

Discussion

As mentioned in the Introduction, apparent contradiction may
be noticed regarding to the concentration dependence of the
Landolt time. However, knowing the exact formula gives us an
opportunity to discuss the observation of the earlier researches.
As we shall see, almost all the seemingly different early
suggestions for the concentration dependence of the Landolt
time can be harmonized by the expressions given in eqs 20 and
23 depending on the experimental circumstances applied. Let
us discuss these results chronologically.

Eggert’s Result. The first result on the concentration
dependence of the Landolt time was published by Eggert.> It
was demonstrated that #; is independent of the concentration of
hydrogen sulfite and inversely proportional to the square of the
concentration of both the iodate and the hydrogen ion over a
fixed range of reactant concentration. We shall see that in certain
experimental circumstances—i.e., at low hydrogen sulfite con-
centration (<1075 M) in huge excess of iodate and in the
absence of initial iodide—similar expression to eq 5 can be
derived from eq 20. Substituting [C]yo = 0 into eq 18 simplifies
the first term of eq 20 (including only the logarithmic part) as

()= —— I x
[B], K, + [Bly(K; — 3K,) + K,[Al,

[B]O K2 K3
In s [ 2[Al 32 2
" 3[B], — [A], Kl[ Jo 31{1 (2)

If [A]p is small (<1073 M) and [H]y is in the range where

K,[Bl,” < I[Bly(K; — 3K))l (26)

inequality is fulfilled then

. In ﬁ 27)
2[B]y(K;—3K,) 3K,

()=
If the conditions mentioned above applied for the second term
of eq 20 (including only the arctangent part) then V2 > 4Ky(W
+ K;[A]p) inequality results that the argument of arctangent is
an imaginary number. Bearing in mind, however, that
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1+x
1 —
the second term of eq 20 may be transformed into the following
expression:

arctan(i*x) =i-In (28)

1(2)= (29)
Rearranging eq 29 leads to the following simple form:
t(2)= S In ﬁ (30)
! 2[B]y(K;—3K,) 3K,
that gives us an approximation for the Landolt time as
_ _ 1 K
L=t()+12)= no— 31

—_———1
[Bly(K; —3K,) 3K,

It is, however, worthwhile to note the striking agreement
between #,(1) and #,(2), i.e., the contribution of the arctangent
and the logarithmic part of the Landolt time equals to each other
at these conditions. As one may easily notice, eq 31 is quite
similar to eq 5. The only difference is that eq 31 explicitly
expresses the linear proportionality of the inverse of the Landolt
time on the concentration of iodate under these experimental
circumstances in contrast to Eggert’s work that established
quadratic iodate dependence. The reason for this essential
difference is still unclear, but it might either be the consequence
of the limited concentration range of the reactants whereas the
rate laws established may apply or a possible experimental
artifact of Eggert’s work.

It seems to be also interesting to examine the simplified
kinetic model leading to this expression for the Landolt time.
Assuming that [A]p (initial hydrogen sulfite concentration) is
small at moderate pH leads to low [C] (iodide concentration)
resulting that the Dushman reaction is governed by the rate term
containing only the first-order iodide dependence. In this case,
eq 15 can be transformed into the following form if [B]y >
[Alo:

‘(jl—); =K, ([A], — 3x)[B], + K;[B,]x (32)
The solution of this differential equation directly leads to eq
31 for #; meaning that Eggert’s early results might already
contain information about the rate term of the Dushman reaction
being first order with respect to iodide ion, but remained
unnoticed for decades!

Skrabal’s Result. Skrabal investigated the dependence of the
Landolt time at quite different experimental conditions. It was
shown in his early paper® that if all the concentrations were
chosen large with respect to hydrogen sulfite then the Landolt
time can be given by eq 6, i.e., it is linearly proportional to the
concentration of hydrogen sulfite, inversely proportional to that
of the iodate, and inversely proportional to the square of both
the iodide and the hydrogen ion concentrations. We shall see
that this expression can also be derived from our comprehensive
formula (eq 20) under these circumstances and even the
proportionality constant R can be explicitly determined from
the rate coefficients. If [B]o, [H]o, [Clo > [A]o, then W > K [A]o,
o)
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W+ K [A], 2W
(33)

therefore the first term of eq 20 (the logarithmic part) may be
simplified as follows:

\/ [Al)’K, + 3[A],V + 9(W + K, [A]) _ S ALY

A (1+[B]°V)
[Aly 2W
3[B], — [Al,

(Bl K, + [B],V + W

In|1+

()= (34)

Since the conditions applied result that the argument of the
logarithm is approximately 1 in eq 34, one may easily obtain
the following expression for the first (logarithmic) term of eq
20:

[B],V

2w
0

3[BIy(K,[Bly” + [Bl,V+ W)

1(1)=[A] (35

If all the concentrations were chosen large with respect to
hydrogen sulfite, then the second term of eq 20 can be expressed
as follows since arctan(y) &~ y if y is small:

V+2[B]K,
12)= > [Aly (36)
6W(K,[B],”+ [B],V+ W)
It means that the Landolt time can be written as
[Bl,V
2W

n=11)+1(2)=[A], -
3[B],(K,[B],> + [B],V + W)

V+2[B],K,
6W([B]y’K, + [B],V+ W)

37)

After straightforward algebraic manipulation, the expression for
the Landolt time can be simplified to

_ A o (A
3(B1,W 3k, [B],[C], (H],

i (38)
Equation 38 suggests that the proportionality constant R equals
to the inverse of three times the rate coefficient (k;) of the
Dushman reaction. In other words, it means that at large
hydrogen ion, iodide and iodate concentrations all the hydrogen
sulfite molecules are exclusively removed by iodine formed from
the Dushman reaction as expected. Therefore, one may easily
realize that the Landolt time (#;) has nothing to do with the
Landolt reaction itself in these experimental circumstances.
Church and Dreskin’s Result. In unbuffered solution,
Church and Dreskin’ established a simple relationship between
the Landolt time and the concentration of the reactants.
Unfortunately, as we have seen previously, no exact formula
could be obtained for #; from eq 23, but the results from the
numerical integration of eq 23 might reveal the origin of eq 7.
Figure 3 shows the logarithm of #; calculated from eq 23 as a
function of the logarithm of the product of the hydrogen sulfite
and the iodate concentration. As seen, an almost perfect straight
line may be obtained if the initial concentration of the reactants
is kept close to each other; i.e., no extreme excess of either of
the reactants is applied. Even the constant obtained from our
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Figure 3. Logarithm of the calculated Landolt time as a function of
the logarithm of the product of iodate and hydrogen sulfite concentra-
tion. Symbols represents, where the concentrations of hydrogen sulfite
and iodate are equal (@) or not equal (O). Solid line shows the
regression of those points where the initial concentration of the reactants
is equal with each other. The slope and the intercept were found to be
—1.06 £ 0.02 and —3.12 £ 0.01, respectively. The dashed line
represents the result of calculation where [HSO3™]o/[1057]p = 2.99.

calculation (7.59 + 0.18) x 107* M? s is in acceptable
agreement with the one (0.0037 M? s) determined by Church
and Dreskin.” The agreement is even better if we fit the Landolt
time as a function of the product of the reactant concentrations
by a hyperbolic function. In the latter case, a value of (1.75 &+
0.06) x 1073 M? s can be obtained for the constant of eq 7.
The difference between these values stems from the fact that in
the case of the linear plot a slightly higher value than 1 is
obtained for the slope.

If, however, iodate is in large excess or the [HSO3]o/[1037 ]o
ratio approaches 3 (dashed line of Figure 3), especially at lower
concentrations, then significant deviation can be calculated from
the predicted straight line. Therefore, we concluded that the
empirical formula given by Church and Dreskin is not a general
law for calculating the Landolt time in the whole concentration
space, although it works properly in limited concentration ranges
of the reactants. As seen in Figure 2, there is a considerable
concentration range of both iodate and hydrogen sulfite where
the Landolt time is inversely proportional to these concentra-
tions. The slopes of these straight lines are approximately equal
to each other, and therefore it provides the emergence of the
dependence of #; on the product of the iodate and hydrogen
sulfite concentration. It should, however, be definitely empha-
sized in favor of Church and Dreskin that far from both the
huge excess of iodate and [HSO3;7]¢/[IO37]p = 3 ratio, the
logarithm of the theoretically calculated Landolt time may be
treated as a linear function of the logarithm of the product of
the reactant concentrations with having acceptable standard
deviations in the case of real experiments. Therefore, their final
conclusion—no surprise at all—can straightforwardly be drawn
by any chemists though the theoretical calculations do not
support it as a general law.

Horvath et al.

Conclusion

A complex expression for the concentration dependence of
the Landolt time has been derived from the extended kinetic
model of the Landolt and Dushman reactions proposed recently.3
To our best knowledge, this is the most comprehensive formula
for the Landolt time containing the exact concentration depen-
dence of the reactants hydrogen sulfite and iodate as well as
that of the iodide and hydrogen ions. It is also shown that the
previously obtained expressions for calculating the Landolt time
are restricted to only relatively narrow concentration ranges but
can readily be derived from our comprehensive formula. The
only point that cannot be directly explained by our equation is
the pure quadratic iodate dependence of the inverse of the
Landolt time® suggested by Eggert. It is also interesting to note
that the simple expression found by Church and Dreskin’ is
rather the result of the usage of the limited concentration range
used in their experiments than a general law. In favor of them,
however, it should be emphasized again that even the theoreti-
cally calculated logarithm of the Landolt time plotted against
the logarithm of the product of the reactant concentrations—in
certain reactant concentration range—may be misinterpreted as
if eq 7 is a general law.
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