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We present a computational method to calculate the electronic states of a molecule in an electrochemical
environment. The method is based on our recently developed finite-temperature density functional theory
approach to calculate the electronic structures at a constant chemical potential. A solvent effect is treated at
the level of the extended self-consistent reaction field model, which allows considering a nonequilibrium
solvation effect. An exchange-correlation functional with a long-range correction is employed in this calculation,
because the functional is adjusted so that the derivative discontinuity of energy with respect to a number of
electrons could be satisfied. It has been found that the derivative discontinuity condition plays a crucial role
in an electrochemical system. The computational results are presented for a reaction of NO+ + e- a NO in
chemical equilibrium. Owing to the improvement in the solvation effect and the exchange-correlation functional,
the calculated activation free energy is in good agreement with experimental results.

1. Introduction

Electrochemical processes have received significant attention
in a wide range of interest in the electrochemical cell, corrosion,
and membrane potential.1,2 Their importance has extensively
been recognized in recent years, for example, in the context of
energy conversion related to photoelectrochemical cells based
on advanced fabrication technology.2 All of the electrochemical
processes are, in a narrow sense, due to the details of the
electronic structures of a system in electrochemical environment.
Nevertheless, it is still computationally demanding to carry out
first-principles calculations of such electronic states. This is
simply because reactant-solvent and reactant-electrode inter-
actions, which are completely absent in isolated molecular
systems, play an important role. Therefore, the electrochemical
processes have so far been studied within various numerical
models at different levels of theory depending on the description
of those interactions. In addition, one encounters serious
difficulty in calculating the electronic structures of an electro-
chemical system. Since the electrochemical system is an open
quantum one, that is, a molecular system in contact with an
electrode, the electronic structure calculations of such a system
should be carried out at a constant chemical potential, µ, instead
of a fixed number of electrons, N.

The conventional ab initio calculations such as quantum
chemistry or band structure give electronic structures at a
constant N. However, N is no longer a suitable variable in
electrochemical processes at a constant µ. For this reason,
several approaches have been developed to calculate electronic
structures at a constant chemical potential.3-19 Sprik et al.3-6

and Anderson et al.7-10 proposed methods to calculate the
electronic structure at a constant µ on the basis of the
conventional ab initio calculations. On the other hand, Nakatsuji
et al.11-13 developed a method of electronic structure calculations

at a constant µ in a different way. This method was used to
improve the accuracy of the conventional cluster model calcula-
tion, which is frequently applied to electronic structure calcula-
tions of adsorbate-surface systems. In this method, however,
µ was calculated as a derivative of the total energy with respect
to N, so that a large number of calculations were needed to
obtain the electronic state at a desired µ.

The disadvantage of the computations mentioned above is
ascribed to the fact that these numerical methods are still based
on electronic structure calculations of a system with a constant
N. Therefore, it is highly desirable to develop an alternative
method to directly calculate electronic structures at a constant
µ.15-19 Finite-temperature density functional theory (FTDFT)20

is in principle able to treat a system in a grand canonical
ensemble average, and thus, one can propose a numerical
method based on FTDFT to describe electrochemical processes.
Alavi et al.15 applied the FTDFT method to the simulation of
charged slabs at a constant µ. Their procedure allowed perform-
ing calculations for an electrochemical system by using the
standard ab initio supercell approach. In their study, however,
the artificial compensating charge was introduced because the
net charge in the supercell should be neutralized in the band
structure calculation. Otani and Sugino18 proposed a different
method of the band structure calculation for an electrochemical
system in which the charge neutrality was satisfied by imposing
an appropriate boundary condition on a Poisson equation.

Very recently, we have developed an alternative FTDFT
method to calculate the electronic structures of an electrochemi-
cal system at a constant µ.19 In contrast to the band structure
calculations mentioned above, our method is based on the
conventional quantum chemistry calculations. Thus, the method
requires no charge neutrality condition and allows us to
intuitively understand chemical processes. Our FTDFT approach
has qualitatively calculated the electronic structures at a constant
µ, whereas it should be further improved. Specifically, there
remain two problems to be addressed.
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First, in our previous study, we primarily focused on
developing an FTDFT approach to calculate electronic structures
at a constant µ. The solvation effect was simply approximated
by a conductor-like polarizable continuum model (C-PCM).21

This treatment means that the solvent is assumed to be in
equilibrium with the solute. In the electrochemical process
accompanying electron transfer, however, such an equilibrium
condition is no longer satisfied because the solvent motion is
in general much slower than the electron transfer.

Second, the conventional functional, the Becke three-
parameter hybrid exchange functional with the Lee-Yang-Parr
correlation functional (B3LYP), was used in our previous
FTDFT approach. In the extension of the Hohenberg-Kohn
theorem to the system with a fractional number of electrons N
by Perdew et al.,22 they demonstrated that the energy calculated
by using DFT should show derivative discontinuity with respect
to N. Although the importance of the derivative discontinuity
condition was pointed out in our previous study19 and it is known
that the B3LYP functional does not reproduce this condition,
we had no detailed discussion about the improvement in the
functional.

In the present study, we further develop the FTDFT approach
to analyze the kinetics of electrochemical processes. We adopt
the extended self-consistent reaction field (SCRF) model,23,24

which allows us to take account of the nonequilibrium solvation
effect. We alternatively employ the Becke exchange and
Lee-Yang-Parr correlation functional with a long-range cor-
rection (LC-BLYP) and discuss the importance of the derivative
discontinuity with respect to the number of electrons. The
approach is applied to the reaction of NO+ + e- a NO in
acetonitrile.25

This paper is organized as follows. In section 2, we describe
the FTDFT method combined with the SCRF model. The
computational details, including the description of LC-BLYP,
are presented in section 3. In section 4, we show the results of
the calculation for the reaction of NO+ + e- a NO. The
concluding remarks are summarized in section 5.

2. Methods

2.1. FTDFT Calculation. In our previous study, we calcu-
lated the electronic structures at a constant µ in a direct manner.
The computational approach is based on FTDFT. We review
here the FTDFT approach.

FTDFT is a generalization of DFT26 to a grand canonical
ensemble first developed by Mermin,20 extending the
Hohenberg-Kohn theorem.27 The density operator Γ̂ at the
equilibrium state for a grand canonical ensemble minimizes the
grand potential Ω[Γ̂]. According to FTDFT, Ω can be given
by a functional form of electron density n instead of Γ̂ as
follows:

Ω[n(x)])E- θS- µN (1)

) T [n(x)]+Vee[n(x)]- θS[n(x)]+∫ (V(x)-

µ)n(x) dx (2)

where E, T, and Vee are internal, kinetic, and electron-electron
interaction energies, respectively, S is entropy, θ is temperature,
and V is external potential. In the Kohn-Sham (KS) formulation,
as is well-known, a system of interacting electrons is represented
by a fictitious system of noninteracting electrons. Similarly, Ω
can be rewritten by

Ω[n(x)]) Ts[n(x)]+ J[n(x)]- θSs[n(x)]+

∫ (V(x)- µ)n(x) dx+Ωxc[n(x)] (3)

where

n(x))∑
i

∞

fi|ψi(x)|2 (4)

Ts[n])∑
i

∞

fi∫ψi*(x)(-1
2

∇ 2)ψi(x) dx (5)

J[n]) 1
2∫∫ n(x)n(x′)

|x- x′ | dx dx′ (6)

Ss[n])-kB∑
i

∞

{fi ln fi + (1- fi) ln(1- fi)} (7)

with ψi and fi being the KS orbitals and the occupation numbers,
respectively, and kB being the Boltzmann’s constant. Ωxc[n] is
an exchange-correlation contribution to the grand potential and
it is expressed by Ωxc ) (T - θS) - (Ts - θSs) + Vee - J.
Finally, the KS equation at finite temperature is derived in the
form of28

ĥeff
0ψi(x)) εiψi(x) (8)

where ĥeff
0 is the effective one-electron Hamiltonian given by

ĥeff
0 )-1

2
∇ 2 +∫ n(x′)

|x- x′ | dx ′ +Vxc(x)+V(x) (9)

with Vxc(x) being the exchange-correlation potential and εi being
the KS orbital energies. It should be noted here that vxc(x) is
not the conventional exchange-correlation potential but the
exchange-correlation potential for the ground potential given
in FTDFT. Equation 8 is formally equivalent to the conventional
KS equation at zero temperature, but the electron density n(x)
depends on temperature through the fractional occupation
numbers fi as written in the form of eq 4. fi in the noninteracting
electron system equals to the Fermi-Dirac distribution

fi )
1

1+ exp(εi - µ
kBθ )

(10)

Once one solves the FTDFT equation (eq 8), satisfying eqs 4
and 10 in the same way as in the conventional KSDFT approach,
the equilibrium electron density at µ, θ, and V is obtained.

In the present modeling of electrochemical systems, we
assume an outer-sphere process in which an electrode is
considered to be an electron reservoir associated with a chemical
potential µ. Thus, we do not explicitly calculate the interaction
between reactant molecules and an electrode. The energy of an
electron is experimentally measured in terms of an electrode
potential ν relative to a reference electrode. In the FTDFT
calculation, the energy of an electron is measured in terms of
chemical potential µ in which an electron in the vacuum at rest
is defined as zero. Then, µ and ν are related by

ν)-µ
e
- 4.36 V vs SHE (11)

where e is the elementary charge and the standard hydrogen
electrode (SHE) is assumed as the reference electrode. This
relationship will be derived in Appendix A.

The FTDFT approach described above is similar to the
conventional KSDFT except that the former approach requires
an extra (but not computationally demanding) procedure to
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specify the fractional occupation numbers. Therefore, the
FTDFT approach can be straightforwardly implemented to
standard quantum chemistry programs.

2.2. SCRF Model for Nonequilibrium Solvation. The
solvation effect was simply approximated by C-PCM in our
previous method. As mentioned in section 1, this approximation
ignores the nonequilibrium solvation effect. We herein take
account of the nonequilibrium solvation effect by using the
extended SCRF model.23,24

The system is assumed to be in a spherical cavity embedded
in a dielectric. The energy difference ∆E between the molecule
in the vacuum and the molecule in the dielectric can be
expressed as23

∆E)-1
2

fq
0q2 - 1

2
fm

0m · m (12)

where q and m are, respectively, the charge and the dipole
moment vector of the molecule, and fq

0 and fm
0 are the reaction

field factors for the charge and the dipole moment. q and m are
calculated by the FTDFT calculation described above. The
reaction field factors are given by

fq
0 ) (1- 1

ε0
) 1
a0

(13)

fm
0 )

2(ε0 - 1)

2ε0 + 1
1

a0
3

where a0 is the radius of the spherical cavity and ε0 is the
dielectric constant. Although only the contributions from the
charge and the dipole moment are discussed in the present study,
the contributions from higher multipole moments can be
similarly taken into account.

If the charge distribution of a solute molecule changes fast,
solvent is no longer in equilibrium with the solute molecule.
We divide the solvent polarization into a long-lived (inertial)
component and a short-lived (noninertial) component. Then, we
assume the long-lived component is frozen at the polarization
produced by a charge q0 and a dipole moment m0, and the short-
lived component has an instantaneous response to the change
in the charge distribution of the solute molecule. On this
assumption, ∆E is rewritten as (see Appendix B)

∆E) 1
2

(fq
0 - fq

∞)(q0)2 - 1
2

fq
∞q2 - (fq

0 - fq
∞)q(q0)+

1
2

(fm
0 - fm

∞)m0 · m0 - 1
2

fm
∞m · m- (fm

0 - fm
∞)m · m0 (14)

where fq
∞ and fm

∞ are the reaction field factors of the short-
lived components for the charge and the dipole moment,
respectively. These reaction field factors are given by

fq
∞ ) (1- 1

n2) 1
a0

(15)

fm
∞ ) 2(n2 - 1)

2n2 + 1

1

a0
3

with n being the refractive index of the dielectric. The radii for
the long-lived component and the short-lived component are
taken to be equal.29,30

To calculate the electronic structures in electrochemical
environment, ∆E should be added to the grand potential Ω given
by eq 3. Then, the finite-temperature KS equation (eq 8) is
simply modified in the form of (see Appendix C)

ĥeffψi(x)) εiψi(x) (16)

where

ĥeff ) ĥeff
0 +Vscrf (17)

Vscrf )-[fq
∞qq̂+ (fq

0 - fq
∞)q0q̂+ fm

∞m · m̂+

(fm
0 - fm

∞)m0 · m̂] (18)

with q̂ and m̂ being the operators for the charge and the dipole
moment, respectively. Equation 16 is the final form of our
FTDFT approach combined with the extended SCRF model.
The equation is calculated until Vscrf, q, and m are determined
self-consistently.

The long-lived component of the polarization is associated
with the atomic configuration of the solvent, whereas the short-
lived component is due to the distribution of the electron density.
Thus, the variables of q0 and m0, which determine the long-
lived component of the polarization, can be interpreted to specify
the solvent structure.24 To approximately specify the solvent
structure on the reaction coordinate, we determine the variables,
q0 and m0, by linearly interpolating the charges and the dipole
moments in the neutral (N) and cationic (C) states

q0(S)) (1- S)qN + SqC (19)

m0(S)) (1- S)mN + SmC (20)

where S is a reduced index related to the atomic coordinate of
the solvent molecules. In what follows, we refer to S as the
solvent coordinate.

3. Computational Details

The exchange-correlation potential Vxc(x) in eq 9 is ap-
proximated by the Becke exchange31 and Lee-Yang-Parr
correlationfunctional32withalong-rangecorrection(LC-BLYP).33-35

The temperature dependence of the functional is ignored. The
Coulomb operator in LC-BLYP is decomposed into short-range
and long-range parts by a parameter ω.36,37 The exchange energy
in the short-range part is calculated by the BLYP functional
and that of the long-range part is calculated by the Hartree-Fock
(HF) exchange potential. The optimum value of ω should be
between 0 (the HF limit) and ∞ (the BLYP limit). In the present
calculation, the parameter ω was optimized to be 0.31. The
choice of the optimum value of ω will be discussed in section
4.2. The KS orbitals are expanded in Dunning’s augmented
correlation-consistent basis set (aug-cc-pVDZ).38,39 The dielec-
tric constant and the square of the refractive index of acetonitrile
in the SCRF model are set to be 37.5 and 1.8, respectively.40

The calculations are carried out with the GAMESS package of
quantum chemistry programs41 in which the present computa-
tional FTDFT/SCRF methodology is implemented. The radius
r of the cavity in the SCRF model is calculated to be 2.091 Å
by the equation

r) 1
2

[rvdW(N)+ rvdW(O)+ 1
2

{Req(NO)+Req(NO+)}]

(21)

where rvdW(N) and rvdW(O) are the van der Waals radii42 of N
and O, respectively, and Req(NO) and Req(NO+) are the
equilibrium internuclear distances obtained by the DFT calcula-
tion in a vacuum with LC-BLYP (ω ) 0.31) and the aug-cc-
pVDZ basis set.

To calculate the electronic states at a given µ, we first carry
out electronic structure calculations at a constant N and then
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evaluate the chemical potential. This computation is repeated
until the electronic state at the desired µ is obtained, i.e., a route
search computation.19 It is not necessarily the case that there is
a one-to-one mapping between the electronic states at µ and N.
Thus, multivalued electronic states are sometimes artificially
obtained for the desired µ. As will be described later, this
practical problem can be avoided by using a proper exchange-
correlation potential in FTDFT calculations.

4. Results and Discussion

4.1. Grand Potential Surface. The properties of NO and
NO+ in equilibrium with acetonitrile are summarized in Table
1. The difference in the energy between NO and NO+,
-3528.759 - (-3522.422) ) -6.337 eV, is equal to the
chemical potential at the electrochemical equilibrium condition,
NO+ + e- a NO. Thus, the standard electrode potential of
this reaction is calculated to be (-(-6.337) - 4.36)) = 1.98 V
vs SHE from eq 11. The experimental redox potential is 1.52
V vs SHE.25 The computational error is mainly due to the
incompleteness of the solvation model in which the solvent is
represented by a dielectric and might be due to the inaccuracy
caused by the DFT approach.

Figure 1 shows the grand potential surface as a function of
the internuclear distance R and the solvent coordinate S at the
standard electrode potential, 1.98 V vs SHE. The solvent
coordinate was determined by using eqs 19 and 20 with the
data in Table 1. A double minimum can be seen in the figure:
the minimum in the cationic (NO+) state at R ) 1.0704 Å and
S ) 1.0, and the minimum in the neutral (NO) state at R )
1.1524 Å and S ) 0.0. The saddle point appears at R ) 1.1096
Å and S ) 0.493, and the activation free energy is calculated
to be 12.17 kcal/mol. This value is in good agreement with an
experimental result of 11 kcal/mol.25

The reaction path connecting the two potential minimums is
drawn in Figure 1 (the solid curve). For comparison, we also
draw the “false” reaction path obtained when the equilibrium
solvation is assumed (the dotted lines extending from both of
the potential minimums). It should be noted that this false path
is a function of R and the degree of freedom of the solvent
coordinate is completely ignored even though the path is drawn

in the 2D (R and S) map. Thus, the 1D false reaction path jumps
unreasonably from one end to another. This unphysical jump
gives the inaccurate value of the activation free energy,=3 kcal/
mol. The effect of the nonequilibrium solvation plays a crucial
role in the kinetics of electrochemical reactions.

As is well-known in the Butler-Volmer equation or the Tafel
relationship, the activation free energy has approximately linear
dependence on overpotential η. Therefore, the activation free
energy of the reduction, NO+ + e- f NO, should linearly
increase as a function of the overpotential, whereas that of the
oxidation, NO++e- r NO, should linearly decrease. Figure 2
shows the activation free energy as a function of η. The figure
reasonably demonstrates that the dependence of the activation
free energy on the overpotential satisfies the requirements
mentioned above.

We discuss here the nonequilibrium solvation dynamics based
on the SCRF model in relationship to Marcus theory. According
to Marcus theory, diabatic free energy curves along the reaction
coordinate are assumed to be parabolic. Thus, we drew the NO/
NO+ diabatic potential curves by fitting the grand potential along
the minimum energy path to two parabolic curves. The barrier
height at the crossing point of the two parabolas is close to the
value of the saddle point (12.17 kcal/mol) calculated from the
grand potential. This implies that the grand potential of NO/
NO+ happens to be approximately parabolic because the
dynamical change of the solute molecule is very small during
the reaction. By assuming the diabatic free energy curves to be
parabolic, the activation free energy shows parabolic dependence
on the overpotential. The inset in Figure 2 shows the activation
free energy as a function of overpotential in a wider range. It is
clearly seen from the figure that the curve has approximately
parabolic dependence. These results demonstrate that Marcus
theory reasonably describes the present system.43,44 However,
we stress that the FTDFT/SCRF method can treat an electro-
chemical system in which a grand potential is far from parabolic
owing to a substantial dynamical change of a solute molecule.

4.2. Exchange-Correlation Potential with Derivative Dis-
continuity Condition. The exchange-correlation potential was
approximated by LC-BLYP in the present FTDFT approach
because the conventional exchange-correlation potentials, such
as B3LYP, fail to describe the derivative discontinuity with
respect to the number of electrons, N.45-47 We demonstrate in
this section that the derivative discontinuity condition has a great
influence on electrochemical processes in which a fractional
number of electrons is allowed.

We define a reaction coordinate C approximately following
the potential minimum of the NO/NO+ 2D potential map in
Figure 1. Figure 3a shows the grand potentials along the

TABLE 1: Properties of NO and NO+a

Req (Å) qe (a.u.) qn (a.u.) me (a.u.) mn (a.u.) Etotal (eV)

NO 1.1524 -15.0 15.0 1.003 -1.089 -3528.759
NO+ 1.0704 -14.0 15.0 1.198 -1.011 -3522.422

a Req is the equilibrium internuclear distance, qe and qn are the
charges of electrons and nuclei, me and mn are the dipole moments
of electrons and nuclei along the molecular axis of the system, and
Etotal is the total energy. The origin of the dipole moment is the
center of the internuclear coordinate between N and O.

Figure 1. Grand potential surface of NO+ + e-a NO at the standard
electrode potential. The solid and dashed lines show the reaction
coordinates when the nonequilibrium solvation is taken into account
and not taken into account, respectively.

Figure 2. Activation free energy as a function of the overpotential.
The solid and dashed lines show the energies of the reduction, NO+ +
e- f NO, and the oxidation, NO+ + e- r NO. The inset shows the
activation free energy in a wider range of the overpotential.
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coordinate C with different parameters of ω for LC-BLYP and
the grand potential calculated with B3LYP. The results of LC-
BLYP (ω ) 0.2) and B3LYP show a low or no barrier.
Although the results of LC-BLYP (ω ) 0.4 and 0.5) show
barriers, the calculations sometimes do not give the state that
minimizes the grand potential at near the saddle point. Figure
3b shows the change of the charge in the NO/NO+ electro-
chemical system. The charge varies strongly depending on the
functional. The results of LC-BLYP (ω ) 0.2) and B3LYP show
gradual dependence, whereas the results of LC-BLYP (ω ) 0.4
and 0.5) show a discontinuous change. As discussed below, the
discrepancy of the grand potentials with different functionals
is attributed to how each functional describes the electronic
structure with the fractional number of the electrons, particularly
at near the saddle point.

The functional dependence of the grand potential is strongly
related to the derivative discontinuity of the energy with respect
to the total number of electrons. It has been known that the
exact energy should show linear dependence on N in the range
of the fractional N. To demonstrate how the calculated results
deviate from the exact linear dependence, we show in Figure
4a the deviation of the computed results from the energy
obtained by linearly interpolating the energies of the neutral
and cationic states. Then, the exact result should be zero
irrespective of the charge. As expected, the dotted line of LC-
BLYP (ω ) 0.3) depends almost linearly on N. The results of
B3LYP and LC-BLYP (ω ) 0.2) show concave curves, whereas
the results of LC-BLYP (ω ) 0.4 and 0.5) show convex curves.
As the result, the B3LYP and LC-BLYP (ω ) 0.2) calculations
give lower energy for the state with fractional N. This is the
reason that the lower activation free energy was obtained in
Figure 3a and that the number of electrons is fractional in Figure
3b. On the other hand, the LC-BLYP functionals with ω ) 0.4
and 0.5 give rise to another problem. Figure 4b shows the charge
as a function of the electrode potential. It is clearly seen from
the figure that the curves for ω ) 0.4 and 0.5 become triple-
valued functions against the electrode potential. As mentioned

in the computational details in section 3, these triple valued
curves were due to a practical problem in computation. One of
the three electronic states minimizes the grand potential, whereas
the other two states have no physical meaning.

These behaviors are understood by considering the expres-
sions of the exchange energy. It has been known that the
Hartree-Fock approximation tends to give convex curves of
the energy with respect to N, whereas the approximations used
in DFT such as the local density approximation and the
generalized gradient approximation tend to give concave ones.
In the mixing schemes, such as B3LYP, the exchange energy
is expressed as a mixture of the HF and DFT exchange energies.
As shown in Figure 4a, the B3LYP calculation totally fails to
reproduce the derivative discontinuity because the functional
has a minor contribution from the HF exchange energy.
However, if the contribution of the HF exchange energy is added
more in the calculation, the obtained results will be worse in
accuracy. In the LC-BLYP functional, the exchange energy in
the short-range part is calculated by the BLYP functional, and
the energy in the long-range part is calculated by the HF
exchange potential. Since larger ω decomposes the Coulomb
operator at a shorter point, the calculation with larger ω gives
a convex curve, and vice versa as shown in Figure 4a. The
parameter ω was finally optimized to be ω ) 0.31. The
calculated results with ω ) 0.31 properly represent the
derivative discontinuity and give the single-valued N as a
function of the electrode potential. The value of ω optimized
for the present system is close to those empirically optimized
in the DFT calculations of molecules.33-35

5. Concluding Remarks

We have developed a computational method to calculate the
electronic structures of a molecule at a constant chemical
potential in the electrochemical environment. The method is
based on our recently developed FTDFT approach combined
with a continuum model. In the present study, the solvent effect
was explicitly treated at the level of the extended SCRF model,
which allows considering a nonequilibrium solvation effect.

Figure 3. (a) Grand potential curves calculated with different
functionals. For comparison, the grand potential curves calculated with
LC-BLYP are shifted so that the grand potential at the equilibrium
internuclear distance is equal to be zero. The grand potential curve
calculated with B3LYP is shifted so that E - µN is equal to be zero,
where E is the total energy at the equilibrium internuclear distance
obtained by the constant-N calculation. (b) Same as (a) but for the
charge of the system.

Figure 4. (a) Deviation of the energy measured from the exact one.
(b) Charges as a function of the electrode potential.
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Furthermore, we adopted an exchange-correlation functional
satisfying the derivative discontinuity condition. The FTDFT/
SCRF method was applied to the electrochemical reaction of
NO+ + e- a NO. Owing to the improvement in the solvation
effect and the exchange-correlation functional, the calculated
result was in good agreement with the experimental one. The
conventional exchange-correlation functional such as B3LYP
does not satisfy the derivative discontinuity condition, so that
the calculated result gave a completely inaccurate grand potential
surface. In contrast, the functional with the long-range correction
of the exchange-correlation potential has overcome the
disadvantage.

Since our FTDFT method has nothing to do with theoretical
levels of description of the solvent effect, the method can be
straightforwardly extended to more real electrochemical systems
by using sophisticated methods describing the solvent effect.
In the present study, by using the extended SCRF model, we
approximately described the nonequilibrium solvation effect,
which was completely ignored in our previous method of
FTDFT/C-PCM.

Many theoretical studies of electrochemical reactions ignore
the internal degrees of freedom of a reactant. However, the
geometry of the reactant, in general, strongly changes during
electrochemical reaction. The present FTDFT approach allows
considering the internal degrees of freedom of a reactant.
Therefore, the FTDFT approach can be a suitable and promising
approach to analyze the electrochemical reaction.
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Appendix A: Relationship between Chemical Potential
and Electrode Potential

µ and ν are related by48,49

ν)-
µ- µSHE

e
(22)

where µSHE is the chemical potential of the electron in SHE.
To compare the calculated results with experimental ones, the
value of µSHE is needed. Let us consider the following
equilibrium condition in SHE:

H+(aq, 1 mol ⁄ L)+ e-a
1
2

H2(gas, 1 bar) (23)

Then, µSHE is obtained by using the Born-Harber cycle shown
in Figure 5

µSHE )∆G1 +∆G2 -∆G3 (24)

where ∆G1, ∆G2, and ∆G3 are defined in Figure 5. According
to the Fermi-Dirac statistics, ∆G1 is set to be -0.868 kcal/
mol.50 ∆G2 is calculated to be -361.7 kcal/mol from the
experimental formation energy of H+(gas, 1 bar, 298.15 K)
following the electron convention based on the Fermi-Dirac
statistics.50 The solvation energy of the hydrogen ion can be
evaluated in two ways: one includes the energy to transfer
the ion across the solvent surface and the other does not. In
the dielectric continuum model, the solvent is treated as an
infinite continuum, so that to compare the calculated results with
the corresponding experiment ones the energy to penetrate the
solvent surface should not be included in the solvation energy.
Thus, we use the solvation energy of ∆G3 ) -262.1 kcal/mol
excluding the energy to penetrate the surface.51–53 From eq 24,
µSHE is finally given by

µSHE )-0.868- 361.7+ 262.1 kcal ⁄ mol=

- 100.47 kcal ⁄ mol=-4.36 eV (25)
This value is similar to those obtained by other authors, -4.31
eV,48 -4.34 eV,49 and -4.36 eV.52 From eq 22, the electrode
potential is given by

ν)-µ
e
- 4.36 V vs SHE (26)

Appendix B: Derivation of ∆E in Equation 14

The energy difference ∆E is calculated by ∆E ) Vint + Wpol,
where Vint is the electrostatic interaction energy between the
molecule and the dielectric and Wpol is the work required to
polarize the dielectric. In the SCRF model, Vint up to the dipole
term can be expressed as23

Vint ) qφ(0)+m · ∇ φ(0) (27)

where φ(0) is the electrostatic potential at the center of the
cavity. Let us first consider an equilibrium solvation model. On
the assumption that the system is in a spherical dielectric cavity,
the electrostatic field and its derivative are expressed as

φ(0))-fq
0q (28)

∇ φ(0))-fm
0m (29)

where fq
0 and fm

0 are the reaction field factors for the charge
and the dipole moment. The reaction field factors are explicitly
given by

fq
0 ) (1- 1

ε0
) 1
a0

(30)

fm
0 )

2(ε0 - 1)

2ε0 + 1
1

a0
3

(31)

where a0 is the radius of the cavity and ε0 is the dielectric
constant. By substituting eqs 28 and 29 into eq 27, the
electrostatic interaction energy is rewritten in the form of

Vint )-fq
0q2 - fm

0m · m (32)

By using the reaction field factors, Wpol and ∆E are expressed
as23

Wpol )
1
2

fq
0q2 + 1

2
fm

0m · m (33)

∆E)-1
2

fq
0q2 - 1

2
fm

0m · m (34)

Equations 32 and 33 satisfy the condition, ∆E ) Vint + Wpol.
Let us next consider a nonequilibrium solvation model.23,24

With the help of the relationship between the dielectric constant

Figure 5. Born-Harber cycle to define the value of µSHE.
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ε and the refractive index n, ε ) n2, for optical processes, we
introduce the quantities of

fq
∞ ) (1- 1

n2) 1
a0

(35)

fm
∞ ) 2(n2 - 1)

2n2 + 1

1

a0
3

(36)

where fq
∞ and fm

∞ are the reaction field factors of the short-
lived components for the charge and the dipole moment,
respectively. The reaction fields φs(0) and ∇ φs(0) produced by
the short-lived component of the polarization are given by

φs(0))-fq
∞q (37)

∇ φs(0))-fm
∞m (38)

When deriving these equations, we suppose that the short-lived
component of the polarization is induced by a charge q and a
dipole moment m. On the other hand, the long-lived component
is assumed to be induced by a charge q0 and a dipole moment
m0. Then, the reaction fields φl(0) and ∇ φl(0) produced by the
long-lived component of the polarization are obtained by
subtracting the short-lived component as follows:

φl(0))-(fq
0 - fq

∞)q0 (39)

∇ φl(0))-(fm
0 - fm

∞)m0 (40)

By combining the reaction fields produced by the short-lived
and the long-lived components, the total reaction fields φ(0)
and ∇ φ(0) are obtained by

φ(0))-(fq
0 - fq

∞)q0 - fq
∞q (41)

∇ φ(0))-(fm
0 - fm

∞)m0 - fm
∞m (42)

The potential energy Vint is given by substituting eqs 41 and
42 into eq 27,

Vint )-q[(fq
0 - fq

∞)q0 + fq
∞q]-m · [(fm

0 - fm
∞)m0 + fm

∞m]

(43)

In a manner analogous to eq 33, the work Wpol
s required to

polarize the short-lived component, which is induced by q and
m, is given by

Wpol
s ) 1

2
[fq

∞q2 + fm
∞m · m] (44)

The work Wpol
l required to polarize the long-lived component,

which is induced by q0 and m0, is obtained by

Wpol
l ) 1

2
[fq

0(q0)2 + fm
0m0 · m0]- 1

2
[fq

∞(q0)2 + fm
∞m0 · m0]

(45)

where the first term is the work required to polarize both the
long-lived and the short-lived components induced by q0 and
m0 and the second term is the work required to polarize the
short-lived component induced by q0 and m0. The work Wpol )
Wpol

s + Wpol
l required to polarize the dielectric is given by

Wpol )
1
2

[(fq
0 - fq

∞)(q0)2 + fq
∞q2 + (fm

0 - fm
∞)m0 · m0 +

fm
∞m · m] (46)

Finally, ∆E is obtained by

∆E)Vint +Wpol )

1
2

(fq
0 - fq

∞)(q0)2 - 1
2

fq
∞q2 - (fq

0 - fq
∞)q(q0)+

1
2

(fm
0 - fm

∞)m0 · m0 - 1
2

fm
∞m · m- (fm

0 - fm
∞)m · m0 (47)

This equation is equivalent to eq 14.

Appendix C: Finite-Temperature KS Equation with the
SCRF Model

The charge and the dipole moment can be divided into the
components associated with electrons (e) and nuclei (n):

q) qe + qn (48)

m)me

qe - q

qe
+mn (49)

In the present FTDFT calculation, qe, qn, me, and mn are defined
by

qe )∑
i

fi∫ψi*(x)q̂ψi(x) dx (50)

me )∑
i

fi∫ψi*(x)m̂ψi(x) dx (51)

qn )∑
j

Qj (52)

mn )∑
j

RjQj (53)

where Qj and Rj are the charge and the position of the jth
nucleus, respectively. The dipole moment (eq 49) is evaluated
at the center of the electric charge because the dipole moment
depends on the origin of the coordinate.54 Substituting eqs
50-53 into eq 14 and then performing the functional derivative
of ∆E with respect to ψi*(x), we obtain eq 18

Vscrf )-[fq
∞qq̂+ (fq

0 - fq
∞)q0q̂+ fm

∞m · m̂+ (fm
0 -

fm
∞)m0 · m̂] (54)
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