Molecular Dynamics and NMR Analysis of the Configurational ¹³C Assignment of Epimeric 22,23-Epoxides of Stigmasterol

Reynier Suardíaz,^{†,‡} Mitcheell Maestre,[§] Ernesto Suárez,^{||} Yamilet Bernardo,[⊥] Esther Alonso-Becerra,^{‡,⊥} and Carlos Pérez*,^{†,⊥}

Dpto. de Química Física, Facultad de Química, Universidad de La Habana, La Habana, Cuba, Laboratorio de Química Computacional y Teórica, Facultad de Química, Universidad de La Habana, La Habana, Cuba, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany, Dpto. de Química Física y Analítica, Universidad de Oviedo, Asturias, Spain, and Centro de Estudios de Productos Naturales, Facultad de Química, Universidad de La Habana, La Habana, Cuba

Received: May 23, 2008; Revised Manuscript Received: June 24, 2008

The determination of the stereochemistry of brasinosteroid analogs with 22,23-epoxide groups can be easily achieved by means of ¹³C NMR spectroscopy. Here, we provide a rationalization of the ¹³C chemical shift pattern found in 22*R*,23*R*- and 22*S*,23*S*-epoxides of stigmasterol, based on the analysis of γ effects. (22*S*,23*S*)-and (22*R*,23*R*)-3 β -acetoxystigmast-22,23-epoxy-5,6 β -diol were used in the study as model compounds. Our methodology starts with a conformational search by means of molecular dynamics and NMR (NOE contacts) spectroscopy, which is followed by the analysis of the different γ interactions affecting the chemical shift of interest. We demonstrate that the differences between the ¹³C chemical shift patterns of 22*R*,23*R* and 22*S*,23*S* isomers arise from γ effects as the result of diverging local conformations around the C₁₇-C₂₀ and C₂₀-C₂₂ bonds.

Introduction

Brassinosteroids (BR) are naturally occurring steroidal phytohormones with a high growth promoting activity.^{1–3} In general, the structural requirements postulated for a high BR activity are as follows: 2β , 3β -diol, 6-ketone or better 7-oxalactone in B ring, A/B trans fused ring junction, a cis C₂₂,C₂₃diol preferentially with *RR* configurations, and a C₂₄ methyl or ethyl substituent. These relationships are more or less stringent depending on the bioassay used to study the biological activity.⁴

The introduction of the cis C22,C23-diol moiety in BR analogs has been achieved through oxirane rings as precursors.⁵⁻⁷ Moreover, some BR analogs with the 22,23-epoxide function displayed significant biological activity in field trials.⁸⁻¹¹ Recently, a procedure to obtain a mixture of 22R,23R- and 22S,23S-epoxides from stigmasterol has been reported.^{12,13} Some research effort has been devoted to find a simple spectroscopic method for the unequivocal determination of the stereochemistry of these stigmasterol derivatives. A procedure has been developed by Gonzalez Sierra et al., based on the analysis of some representative C₂₂,C₂₃-epoxides by ¹³C NMR spectroscopy.¹⁴ The proposed method is based on the chemical shifts pattern found in 22R,23R- and 22S,23S-epoxides (see Figure 1 for nomenclature). They found, in agreement with other reports, 12,13,15 that C₂₂ and C₂₃ of the RR-epoxide display very similar chemical shifts ($\Delta \sim 0.1$ ppm) whereas in the SS-epoxide they are clearly distinguishable ($\Delta \sim 4.6$ ppm, C₂₃ is more shielded in the SS isomer than in RR). There is also a shielding effect ($\Delta \sim 2.5$

Figure 1. 6-Keto-22,23-epoxistigmasterol- 3β ,5-diol. Dihedrals C₁₆-C₁₇-C₂₀-C₂₁, C₁₇-C₂₀-C₂₂-C₂₃, C₂₂-C₂₃-C₂₄-C₂₅, C₂₃-C₂₄-C₂₈-C₂₉ and C₂₃-C₂₄-C₂₅-C₂₆ are defined as α , β , γ , ϵ and δ , respectively.

ppm) for C₁₇ in the *RR* isomer, if compared with the *SS* isomer. Gonzalez Sierra et al. attributed these differences in chemical shifts to the prevalence of a gauge conformation for the $H_{20}-C_{20}-C_{22}-H_{22}$ dihedral angle in both, *RR* and *SS* isomers, in view of the striking sensitivity of ¹³C chemical shifts to steric effects. The proposed gauge conformation, however, disagree with the observed ${}^{3}J_{H_{20}-H_{22}}$ coupling of 9.6 Hz in (22*S*,23*S*)- 3β -acetoxystigmast-22,23-epoxy-5,6 β -diol, which clearly indicates the presence of a trans conformation at H₂₀-C₂₀-C₂₂-H₂₂.

In this work, we provide a detailed analysis of the sources of ¹³C chemical shift differences in the C₂₂,C₂₃-epoxides, which correctly explains the origin of the chemical shift differences observed in these compounds. In our approach, we performed a conformational search by means of molecular dynamics (MD) simulations and experimental NMR data (NOEs), to later explain the observed chemical shift differences on the basis of γ effects. Whereas approaches using molecular modeling have been reported, ^{16–18} MD of epoxides in lateral chains, have not, to our knowledge, been previously carried out.

 $[\]ast$ To whom correspondence should be addressed. E-mail: cp@fq.uh.cu. † Dpto. de Química Física, Facultad de Química, Universidad de La Habana.

[‡]Laboratorio de Química Computacional y Teórica, Facultad de Química, Universidad de La Habana.

[§] Max Planck Institute for Biophysical Chemistry.

[&]quot;Universidad de Oviedo.

 $^{^{\}perp}$ Centro de Estudios de Productos Naturales, Facultad de Química, Universidad de La Habana.

TABLE 1: Comparison of ¹³C Chemical Shifts of Interest in (22S,23S)- and (22R,23R)-3 β -Acetoxystigmast-22,23-epoxy-5,6β-diol^{12,13} (±0.1 ppm)^{12,13}

nucleus	RR	SS
C ₁₃	43.0	43.1
C_{14}	55.4	55.4
C ₁₅	24.4	24.4
C ₁₆	27.9	27.1
C ₁₇	53.4	56.0
C ₁₈	12.1	12.3
C_{20}	38.7	38.7
C ₂₁	16.2	16.3
C ₂₂	62.2	63.0
C ₂₃	62.1	58.6
C ₂₄	48.3	48.6
C ₂₅	20.9	21.0
C ₂₆	19.4	20.2
C ₂₇	19.6	20.9
C ₂₈	19.6	19.4
C ₂₉	20.2	19.5

As a model compound for our study, we choose two BR analogs from stigmasterol, (22S, 23S)- and (22R, 23R)-3 β acetoxystigmast-22,23-epoxy-5,6 β -diol^{12,13} (Figure 1). These compounds display the typical chemical shift pattern of epoxide derivatives of stigmasterol and were selected due to the existence of complete ¹H and ¹³C resonance assignments.^{12,13} Some chemical shifts of interest are shown in Table 1.

Experimental Section

NMR Experiments. All NMR experiments were carried out in CDCl₃ at 300 K with TMS as an internal reference. The ¹³C and NOEDIFF spectra were collected with a Bruker ACF-250 spectrometer, operating at 250.13 MHz proton resonance frequency. The NOEDIFF experiments were performed by selective irradiation during 1.5 s.

The 1D ¹H and 2D ¹H/¹H-ROESY spectra were recorded with an Avance Bruker spectrometer operating at 400.13 MHz. A spin-lock time of 800 ms was used.

Molecular Dynamics. The simulations were performed using the program GROMOS96.19 The epoxide system is not included in the standard GROMOS force field.²⁰ A parametrization for this moiety was previously reported.²¹

The simulated system consists of a single solute molecule and 108 chloroform molecules as solvent, in a truncated octahedral periodic box of length 28 Å. The starting geometry was optimized by molecular mechanics using the steepest descent method. The MD simulations were performed at constant temperature (300 K, bath relaxation time 0.1 ps) and

Figure 3. Histogram of distances (nm) from H23 to C21/C17.

pressure (1 atm, bath relaxation time 0.5 ps), using a time step of 0.002 ps and a cutoff radius of 8 and 14 Å (the later updated every five time steps). The first 100 ps of the run were considered to be the equilibration time. After that, the geometric parameters were recorded every 250 steps. The simulation time was 10 ns.

Results and Discussion

Conformational Analysis of the Side Chains of the SS and RR Isomers. To clarify the origin of the chemical shift differences between the SS and RR isomers, we considered the interactions of C_{17} and C_{23} with its γ neighbors. MD simulations were performed to estimate the most populated conformations, with the focus on the spirostanic side chain connected to the D-ring of the steroidal moiety (Figure 1). The conformation of this side-chain is determined by the dihedral angles C₁₆- $C_{17}-C_{20}-C_{22}(\alpha), C_{17}-C_{20}-C_{22}-C_{23}(\beta), C_{22}-C_{23}-C_{24}-C_{25}$ $(\gamma), C_{23}-C_{24}-C_{25}-C_{26}$ (δ) and $C_{23}-C_{24}-C_{28}-C_{29}$ (ϵ). The differences in the angles γ , δ , and ϵ , however, are small and do not lead to significant differences in the distributions of the distances C_{23} - C_{26} , C_{23} - C_{27} or C_{23} - C_{29} between the SS and RR isomers (data not shown) and are therefore not further considered, as they unlikely cause significant differences in the C_{17} or C_{23} chemical shifts.

On the other hand, the conformations defined by the dihedral angles α and β are different in both isomers (Figure 2). The MD simulations show that in SS β adopt values around 200°, which is in good agreement with the observed ${}^{3}J_{H_{20}-H_{22}}$ value

Figure 2. MD conformations obtained for the isomers RR (left) and SS (right) around the torsion angles $\alpha(C_{16}-C_{17}-C_{20}-C_{21})$ and $\beta(C_{17}-C_{20}-C_{22}-C_{23}).$

Figure 4. Partial ROESY spectra of 22R,23R and 22S,23S compounds.

SCHEME 1: Relative Positions of Methyl 21, C₂₃ and H₂₃ That Favors Shielding of C₂₃ in SS

of 9.6 Hz, reflecting a predominantly *trans* arrangement between H_{20} and H_{22} , whereas the α angle displays a major conformation at ~90°, with minor conformations at approximately 180° and 300°. The prevalence of the (t, +g) (i.e., (200°, 90°)) conformation is also in good agreement with the observed ROE cross peak between H_{22} - H_{17} and, taking into account the relative orientation of H_{24} (i.e., adopting a *trans* arrangement with H_{23} as indicated by ${}^{3}J_{H_{23}-H_{24}} > 10$ Hz), also the ROE cross peak between H_{22} - H_{24} .

In the case of *RR*, β adopts values around 300° in most of the simulation, and α is distributed between three conformations: two almost equally populated conformations with maxima at 60° and 290°, and a minor conformation at 200°. In one of these predominant conformations, i.e., (-g, -g) which corresponds to (300°, 300°), the proton H₁₇ is spatially closer to the epoxide group than in any other conformation. This is in good agreement with the intense ROE cross peak observed between H₁₇-H₂₃. Moreover, the observation of a ROE cross peak between H₁₇-H₂₂ can be explained only by the presence of a significant population of the (-g, +g) conformation (300°, 60°). All this confirms the presence of an equilibrium between (-g, -g) and (-g, +g) conformations in the *RR* isomer.

Analysis of the Chemical Shift Differences. The differences in chemical shifts of C_{23} and C_{17} in the *RR* and *SS* epoxides probably arise from conformational differences between these isomers, originating variations in their pattern of steric interactions with γ neighbors, which are known to affect the shielding.

For example, in SS the obtained (t, +g) conformation place methyl 21 closer to H₂₃ as in the two predominant conformations of the RR conformer, which explains a shielding of C₂₃ in SS via γ effect. A more detailed analysis of the chemical shift differences is presented below.

Chemical Shift Differences at C23. As already mentioned above, the dihedral angles γ , δ , and ϵ displayed no significant variation between both isomers. Therefore, their shielding effects on C₂₃ are not further taken into account, leaving C₁₇ and C₂₁ as the only γ neighbors that can cause differences in C₂₃. The relative positions of these atoms are determined by the dihedral angle β , which adopts different values in each isomer (approximately 300° in RR and 180° in SS, Figure 2). This results in a much shorter C₂₁-H₂₃ distance in the 22S,23S isomer than in the 22R, 23R (Figure 3), as confirmed by the presence in the ROESY spectrum of the SS isomer of a strong cross-peak connecting H_{23} and H_{21} (Figure 4). Such a cross-peak is missing in the RR isomer as the result of much longer H₂₃-H₂₁ distances (Figure 3). These experimental facts sustain the results of the MD simulations and suggest that the greater shielding of C23 in the SS isomer is due to steric interaction with C21 (see Scheme 1).

Chemical Shift Differences at C₁₇. For the analysis of C₁₇ we take into account only the neighbors in γ position belonging to the lateral chain (C₂₃ and the epoxide oxygen). The interactions of C₁₇ with this atoms are the ones changing from one isomer to the other and depend on the torsion angles α and β (Figure 1).

The MD results show that there are three populated conformations in *RR* isomer but there is only one predominant conformation and two others scarcely populated in the *SS* compound (Figure 2). In the *RR* isomer, the distances from H₁₇ to its γ neighbors are considerably shorter in the (-g, -g) conformation than in any other conformer of both isomers (Figure 5). The H₁₇ is pointing to the oxirane ring, this fact favor a shielding effect over C₁₇ (see Scheme 2). The presence of this conformation could origin the differences in statistically weighed chemical shifts of C₁₇ due to the close vicinity of their

Figure 5. Histograms of distances relevant to H₁₇ from MD simulations.

SCHEME 2: Relative Positions of Epoxide Ring, C_{17} and H_{17} That Favors Shielding of C_{17} in *RR*

 γ neighbors C₂₃ and O. The moderate population of this conformation is in agreement with the fact that the $\Delta\delta$ in C₁₇ is less pronounced than in C₂₃.

The presence of $H_{17}-H_{23}$ and $H_{17}-H_{22}$ cross peaks in the ROESY spectrum of the *RR* isomer (Figure 4) establish the close vicinity between these protons, only compatible with simultaneously populated (-g, -g) and (-g, +g) conformations. The detection of NOE on H_{17} in a NOEDIFF spectrum by irradiation of H_{23} confirms the previous result.

Conclusions

The differences found in the 13 C spectra of 22*R*,23*R*- and 22*S*,23*S*-epoxides of stigmasterols can be interpreted as due to the existence of different conformations. A rigorous analysis is reported in this work.

It has been demonstrated that the differences in the local conformations generate differences on the shieldings of C_{23} and C_{17} that can be rationalized by steric γ effects.

The C_{23} in SS isomer is shifted to higher fields with respect to RR due to a shielding effect of methyl 21 not present in the RR isomer.

The C_{17} is shifted to higher fields in the *RR* isomer with respect to *SS* due to a shielding effect exerted by its γ neighbors in the oxirane ring in a relatively populated conformation adopted only by this isomer.

References and Notes

(1) Khripach, V.; Zhabinskii, V.; De Groot, A. Ann. Botany 2000, 86, 441.

(2) Sasse Kamuro, Y.; Takatsuto, S. *Brassinosteroids: Steroidal Plant Hormones*; Springer-Verlag: Berlin, 1999; p 223.

(3) Sasse, J. Brassinosteroids: Steroidal Plant Hormones; Springer-Verlag: Berlin, 1999; p 137.

(4) Brosa, C. Critical Rev. Biochem. Molec. Biol. **1999**, 34 (5), 339–358.

(5) Zullo, M. A.; Adam, G.; Braz, J. Plant. Physiol. 2002, 14 (3), 143–181.

(6) Zullo, M. A.; Kohout, L.; Burgos, M.; Azevedo, M. Plant Growth Regul. 2003, 39, 1–11.

(7) Zullo, M. A.; Kohout, L. Plant. Growth Regul. 2004, 42 (1), 15–28.

(8) Sakurai, A. Brassinosteroids: Steroidal Plant Hormones; Springer-Verlag: Berlin, 1999; p 99.

(9) Takatsuto, S.; Kamuro, Y.; Watanabe, T.; Noguchi, T.; Kuriyama, H. Proc. Plant. Growth. Regul. Soc. Am. **1996**, *15*, 20–31.

(10) Kamuro, Y.; Takatsuto, S. Capability for and problems of practical uses of brassinosteroids. In *Brassinosteroids: Chemistry, Bioactivity, and Applications*; ACS Symposium Series; American Chemical Society: Washington, DC, 1991; p 474.

(11) Cutler, H. G., Yokota, T., Adam, G., Eds. *Brassinosteroids: Chemistry, Bioactivity, and Applications*; ACS Symposium Series, No. 474; American Chemical Society: Washington, DC, 1991.

(12) Bernardo, Y.; Alonso, E.; Coll, F.; Coll-Garcia, D.; Perez, C.; Aguero, G. J. Chem. Res. 2005, 7, 475.

(13) Bernardo, Y.; Alonso, E.; Coll, F.; Perez, C.; Aguero, G. J. Chem. Res. 2006, 3, 176.

(14) González, M.; Bustos, D. A.; Zudeñigo, M. E.; Rúveda, E. A. *Tetrahedron* **1986**, *42*, 755.

(15) Minale, L.; Riccio, R.; De Simona, F.; Dini, A.; Pizza, C. Tetrahedron Lett. 1979, 645.

(16) Stoldt, M.; Porzel, A.; Adam, G.; Brandt, W. Magn. Reson. Chem. 1997, 35, 629.

(17) Brosa, C.; Zamora, I.; Terricabras, E.; Kohout, L. Collect. Czech. Chem. Commun. 1998, 63, 1635.

(18) Brosa, C.; Zamora, I.; Terricabras, E.; Soca, L.; Peracaula, R.; Rodríguez-Santamarta, C. *Lipids* **1997**, *32*, 1341.

(19) Gunsteren, W.; Berendsen, H. GROMOS: GROningen MOlecular Simulation software. Tech. Rept.; Lab. of Physical Chemistry, University of Groningen: Groningen, Germany, 1988.

(20) Van Gunsteren, W. F.; Berendsen, H. J. C. *Groningen molecular simulation (GROMOS) library manual*; Biomos: Groningen, Germany, 1987; Vols. *I and II.*

(21) Suardíaz, R.; Maestre, M.; Suárez, E.; Pérez, C. J. Mol. Struct. (THEOCHEM) 2006, 778, 20–25.

JP804570G