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Statistical error distributions for enthalpies of formation as predicted by 18 different density functionals have
been analyzed using a test set of 675 molecules. Systematic errors, dependent on the number of valence
electrons, have been identified for some functionals. A simple empirical correction makes a significant
improvement in the prediction error for these single functionals. Linear combinations of enthalpy estimates
from different density functionals are identified that exploit the error correlations among the functionals and
allow for further improvements in the accuracy of thermodynamic predictions. A good compromise between
accuracy and computational efforts is achieved by the BLUE (best linear unbiased estimator) combination of
three functionals, B3LYP, BLYP, and VSXC (polyfunctional 3 or PF3). The PF3 method has a mean absolute
deviation (MAD) from experiment of 2.4 kcal/mol on the G3 set of 271 molecules. This can be compared to
the MAD of 4.9 kcal/mol for B3LYP and 1.2 kcal/mol for the more costly G3 method. On the larger set of
675 molecules, the MAD for PF3 is 3.0 kcal/mol. Opportunities for further improvements in the accuracy of
this method are discussed.

1. Introduction

In recent decades, significant strides have been made in
molecular electronic structure theory, allowing for the prediction
of thermochemical data to chemical accuracy. This has been a
result not only of advances in methodology but also computa-
tional technology. In general, coupled-cluster (CC) theory1-5

achieves the highest accuracy6,7 while bearing the highest
computational cost. Both the Weizmann-n (Wn) methods8-11

and HEAT methods12 combine CC theory with extrapolation
schemes and additional corrections to improve the prediction
of thermochemical data with mean absolute deviations (MAD)
of ∼0.3 kcal/mol. However, these methods are practical for only
small molecules. Much less costly are the Gaussian-n (Gn)13-20

methods, based on a combination of empirical corrections and
additive approximations applied to lower level calculations, and
the complete basis set (CBS) methods,21-26 involving extrapola-
tion schemes. These methods yield MAD values of ∼1 kcal/
mol. Currently, it is rare for Gn methods to be applied to systems
having more than 10-12 heavy atoms.

For larger systems, density functional theory (DFT) is
generally employed, but even for the best, functionals achieve
lower accuracy, with MAD values ∼3.5-4.5 kcal/mol.19,27

Many studies have been carried out to identify and compare
the errors for various combinations of exchange and correlation
functionals.27-32 A variety of approaches have also been taken
to remove the deficiencies in current density functionals. For
example, kinetic energy density terms33 and self-interaction
corrections34 have been included. Functionals have been devel-
oped based entirely on requirements from first-principles,35 while
others are parametrized to fit empirical data.36 Post hoc
corrections may also be applied to improve the accuracy of
predicted thermochemical properties.32,37 For example, Friesner
et al.32 have identified systematic errors in B3LYP related to

the bonding environment that may be improved upon using
simple empirical corrections.

In this paper, we identify systematic errors in some functionals
that depend on the number of valence electrons in the system.
Accounting for these errors post hoc can lead to significant
improvement in individual functional performance. There is also
a high degree of correlation between the residuals of different
functionals. We have identified linear combinations of indi-
vidual, self-consistent density functional estimates that exploit
these correlations by allowing for a cancelation of errors. This
improves the prediction accuracy for enthalpies of formation
(MAD ∼ 2.4 kcal/mol) with relatively little additional effort.
We refer to this approach as the polyfunctional (PF) method.
In some ways this is similar to the Gn methods13-20 and the
multicoefficient correlation methods (MCCM) of Truhlar et
al.38-45 in that it combines results from several independent
calculations. The Gn methods combine a set of lower-level
calculations, each with a coefficient of one, to estimate the
predictions of a high level of theory. The MCCM combinations
use nonunity coefficients determined by fits to experimental data.
Similar to MCCM, the PF method combines weighted energies
from multiple independent calculations. In contrast to Gn and
MCCM, the PF method uses only DFT calculations, rather than
more costly MPn, CCSD, or QCISD calculations. The poly-
functional approach makes no a priori assumptions about which
combinations of methods will allow error cancelation.

Note that the PF approach is fundamentally different from
an improved density functional that combines various exchange
and correlation functionals in a single self-consistent calculation.
However, the results reported here do suggest that there is
substantial room for systematic improvement in standard classes
of density functionals. In the absence of fundamental advances,
the empirical approach taken here offers a rapid, practical
approach to improved predictions.
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2. Data Sets and Methods

A data set including empirical thermochemical data for 675
molecules has been used as a standard for comparing the
predictions of different functionals. The data set comprises the
271 molecules used for enthalpy of formation and atomization
energy analysis in the G3 data set as well as 404 additional
first- and second-row molecules. All experimental values were
taken from the National Institute of Standards and Technology
Chemistry Webbook.46 While the set of 404 molecules has a
wider range of experimental error than the 271 molecules used
for G3 analysis, we have included them to increase the number
of data that are available. This increases the reliability of the
statistical estimates, so long as there is no systematic error in
the non-G3 molecules. We will address this issue below.

All calculations have been carried out using the Gaussian 03
program.47 Each molecular geometry was optimized using
Becke’s three-parameter hybrid functional,36 B3LYP, with a
6-31G* basis set. Thermodynamic corrections were determined
using the same model chemistry with a 0.96 scaling factor. This
is the same method employed in the G3//B3LYP and G3(MP2)//
B3LYP variations of G3 for determination of optimized
geometries and thermodynamic corrections.16 Electronic energies
for each molecule were calculated using a 6-311++G(3df,2p)
basis set for each of the following 18 functionals: B3LYP,36

B3PW91,36,48-50 B98,51,52 B972,53 BLYP,54-56 BP86,54,57

BPW91,48-50,54 BVWN5,54,58 HCTH,59 MPW1PW91,48-50,60

OLYP,55,56,61 OP86,57,61 OPBE,35,61,62 OPW91,48-50,61 OVWN5,58,61

PBE,35,62 PBE0,35 VSXC.33

The enthalpies of formation at 298 K for each molecule are
calculated as follows. The enthalpy of formation at 0 K is

∆fH
°(M, 0K)) ε0(M)+ ∑

atoms

x(∆fH
°(X, 0K)- ε0(X)) (1)

where x is the number of atoms of element X in molecule M,
∆fH°(X,0K) are the experimental atomic enthalpies of formation
at 0 K taken from ref 63, and ε0 are the calculated electronic
energies for the atoms X and the molecule M, including the
molecular zero-point energy correction, for a given functional.
To estimate the enthalpy of formation at 298 K, ∆fH°(M,298K),
the calculated enthalpy corrections for the molecule,
∆HM

°(298K-0K), and the experimental enthalpy corrections
for the atoms, ∆HX

°(298K-0K) (taken from ref 63), are included
to yield

∆fH
°(M, 298K))∆fH

°(M, 0K)+∆HM
°(298K- 0K)-

∑
atoms

x(∆HX
°(298K- 0K)) (2)

The experimental enthalpies for some of the third-row
molecules in the data set require theoretical input. In accord
with Curtiss et al.,19 the atomization energies for these molecules
are used in place of the enthalpy values and are evaluated using

∑ D0(M)) ∑
atoms

xε0(X)- ε0(M)- εZPE(M) (3)

where ∑D0(M) is the atomization for the molecule, M, εZPE(M)
is the zero-point correction for the molecule, and x, X and ε0

are defined above.
The R statistical environment64 has been used for all

subsequent statistical analyses.

3. Results and Discussion

3.1. Individual Functional Performance. Figure 1 presents
box and whiskers plots65 of the residuals (experimental-predicted

enthalpies) for each of the 18 functionals. The median (dark
bar), the 75th-25th percentile range (the box), the approximate
5-95% confidence limits (the whiskers each having a range of
1.5 times the width of the box), and the values outside the
confidence limits (circles) are shown. Note the scale changes
for the two panels. It is clear that the functionals have a wide
range of accuracies, but even the best functionals have inter-
quartile ranges (IQR, 75th-25th percentile) on the order of
6-6.5 kcal/mol. The majority of these functionals also have a
positive or negative bias that can be quite severe, for example,
the functionals with P86 and VWN5 correlation.

The Gn methods13-20 account for a systematic error in the
electronic energy that increases with the number of electrons
in the system. This bias is corrected using higher-level correc-
tions (HLC) to the electronic energies for the molecule,
∆EM(HLC), and atoms, ∆EX(HLC). In G3 the corrections in
kcal/mol are16

∆EM(HLC)) 4.007n� + 1.868(nR- n�) (4)

∆EX(HLC)) 3.902n� + 1.161(nR- n�) (5)

where nR and n� are the number of R and � valence electrons,
respectively. To visualize the magnitude of this correction, the
HLC terms are removed from the G3 residuals and shown as
G3* in Figure 1. Without the HLC term, G3 has a negative
bias and an IQR ∼ 10 kcal/mol.

Many of the functionals studied here also show a strong
dependence of residual on the number of electrons in the system.
Figure 2 shows the relationship between the residuals and the
total number of valence electrons in the molecule, nR + n�, for
selected functionals. While the residuals for some functionals
have no systematic dependence on nR + n� (e.g., VSXC), other
functionals have a strong positive (e.g., PBE) or negative (e.g.,
BVWN5) bias. To remove this bias, we have estimated a HLC
for each functional i by fitting the enthalpy residuals to a linear
equation with n� and nR - n� as the independent variables, i.e.

∆E(HLC)i ) b0,i + b1,in� + b2,i(nR- n�) (6)

This term was then subtracted from the residuals for each
functional i. The coefficients for the ∆E(HLC)i of each
functional can be found in Table S1 of the Supporting
Information. Note that this HLC includes a constant term that
is not present in the G3 HLC. The b0,i terms guarantee that the
average error for each functional is zero. Figure 3 illustrates

Figure 1. Box and whiskers plot comparing the residuals for all 18
functionals and the G3* residuals (G3 residuals where the HLC has
been removed). The functionals are ordered by IQR values (left to right)
and have been divided into two panels having different y-axis scales
to highlight the range of performance for all of the methods. The median
(dark bar), the 75th-25th percentiles (the box), the approximate 5-95%
confidence limits (the whiskers), and the values outside the confidence
limits (circles) are shown.
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the improvement in the functional performance after applying
the HLC terms (note scale changes in the two panels relative
to Figure 1). The residual distributions are now all centered at
or near 0, with a significant reduction in the IQR for all
functionals. G3 now has the smallest IQR (1.7 kcal/mol)
followed by B3LYP (5.78 kcal/mol) and the other functionals.

Several functionals used in this study make use of the same
(or similar) correlation functional (e.g., OP86/BP86, OPW91/
BPW91) or the same (or similar) exchange functional (e.g.,
BLYP/BVWN5, OPBE/OLYP). Additionally, some of these
functionals are closely related. For example, B98 and B972 are
both modified versions of the B97 functional. Therefore, the
errors for many functionals are strongly correlated. The lower
triangle of Figure 4 presents cross correlation plots of the
standardized residuals

Z{ei(Mk)})
ei(Mk)- eji

σi
(7)

where ei(Mk) is the residual (experimental-predicted)

ei(Mk))H(Mk)-Hi(Mk) (8)

for a given functional i and molecule Mk, and eji and σi are the
mean and standard deviations of the residuals, respectively, for
a given functional i. Each panel below the diagonal shows a
scatterplot of the standardized residual of the functional listed
in the column versus the functional listed in the row. The
correlation coefficients are given in the upper triangle following

the same convention. The correlation coefficients for the full
set of 18 functionals are provided in Table S2 of the Supporting
Information. As we will show, these correlations can be
exploited by combining the estimates from selected functionals
to produce an improved estimate for thermochemical data,
referred to as the PF method.

3.2. BLUE. We will use a linear combination of the
enthalpies of formation estimated with a number of functionals
as an improved estimate of the actual enthalpy of formation.
For a given set of functionals, the best linear unbiased estimator
(BLUE) method66 is used to determine the coefficients of the
linear combination. It is also possible to use linear regression
(LR) to estimate the coefficients. The difference between the
two methods is in the description of the error structure. In LR,
all of the predictors (the various functional estimates) are
assumed to be known with no error. The error is included as an
additional term in the linear equation that relates the actual
enthalpy of formation to the functional estimates. In the BLUE
formulation, it is assumed that there is a true but unknown value
of the enthalpy of formation and we have multiple “observa-
tions”, the results of the various functionals. These observations
are corrupted by errors that are treated as random errors with
zero means and known covariance matrix. The reason we use
the BLUE formulation is that it more exactly mirrors the idea
that each functional estimate is an approximation to the exact
enthalpy and that the errors made by the various functionals
can be modeled as random errors that are correlated. Using this
framework, the prediction error expected from the BLUE
method can be calculated. In LR, the error is assumed to be
independent from molecule to molecule and to have constant
variance and no correlation between molecules. This appears
to be a less appropriate model for the problem at hand. The
errors are associated with the performance of the functionals
(BLUE) rather than a random error associated with each
molecule (LR).

3.2.1. Two Functional Estimate. To clarify the basis for the
method and to illustrate when it will be effective, the BLUE
equations are first derived for a PF estimate using two
functionals, H1 and H2. For a given molecule Mk, the true
enthalpy is denoted by H(Mk). The predicted enthalpies for each

Figure 2. Scatter plots illustrating the relationship between the residual
errors and the total number of valence electrons for selected functionals.
Gray regression lines had been added to facilitate the visualization of
the bias.

Figure 3. Box and whiskers plot comparing the residuals for all 18
functionals and the G3 residuals after the HLC terms have been applied.
The functionals are ordered by IQR values (left to right) and have been
divided into two panels having different y-axis scales to highlight the
range of performance for all of the methods.

Figure 4. Pairs plot presenting the correlation between the residual
errors of selected functionals. Displayed in the lower left panels are
crossplots for the standardized error (eq 7) of the functional at the head
of the column diagonal versus the functional listed in the row. Note
that the scales for each of the standardized scatterplots are slightly
different. The correlation coefficient for each functional pair is also
listed in the upper right panels following the same convention.
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functional are denoted as H1(Mk) and H2(Mk). For each
functional it is assumed that the probability distributions of the
residuals e1 and e2 (eq 8) have zero means. This is the reason
that the bias with respect to electron number has been removed
for each functional (eq 6). No distributional assumption is made,
e.g., ei are not required to be normal random variables. The
only assumption is that the optimal estimate, Ĥ(Mk), of H(Mk)
is linear in the “observations” H1(Mk) and H2(Mk), i.e.

Ĥ(Mk))w1H1(Mk)+w2H2(Mk) (9)

where w1 and w2 are the weights for the observations H1 and
H2, respectively.

Two conditions are needed to determine the weights w1 and
w2. The first is that the optimal estimate, Ĥ(Mk), is unbiased.,
i.e.

E{ê})E{Ĥ(Mk)-H(Mk)})E{w1H1(Mk)+w2H2(Mk)-

H(Mk)}) 0 (10)

where E{ê} is the average (mean) of the residuals ê ) Ĥ(Mk)
- H(Mk) over all Mk molecules and eq 9 has been substituted
for Ĥ(Mk). Note that if

1)w1 +w2 (11)

then eq 10 is satisfied since

E{ei(Mk)})E{H(Mk)-Hi(Mk)})E{wiH(Mk)-

wiHi(Mk)}) 0 (12)

for both H1 and H2.
The second condition is that the wi minimize the variance of

ê, the residuals of Ĥ

V{ê})V{w1e1 +w2e2})w1
2σ1

2 +w2
2σ2

2 + 2w1w2σ1σ2F

(13)

where e1 and e2 are the residuals from H1(Mk) and H2(Mk) (eq
8), σ1

2 and σ2
2 are the variances of e1 and e2, and F is the

correlation coefficient between e1 and e2. Substituting eq 11 into
eq 13 yields

V{ê})w1
2σ1

2 + (1-w1)
2σ2

2 + 2w1(1-w1)σ1σ2F (14)

The minimum variance is found by requiring that

∂V{ê}
∂w1

) 0 (15)

or

w1 )
σ1σ2F- σ2

2

2σ1σ2F- σ1
2 - σ2

2
(16)

This can be simplified by defining the ratio r of the standard
deviation of residual e1 to that of e2

r)
σ2

σ1
(17)

to yield

w1 )
r(F- r)

2rF- r2 - 1
(18)

In the limit of large r (e2 has a much larger standard deviation
than e1), w1 f 1, so Ĥ ) H1 and H2 does not contribute to the
optimal estimate. To illustrate how V{ê} varies with r, the
variance of residuals (eq 14) is normalized with respect to σ1

2

V{ê}

σ1
2
) r2(F2 - 1)

2rF- r2 - 1
(19)

This normalized variance is the factor by which the residual
variance is reduced when using the two-functional linear
estimation Ĥ(Mk) (eq 9) to estimate H(Mk), instead of the single
functional H1(Mk). Figure 5 presents V{ê}/σ1

2 and w1 versus r
for various values of F.

The top and bottom panels of each graph are for positive
(F g 0) and negative (F < 0) residual correlation, respectively.

Considering first the case for negatively correlated residuals
(bottom panels of Figure 5), V{ê}/σ1

2 decreases (the estimate
improves) with increasing negative correlation, as F f -1.
However V{ê}/σ1

2 increases with increasing r. The lowest value
of V{ê}/σ1

2 is obtained for two functionals having strong
negative error correlation and the same error variances, r ) 1.
For this case (rf 1, Ff -1), the errors in the two functionals
have the same magnitude but opposite sign, so almost complete
cancelation of error can be achieved. The weight w1 for H1 (right
graph), is always less than 1 when e1 and e2 are negatively
correlated. Because the two weights must sum to 1 (eq 11), the
weights will both be positive. As σ2 becomes larger than σ1

Figure 5. The effect of the BLUE parameters r and F on V{ê}/σ1
2 (left) and wi (right) for Nf ) 2 as derived in eqs 19 and 18. Positive and

negative values of F are separated into top and bottom portions of each graph, respectively. A heavy, black line is used to distinguish Fi,j )
0 in the top plots.
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(r > 1), H2 contributes less and less to the overall value of Ĥ
and V{ê}/σ1

2 f 1 (no improvement over H1).
In the present study, there are no negative correlations

between the residuals of the 18 functionals after removing the
bias due to electron number (Figure 4 and Table S2 of the
Supporting Information). Therefore, only the cases with positive
F (top panels of Figure 5) apply. For low positive error
correlation, F e 0.5, V{ê}/σ1

2 increases monotonically with
increasing r, similar to the negatively correlated cases, but with
significantly higher values of V{ê}/σ1

2.
In contrast, for variables having strong positive error cor-

relation, F > 0.5, V{ê}/σ1
2 first increases with r and then,

surprisingly, decreases. That is, a large enough difference in
the standard deviation of the two functional errors can be
exploited to reduce the error of the optimal estimate. This result
can be understood by examining w1 for F ) 0.9. For r > 1/0.9,
w1 is greater than unity and therefore w2 is negative. Thus Ĥ is
a weighted difference between H1 and H2. Note that as r
increases V{ê}/σ1

2 continues to decrease, indicating that a more
accurate estimate can be achieved. This is possible because the
errors made by H1 and H2 are strongly correlated and in the
same direction. If r . 1, then the H2 error is much larger than
that of H1, so scaling it down (small w2) and subtracting it
(negative w2) cancels part of the error in H1 and reduces the
error in Ĥ. If r ) 1, then they are both of similar magnitude
and nothing can be done, i.e., V{ê}/σ1

2 ) 1.
3.2.2. Polyfunctional Estimate. When Nf functionals are used

in a linear estimator, the optimal estimate is66

Ĥ)∑
i)1

Nf

wiHi )wTH (20)

where the weights, wi, are the elements of the column vector

w ) Σ-11

1TΣ-11
(21)

H is the column vector of unbiased enthalpy estimates from
the various functionals, H ) [H1, H2,..., HNf]T, Σ is the
covariance matrix of the unbiased functional errors with
elements

Σij ) [σiσjFij] (22)

where σi
2 is the variance of ei, Fij is the correlation coefficient

for ei and ej of functionals Hi and Hj, respectively, and 1 ) [1,
1,..., 1]T is the column vector of ones. The variance in the error
of the optimal estimate, ê, is

VBLUE{ê}) 1

1TΣ-11
(23)

The unbiased estimates Hi are obtained from the enthalpy
estimates, ∆fHi

° (eq 2), by using the higher level correction
(eq 6)

Hi )∆fHi
o+∆E(HLC)i

)∆fHi
o+ (b0,i + b1,i(n�)+ b2,i(nR- n�))

(24)

Therefore,

Ĥ)∑
i

wi∆fHi
° + a0 + a1(n�)+ a2(nR- n�) (25)

where

aj )∑
i

wibj,i (26)

for j ) 0, 1, 2.

3.3. Identification of Optimal Polyfunctional Combina-
tions. The BLUE equations provide the optimal estimate for a
given set of functionals. However, a method is required to
identify the best choice of functionals to include in the PF
estimate. To identify the optimal PF combination for a given
number of functionals (Nf) an exhaustive search is performed
among all combinations of Nf functionals chosen from the full
set of 18 functionals (262 143 total combinations). For each
combination, the BLUE weights were determined (eq 21) using
the set of 675 molecules. These weights were then used to
predict optimal estimates (eq 25) for the enthalpies of formation
for the entire molecule set. For Nf ) 1-9, the five functional
combinations with the lowest RMSEP (root mean squared error
of prediction) are illustrated in Figure 6. Optimal combinations
of Nf ) 2 or 3 significantly reduce the RMSEP relative to that of
a single functional. Additionally, for Nf ) 1, 2, or 3, there is a
significant difference in RMSEP between the first- and fifth-
ranked PF combination. Beyond Nf ) 3, however, there is little
change between the first- and fifth-ranked PF combination for
a given Nf, so multiple PF combinations produce similar results.
Figure 6 also shows that there is no significant reduction in the
RMSEP beyond Nf ) 5.

3.4. Best Polyfunctional Estimates. The weights corre-
sponding to the best PF combinations for Nf ) 1-5 are shown
in Figure 7. The best individual functional in this set, denoted
PF1, is the commonly used B3LYP functional. By including
the HLC term, the RMSEP for B3LYP is decreased from 7.88
to 5.46 kcal/mol, resulting in a significant improvement in
accuracy.

On the basis of the analysis in section 3.2.1, the best Nf ) 2
combinations for the 18 functional set will include functionals
having strong positive error correlation (high F) and significantly
different error distributions (high r). The σi values for some
selected functionals are on the diagonal (bolded) of Table 1.
These functionals are listed in order of increasing σ, left to right
(or top to bottom). Table 1 also presents the values of F (upper
right triangle, italicized) and �V{ê} (lower left triangle) for
each functional pair in the corresponding column and row. The
optimal functional pairs would therefore include one functional
from the far left and one functional from the far right (to have
significantly different values of σ, and thus a high r) as well as
a high value of F. Two such functional pairs have been marked
in Table 1, B98:BLYP and B3LYP:BLYP. For both functional

Figure 6. Bar plot comparing the RMSEP of the five best functional
combinations for Nf ) 1-9.
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pairs, Fij > 0.7 and r > 2, resulting in the low values of �V{ê}
(∼5 kcal/mol). The best combination of two functionals found
in our exhaustive search, PF2, uses B98 and BLYP (Figure 7),
though several other combinations have similar RMSEP values
(Figure 6).

The same types of relationships determine the best polyfunc-
tional combinations with Nf > 2. For example, B3LYP and
BLYP are both present in the best PF3 combination along with
VSXC (Figure 7). Above Nf ) 3, B98, instead of B3LYP, is
identified as the leading contributor to the best PF combination
(Figure 7). However, there exists a B3LYP combination for each
Nf that yields comparable RMSEP values to an analogous B98
combination. This is due to the strong correlation and similar
error variances for the B3LYP and B98 functionals (Table 1).

Figure 7 shows that many of the same functionals are used
repeatedly in the best PF combinations. For example, the VSXC
functional is employed in PF3-5 and has been identified in
most of the best, high-order PF combinations. The VSXC
functional includes terms dependent on the noninteracting kinetic
energy density that are not found in the description of most
other density functionals. This allows for a more flexible form
of the exchange-correlation functional, leading to a relatively
high prediction accuracy for thermochemical estimates (Table
1 and Table S2 of the Supporting Information). The VSXC

functional is also one of the few functionals where the errors
in the enthalpy estimates are independent of the total number
of valence electrons (Figure 2).

The BLYP functional is also repeatedly used in the best PF
combinations (PF2-5). The BLYP and B3LYP functionals
differ primarily in the inclusion of exact Hartree-Fock (HF)
exchange in the B3LYP functional. At first glance, the combina-
tion of both the B3LYP and BLYP functionals in PF3 suggests
a partial cancellation of the BLYP portion of the B3LYP
estimate and thus a higher relative contribution of exact
exchange. However, the estimation made by weighting the
results of B3LYP and BLYP calculations is very different from
the estimation made by changing the weight of HF exchange
in B3LYP. In the latter case, a single self-consistent calculation
is carried out with a modified functional. In the PF method,
independent self-consistent calculations are carried out with
different functionals, leading to multiple approximations to the
density. The resulting estimates of the energy are then weighted
and combined, resulting in a cancellation of errors and an
improved estimate.

The functionals involved in the best PF combinations may
suggest useful combinations of properties to include in the
development of future, more accurate, density functionals.
However, a single self-consistent calculation involving a
weighted combination of the exchange and correlation func-
tionals of a given PFn combination will not result in the same
estimate determined by the PFn method.

The final functional weights and HLC parameters for the PF1
to PF5 combinations are listed in Table 2. These coefficients
are identified as “BLUE full”, as the fits were made using the
full data set. The other set of coefficients included in Table 2
will be discussed below. An example calculation of the complete
PF3 method for isobutene has been included in Scheme S1 of
the Supporting Information to facilitate the implementation of
the PF methodology.

3.5. Cross-Validation and Sensitivity to Training Set.
Cross-validation has been employed to test the robustness of
the PF combinations. From the entire data set, 25% of the
molecules were randomly set aside to serve as a validation set.
The remaining 75% of the molecules were used as the training
set to calculate optimal coefficients using the BLUE method.
These coefficients were then used to predict the enthalpies of
formation. The RMSEP values for both the training and
validation sets were computed. This process was repeated for a
total of 50 cross-validation realizations. The mean and standard
deviations of the training and validation RMSEP are presented
in Figure 8 for Nf ) 1-5. The averaged RMSEP values are
almost identical for the training and validation sets at each Nf,
indicating that the BLUE estimates perform well for the
molecules not used to estimate the optimal weights. The
variations in RMSEP, indicated by the (2 standard deviation
bars, show that the estimation error is not largely influenced by
the chosen subsets for either the training (range in RMSEP ∼
0.5 kcal/mol) or validation (range in RMSEP ∼ 1.5 kcal/mol)
sets. Therefore, the BLUE estimates are robust and do not suffer
from fluctuations due to a specific set of molecules included in
the estimation training set. This is in part due to the large number
of molecules (75% of 675) used to make the estimate.

3.6. Analysis of Predictability. Probability plots67 of the
residual errors have been used to assess the predictive capabili-
ties of the PF combinations (Figures 9 and 10). In these figures,
a residual of 3 kcal/mol plotted at a 0.95 probability implies
that 95% of the molecules in the distribution have a residual
e3 kcal/mol. The points of the probability plot will lie on a

Figure 7. BLUE functional weights for the best PF combinations Nf

) 1-5.

TABLE 1: BLUE Parameters for Selected Functionals
Pairsa,b

B3LYP B98 VSXC HCTH OP86 BLYP PBE
B3LYP 5.60* 0.833 0.483 0.590 0.435 0.743† 0.675
B98 5.42 5.73* 0.689 0.775 0.135 0.794‡ 0.675
VSXC 5.02 5.42 6.13 0.696 0.0314 0.472 0.414
HCTH 5.60 5.45 6.08 10.0 0.178 0.768 0.726
OP86 5.59 5.37 5.46 8.14 11.4 0.137 0.548
BLYP 5.13† 5.01‡ 6.12 10.0 8.96 12.5* 0.829
PBE 5.35 5.49 6.11 9.97 10.5 12.0 12.6

a The diagonal (bold) contains the value of σ for each individual
functional. The lower left and upper right (italic) contain the
predicted �V{ê} and the correlation coefficient, F, respectively, for
the corresponding functional pairs in the column and row. b Denoted
by *, †, and ‡ are the B3LYP:BLYP pair and B98:BLYP pair
having large F and r values resulting in small values of �V{ê} and
thus are the optimal Nf ) 2 functional pairs combinations.
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straight line if the data are normally distributed. The residuals
of the predicted enthalpies of formation are divided into two
sets: G3 molecules, which are known to have small (e(1 kcal/
mol) experimental errors (Figure 9), and the remaining non-G3
molecules (Figure 10). For each set of molecules, we have
further subdivided the results to highlight how the best PF
combinations perform for certain types of molecules, i.e.,
hydrocarbons, radicals, first-row molecules, second-row mol-
ecules, third-row molecules, fluorinated molecules, and halo-
genated molecules.

For the G3 set (Figure 9), the molecules with positive
residuals (the positive tails) are significantly improved on
moving from PF1 to PF3. Little is gained in the overall
performance between PF3 and PF5. For all PF levels there is
essentially no improvement in the negative tail. Overall, the
G3 method performs better than the best PF combination. It is
interesting to note that in most cases the shape of the PF
probability plots is similar to that of the G3 probability plots,
illustrating that their performances are comparable. The G3 and
PF3 residuals for both the hydrocarbons and the first- and
second-row molecules are straight lines, indicating that they are
normally distributed. The radical distribution is also fairly
normal, but it is clear from the slopes that the G3 method
outperforms the PF method.

For the non-G3 molecules (Figure 10), there is less improve-
ment as the number of functionals in the best PF combination
increases. While not as great as for the G3 molecules, there is
some visible improvement for the hydrocarbons, first-row
molecules, and fluorinated molecules moving from PF1 to PF3.
Note the difference in scales for the G3 probability plots (Figure
9) and the non-G3 probability plots (Figure 10), indicating wider
error distributions for the non-G3 molecules. This is likely due
to the fact that the experimental values for the non-G3 molecules
are not known to the same accuracy as the G3 molecules, though
we see no evidence of any overall bias in the non-G3 values.

3.7. Bootstrap and Prediction Error. The BLUE optimal
weights and prediction error formulas assume that the covariance

TABLE 2: Coefficients, Weights, Standard Deviations, and �V{ê} Values As Determined by the Full BLUE and Bootstrapped
BLUE Methods for the Best PF1-PF5 Combinationsa

PF1

B3LYP a0
b a1

c a2
d �VBLUE{ê} �VBLUE

coef {ê} �V{ê}

BLUE full 1.0000 2.755 -0.5929 0.4170 5.603
BLUE bootstrap 1.0000 2.769 -0.5931 0.4210 5.594 0.3859 5.603
SD bootstrap 0.0000 0.5998 0.4579 0.5227

PF2

B98 BLYP a0
b a1

c a2
d �VBLUE{ê} �VBLUE

coef {ê} �V{ê}

BLUE full 1.320 -0.3195 -1.464 -0.04996 1.100 5.009
BLUE bootstrap 1.320 -0.3197 -1.440 -0.05096 1.088 4.986 0.4438 5.009
SD bootstrap 0.02610 0.02610 0.6829 0.05571 0.5004

PF3

B3LYP BLYP VSXC a0
b a1

c a2
d �VBLUE{ê} �VBLUE

coef {ê} �V{ê}

BLUE full 0.8342 -0.2415 0.4073 0.3657 -0.2891 1.034 4.512
BLUE bootstrap 0.8348 -0.2416 0.4068 0.3863 -0.2901 1.030 4.490 0.4282 4.512
SD bootstrap 0.04304 0.02299 0.03077 0.5290 0.04098 0.4378

PF4

B98 VSXC PBE OP86 a0
b a1

c a2
d �VBLUE{ê} �VBLUE

coef {ê} �V{ê}

BLUE full 0.7739 0.2540 -0.3048 0.2769 -0.1077 -0.03838 0.9516 4.368
BLUE bootstrap 0.7744 0.2530 -0.3042 0.2769 -0.07789 -0.03891 0.9397 4.343 0.4607 4.368
SD bootstrap 0.4377 0.03962 0.02032 0.02024 0.5542 0.07896 0.4531

PF5

B98 VSXC PBE OP86 HCTH a0
b a1

c a2
d �VBLUE{ê} �VBLUE

coef {ê} �V{ê}

BLUE full 0.8033 0.3293 -0.2333 0.2489 -0.1482 -0.4922 0.08028 1.086 4.3033
BLUE bootstrap 0.8040 0.3302 -0.2320 0.2481 -0.1502 -0.4571 0.07865 1.074 4.273 0.5102 4.303
SD bootstrap 0.4655 0.04780 0.02550 0.02166 0.04339 0.5646 0.08596 0.4409

a All HLC coefficients and �V{ê} values reported in units of kcal/mol. To facilitate future use, the BLUE bootstrap coefficients,
recommended for the PF3 method, are in bold. b a0 ) constant term. c a1 ) weighted sum of n� terms for functionals combination (eq 26). d a2

) weighted sum of nR - n� terms for functionals combination (eq 26).

Figure 8. Cross-validation analysis. Mean and standard deviations of
training and validation RMSEP for Nf ) 1-5.
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matrix of the residuals, Σ, is known without error. However,
since Σ is estimated from the residuals ei(Mk) (eq 22), it is

subject to sampling fluctuations. This is also true for the
parameters in the HLC (eq 6). Therefore, in order to properly

Figure 9. Probability plots of residuals for the G3 molecules using the G3, PF1, PF3, and PF5 methods. The performance of all G3 molecules is
illustrated in the upper left panel. All other panels highlight the performance of subsets of molecules as identified by their titles.

Figure 10. Probability plots of residuals for the non-G3 molecules using the PF1, PF3, and PF5 methods. The performance of all non-G3 molecules
is illustrated in the upper left panel. All other panels highlight the performance of molecule subsets as identified by their titles.
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estimate the prediction error, the uncertainty in the weights and
HLC need to be determined.

To determine these errors, the bootstrap resampling method
is used.68 A random sample with replacement of size 675 is
selected from the 675 molecule data set, and the HLC and BLUE
estimates are calculated. This is repeated 1000 times and the
means and covariance matrix are calculated for the resulting
weights and HLC coefficients.

The final coefficients for the functionals included in the PF
combination for Nf ) 1-5 as determined from bootstrapping
resampling are in Table 2. Also included are the HLC coef-
ficients for the n� and nR - n� terms and the constant term.
The coefficients are labeled “BLUE bootstrap”. In addition to
determining the uncertainty of the BLUE weights and HLC
parameters, the bootstrap resampling method is also useful in
removing any bias from the estimation equations.68 The results
in Table 2 display no significant bias since the full and
bootstrapped coefficients are virtually identical.

The RMSEP �VBLUE{ê} (eq 13) for both the BLUE full and
BLUE bootstrapped methods are reported in Table 2. The
variance associated with the uncertainty in the coefficients,
evaluated using the bootstrap method, is

VBLUE
coef {ê}) θTΣθθ (27)

where θ ) [w1,...wNf,a0,a1,a2]T, is the row vector of estimated
parameters, and Σθ is the bootstrap estimated covariance matrix.
The �VBLUE

coef {ê} values are reported in Table 2. Thus, the actual
predicted variance for the BLUE estimate is

VBLUE
total {ê})VBLUE{ê}+VBLUE

coef {ê} (28)

From Table 2 it is clear that the values of �VBLUE
coef {ê} for

each of the PF levels are insignificant and not required for an
accurate estimate of the overall prediction error, �VBLUE

total {ê}.
This is a consequence of the large (675 molecule) data set.

It remains to check whether the predicted error variance,
VBLUE

total {ê}, for each PF method is correct. For PF1-PF5 the
actual variance of ê, V{ê}, was determined from the distribution
of ê(Mk) values, where ê(Mk) is the residual of optimal estimate
Ĥ for a given molecule Mk in the 675 molecule data set. The
values of �V{ê} are reported in Table 2. The good agreement
with�VBLUE{ê} illustrates that we are able to make accurate
predictions of the error associated with the PF estimate and
reinforces the conclusion that the variance associated with the
uncertainty in the coefficients �VBLUE

coef {ê} is insignificant.
3.8. Statistical Summary. Table 3 lists the mean, median,

MAD, and rms values for B3LYP, PF3, PF5, and G3. In each

column the data is divided into the G3 and non-G3 molecules
so that a direct comparison can be made to the G3 method.
While there is a severe negative bias in B3LYP, the HLC term
in the G3 and PF methods force these distributions to be centered
around 0. It is clear that a significant improvement is made
moving from the single B3LYP functional to the PF3 method,
reducing the MAD and rms by 50%. Comparing the PF3 and
PF5 methods, the accuracy of the G3 molecules is the same for
both PF combinations, while there is a slight improvement in
the accuracy of the non-G3 molecules with the inclusion of two
more functionals for PF5. Weighing both the accuracy and
computational cost of all the PF combinations, we have
identified the PF3 method as the optimal choice. The BLUE
bootstrap coefficients for PF3 (bolded in Table 2) are also
preferred by the authors, as the bootstrap method removes errors
due to bias. To facilitate future use of the PF3 method, we have
composed a Perl postprocessing script that extracts information
from the required Gaussian 03 output files and computes the
enthalpy of formation for a given molecule as estimated by PF3.
The text for this program can be found in Supporting Informa-
tion and may be downloaded from the link provided therein.

Figure 11 emphasizes the accuracy to computational cost
relationship for the B3LYP, PF3, and G3 methods. Between
each method we see that the MAD is reduced by ∼50% for
both the G3 molecule set (diamond) and the full 675 molecule
set (asterisk). It is rare to apply G3 to systems with >10-12
atoms but routine to apply DFT methods to significantly larger
systems. Therefore, while the G3 method does remain superior
to the PF3 method in terms of accuracy, the reduced compu-
tational cost for the PF3 method allows for its application on
much larger systems.

4. Conclusions

Statistical distributions of the errors in enthalpy of formation
as predicted by 18 different density functionals have been
analyzed for a test set of 675 molecules. We have identified
systematic errors in the predictions of some functionals that
depend on the number of valence electrons in the system.
Removing this bias reduces the MAD of the best single
functional, B3LYP, from 6.12 to 4.02 kcal/mol for the 675
molecule data set. Linear combinations of the unbiased func-
tional estimates can be chosen to exploit correlations among
the error distributions and reduce the prediction error. The best
combinations of three and five functionals (denoted PF3 and
PF5) have MADs of 2.95 and 2.79 kcal/mol, respectively.
Including more than five functionals does not significantly
improve the accuracy of the predicted enthalpies of formation.

TABLE 3: Comparison of B3LYP, B3LYP w/HLC, PF3,
PF5, and G3 Method Prediction Errors for the 271 G3
Molecules, 404 Non-G3 Molecules, and the Full 675 Molecule
Data Set Used in the Present Work

method
data
set

mean
(kcal/mol)

median
(kcal/mol)

MAD
(kcal/mol)

rms
(kcal/mol)

B3LYP G3 -3.41 -2.18 4.85 6.70
non-G3 -4.88 -5.19 6.95 8.58
full set -4.29 -3.91 6.11 7.89

B3LYP w/HLC G3 0.30 0.43 3.26 4.41
non-G3 -0.22 -0.46 4.51 6.27
full set -0.01 -0.07 4.01 5.60

PF3 G3 0.45 0.74 2.44 3.37
non-G3 -0.32 0.12 3.29 5.13
full set -0.0082 0.43 2.95 4.51

PF5 G3 0.36 0.83 2.43 3.32
non-G3 -0.25 0.32 3.03 4.85
full set -0.0069 0.46 2.79 4.30

G3 G3 -0.042 0.00 1.18 1.79

Figure 11. Comparison of MAD values for B3LYP, B3LYP w/HLC,
PF3, and G3 methods. Position on the horizontal axis represents the
approximate increase in CPU time with respect to a single density
functional, B3LYP. [, G3 molecule set; *, 675 molecule set.
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We recommend the PF3 method, which combines the B3LYP,
BLYP, and VSXC functionals. The PF3 method has half the
MAD associated with B3LYP, at less than 3 times the compu-
tational cost. While the MAD of PF3 is twice that of the widely
used G3 method, the cost of G3 is much greater. Thus, PF3
provides reasonable accuracy while still being useful for larger
systems or where computational resources are limited.

While PF3 is not as accurate as G3, it is likely that these
errors can be improved. As the Gn methods have evolved, the
errors have been reduced by including spin-orbit effects for
the atoms and separate HLCs for atoms and open shell
molecules. Applying the same approach with PF methods should
yield similar improvements. There may also be opportunities
to improve the speed or accuracy of PF calculations by using
basis set corrections, similar to Gn, or basis set extrapolation
methods. Note that none of these improvements require better
functionals, just as the Gn methods all use the same correlated
methods. However, as new functionals are developed, it will
be worthwhile to explore whether they can be utilized in PF
combinations to further reduce error.

Our analysis has implications for the future development of
density functional theory. The systematic bias in the dependence
of the prediction error on the number of valence electrons for some
commonly used functionals should be assessed in developing new
functionals. We have taken a purely empirical approach to
correcting for this error and to finding combinations of functionals
with improved predictive value. However, since linear combinations
of a few functionals can make much more accurate predictions
than any individual functional, it appears that forms similar to those
used here still have potential for greater accuracy. While other
classes of functionals can have their own advantages, relatively
simple improvements to commonly used functionals may suffice
to achieve chemical accuracy.
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