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RHF/aug-cc-pVnZ, UHF/aug-cc-pVnZ, and QCISD/aug-cc-pVnZ, n ) 2-5, potential energy curves of H2 X
1∑g

+ are analyzed by Fourier transform methods after transformation to a new coordinate system via an
inverse hyperbolic cosine coordinate mapping. The Fourier frequency domain spectra are interpreted in terms
of underlying mathematical behavior giving rise to distinctive features. There is a clear difference between
the underlying mathematical nature of the potential energy curves calculated at the HF and full-CI levels.
The method is particularly suited to the analysis of potential energy curves obtained at the highest levels of
theory because the Fourier spectra are observed to be of a compact nature, with the envelope of the Fourier
frequency coefficients decaying in magnitude in an exponential manner. The finite number of Fourier
coefficients required to describe the CI curves allows for an optimum sampling strategy to be developed,
corresponding to that required for exponential and geometric convergence. The underlying random numerical
noise due to the finite convergence criterion is also a clearly identifiable feature in the Fourier spectrum. The
methodology is applied to the analysis of MRCI potential energy curves for the ground and first excited
states of HX (X ) H-Ne). All potential energy curves exhibit structure in the Fourier spectrum consistent
with the existence of resonances. The compact nature of the Fourier spectra following the inverse hyperbolic
cosine coordinate mapping is highly suggestive that there is some advantage in viewing the chemical bond
as having an underlying hyperbolic nature.

Introduction

Fourier analysis is particularly advantageous for physical
situations where the Fourier spectrum is relatively compact
compared to the data it describes. In the cases where the features
in the Fourier spectrum are interpretable, great insight into the
physical phenomena being studied can often be obtained.1

Analysis of the Fourier spectrum allows one to make decisions
regarding the nature of the spacing of the data points (i.e.,
sampling frequency) required to achieve a certain numerical
accuracy via the well-known Nyquist-Shannon sampling
theorem.2,3 In addition, Fourier expansion allows the application
of interpolation and noise filtering techniques in a well-defined
and computationally efficient manner through application of the
fast Fourier transform. The ease with which first and higher
derivatives can be obtained by inverse transformation following
multiplication in the frequency domain facilitates topological
analysis of curves and surfaces. Another significant advantage
for the analysis of multidimensional systems is the straightfor-
ward generalization to higher dimensionality that the Fourier-
and other related transform-based methods possess.

Fourier analysis is not a routine tool in the analysis of
molecular potential energy surfaces. An example of why this
is the case is clearly shown by Figure 1 which presents the H2

ground-state potential energy curve between 0.20 and 5.32 Å
and the corresponding Fourier transform. In general, an equal
number of Fourier frequency components are required to
accurately describe the original data. The reason originates from
the need to have both high frequencies to describe the steep
repulsive part at small RH-H of the potential and low frequencies
for the shallow, attractive part at large internuclear separation.

From Figure 1, the absolute magnitude of the Fourier compo-
nents can be seen to decay with increasing frequency. At high
frequencies, n, this decay exhibits an approximate n-2.0 depen-
dence, indicative of a function with an impulsive second
derivative. The absence of oscillatory behavior in the decay
region indicates that the point at which the second derivative is
impulsive is located at the origin. The Fourier spectrum is thus
neither more compact nor more informative than the original
potential energy curve, and there is nothing to be gained in
performing it. This, in itself, is not an unusual observation for
a physical system when spatial frequencies are considered and
is characteristic of a nonlinear relationship between the coor-
dinate and the potential function relating to it. If a method could
be found to minimize the number of Fourier components
required to describe the molecular potential energy curve, via
a simple coordinate transformation, application of Fourier-
transform-based techniques could be of immediate use for
application in molecular dynamics studies where it is essential
to have an efficient sampling methodology because of the
expense of performing large numbers of high-quality calcula-
tions.

The question of minimization of the number of Fourier
components is related to the nature of the convergence of a
function when expressed as a series of basis functions. Although
an expansion in a Fourier series is not the only option and may
not be the most rapidly converging choice, the methodology of
Fourier analysis is well established and represents a general
starting point. Boyd4 distinguishes between algebraic and
exponential convergence of series expansions. Algebraic con-
vergence is characterized by the algebraic index of convergence,
k, where k is the largest number for which* E-mail: j.a.harrison@massey.ac.nz.
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lim
nf∞

|an|n
k < ∞ n. 1 (1)

where an are the coefficients of the series.
When the coefficients, an, decrease faster than 1/nk, for any

finite value of k, the series exhibits exponential (or infinite-
order) convergence. Exponential convergence is required for
any optimal spectral decomposition algorithm. Analysis of the
rate of convergence is complicated by the requirement that it is
the behavior at large n which is indicative of the nature of the
convergence. In evaluating the nature of the convergence, it is
the supremum limit that is required, and this can be difficult to
establish where there are many oscillatory, interfering compo-
nents present. The exponential index of convergence r is
obtained from the following expression,

r) lim
nf∞

ln|ln|an||

ln(n)
(2)

so that (equivalently),

an ≈ se-q nr
n. 1, s and q are constants (3)

Furthermore, it is necessary to distinguish between super-
geometric, geometric, and subgeometric convergence depending
on value of the limit.

lim
nf∞

ln |an|

n
(4)

Where this limit tends to infinity, the series is said to have
supergeometric convergence; it has geometric convergence if
it tends to a constant and subgeometric convergence if it tends
to zero. The significance of this classification scheme relates to
the underlying mathematical nature of the function. Of particular

relevance to this work is that functions that have exponential
and geometric convergence are indicative of those with singu-
larities (e.g., poles) in the complex plane. The exponential rate
of decay of the transformed spectrum is limited at high
frequencies by the singularity located nearest to the real axis.
The rate of decay is related to the position of the singularity by

F(z))F(x+ iy)

and if the Fourier series only converges within the strip, |y| <
F, (x arbitrary),

lim
nf∞

|an ⁄ an+1| ) eF (5)

A pole or other singularity located on the real axis leads to
subgeometric or algebraic convergence.

Recently, the notion of smoothness has been applied as a
criterion for the evaluation of the quality of calculated potential
energy curves. The distinction has been made between chemical
and mathematical smoothness. Head-Gordon et al.5,6 have
developed lccsd methods to calculate smooth curves by applying
a bumping algorithm. In these studies, mathematical smoothness
was used to describe the continuity of the potential energy curve
itself, as well as first and second derivatives, whereas the idea
of chemical smoothness is related to the introduction of artificial
maxima, minima, and points of inflection by the computational
methodology. These concepts are naturally related to the
question of the location of singularities and of the contribution
of noise (and the origin of that noise) on the curve and are most
easily treated if a harmonic analysis can be performed on the
curve in question. Random (white) noise affecting all points of
the curve will have a Fourier spectrum with an intensity that is
flat with no obvious periodic features. An example of this is
the limit in numerical convergence, where often energies are
converged to, for example, 10-7 a.u., and therefore, smaller place
values will have random numerical values. Noise due to the
existence of a discontinuous derivative of nth order will appear
as a decay, with an algebraic order of convergence relating to
the order for which the derivative becomes impulsive. Further-
more, the decay will exhibit oscillations with the period of
oscillation relating to the position of the discontinuity (via the
shift theorem). In order to formalize the application of these
concepts, it is necessary to perform some form of harmonic
analysis to quantify both the nature and magnitude of the
convergence limiting features and noise present. However,
because there is an inherent singularity at the point where the
position of the two nuclei coincide (where the nuclear repulsion
energy becomes infinite), such analysis cannot be applied to
the potential function in the usual internuclear coordinate system.
If Fourier analysis is applied, the Fourier coefficients are doomed
to decay algebraically with an algebraic index of convergence
equal to two, as the spectrum in Figure 1 illustrates. A way of
avoiding this catastrophe is to map the potential to a coordinate
system which places this point far enough off the real axis that
it will not limit the convergence rate of the Fourier series at
high frequencies. A mapping utilizing a hyperbolic-coordinate
transformation would seem to be ideally suited to achieving
this goal.

Because current computational chemical methods cannot
calculate the form of the whole potential curve simultaneously
but are limited to sampling points along it, there is also the
implicit assumption that this sampling occurs at sufficiently close
intervals (typically 0.001 Å) so that no chemical information is
lost. There has so far, however, not been any systematic attempt
at formalizing what functional form this chemical information

Figure 1. (a) QCISD/aug-cc-pV5Z potential energy curve and (b) the
corresponding Fourier frequency spectrum.
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might take, nor what optimum sampling methodology is required
to capture it to any predetermined accuracy.

This paper is organized in two sections. Because this is the
first attempt at utilizing this type of analysis, the first section
details a study on the H2 ground-state system as a prototypical
example of the range of numerical applications that the approach
has. In particular, the nature of the potential energy curves
calculated at HF and full-CI levels are compared as well as the
influence of the size of basis set. The second section details a
comparison between the Fourier-transformed curves for the set
of ground and first excited multiconfiguration reference inter-
nally contracted configuration interaction (MRCI) calculated
potential curves of the molecules HX (X ) H-Ne) to establish
the nature of the information that can be extracted from the
transformed curves.

Computational Details

The coordinate transformation given by eq 6, which was
obtained by trial and error, has been used in this study in an
heuristic attempt to find a solution to the problem of obtaining
a compact representation in Fourier space.

cosh(aη)) k(RH-H -R0 +
1
k ) (6)

The assumption upon which this coordinate transformation
is based is that the potential energy curve in question has
hyperbolic character with respect to the internuclear distance,
RH-H. Although a hyperbolic relationship has never been
associated with the underlying nature of the chemical bond, it
is a relationship that has been useful in the analysis of other
physical systems, and it becomes of fundamental interest to
examine the effects following the change in coordinate system
represented by eq 6. The values of the constants used in the
preliminary study of the ground state of hydrogen are a ) 4,
R0 ) 0.21725 Å, and k ) 8.6537 Å-1. Values of η ranging
from 0 to 2 were sampled, corresponding to internuclear
separations, RH-H, of 0.21725-170.9968 Å. The value of R0

was chosen to give a curve which has approximately unit height
(in a.u.) for all levels of theory. It should be stressed that these
values, obtained by trial and error, do not carry any obvious
physical significance, because no theory currently exists for the
prediction of these values from any established physical
principles. No attempt was therefore made to assign any physical
significance to the (spatial) frequency scale. The value for the
factor a, in the coordinate transformation, is arbitrary, resulting
only in a convenient range of 0-2 for the η coordinate.

A total of 1024 evenly spaced (with respect to η) points was
calculated at the UHF, RHF, and full-CI level (via a QCISD
calculation) with each of the basis sets7-11 aug-cc-pVnZ (n )
2-5) by using Gaussian98.12 Convergence failure for RHF and
QCISD methods occurred for five distances at (the same) large
values of RH-H (<5.1 Å), and in these cases, it was necessary
to interpolate from adjacent points. For these five points, the
error introduced by this procedure is estimated to be of the same
order of magnitude as the convergence criterion for the energy
of 10-8 a.u. Although the QCISD calculations give, in principle,
the same values as the full-CI results obtained by other
algorithms, minor differences in the stability of the algorithm
at large RH-H had significant impacts on the noise floor in the
Fourier spectrum. Therefore, in such a case, the particular
method of calculation may become significant. Fourier trans-
forms were obtained by performing a fast Fourier transform on
a double-sided data set in order to obtain a symmetric transform
that has no imaginary (sine) component. Because no frequency

scale has been imposed on the transformed data, the frequency
components referred to in this part of the study are the 2048
spatial frequency components obtained from transformation of
the 2048 point double-sided data sets.

The ground and first excited states of HX (X ) H-Ne) were
calculated by using a slightly modified version of the above
procedure with different constants. Because the observed
transforms are only weakly dependent on small variations of
the constants in eq 6, the R0 for each curve was chosen to
coincide with the zero in the total calculated energy rather than
the arbitrary value of 1 a.u. above the minimum of the potential
curve for the preliminary study. Revised values of k (12.245522
Å-1) and a (3.9539) were used, giving a range of η from 0 to
2 for RXH of R0 to around 110 Å. With the exception of H2

(where Gaussian98 was employed), all potential curves were
calculated by using 512 evenly spaced (with respect to η) points
over the range R0-110 Å (approximately) by using the MRCI
algorithm of MOLPRO13-15 following an initial MCSCF16,17

calculation at each point. These data sets were augmented to
2048 points by padding with the asymptotic energy value before
Fourier transforming the double-sided curve (containing 4096
points). Padding in this fashion has the effect of interpolation
in the transformed domain, yielding curves which are visually
easier to interpret but not containing any additional information.

Results and Discussion

1. Application to H2 X 1∑g
+. HF Results. The RHF and

UHF curves in the transformed coordinate η are given in Figures
2a and 3a, respectively. The RHF and UHF curves for each
basis set are numerically identical up to the point RH-H ) 1.217
Å whereupon they diverge. The corresponding Fourier spectra
are given in Figures 2b-d and 3b-d. The point at which the
RHF and UHF divergence occurs is evident in the Fourier-
transform spectrum of the UHF data set where it manifests itself
as oscillations, the period of which relates to the point where
the discontinuity occurs. Analysis of the amplitude of the
modulated component in the Fourier spectrum of the UHF/aug-
cc-pV5Z curve for large values of the frequency yields an
n-3.00(0.05 algebraic dependence. Such dependence is definitive
evidence for an impulsive third derivative (i.e., discontinuous
second derivative) of the original function. The points of
discontinuity, which correspond to the onset of spin contamina-
tion in the UHF wave functions and concomitant change to
exponential decay (see below) at large R, for each of the basis
sets, are given in Table 1 (obtained from the G98 calculations),
and these are in agreement with those obtained from the Fourier
spectra.

Taking the difference between V(RH-H) and the calculated
energy of two hydrogen atoms, for the portion of the UHF curve
after the point of discontinuity, yields an exponential decay with
respect to RH-H (Figure 4). The decays were fit to eq 7

V(∞)-V(RH-H))Ae-B(RH-H-RH-H
d ) (7)

where RH-H
d is the internuclear distance at which point the UHF

and RHF curves diverge. The fitted constants for eq 7 are given
in Table 2. From Figure 4, the exponential relationship can be
seen to hold over a greater range of internuclear distance as the
size of the basis set is increased. For the aug-cc-pV5Z basis
set, the exponential relationship extends beyond five orders of
magnitude of V(∞) - V(RH-H) with only a 0.7% average relative
deviation from exponential behavior.

In the case of the RHF potential curves, no large discontinuity
is observed as indicated by the absence of significant oscillations
in the Fourier spectrum. Small oscillations are evident with a
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frequency corresponding to the truncation at the last point
calculated (at 170.9968 Å), in agreement with the observation
that even at this distance, the RHF curves have not converged
to their limiting values. The oscillations evident in the aug-cc-
pV5Z high-frequency region of the Fourier spectrum originate
from numerical instabilities at large R, which were observed
only for this basis set. If the RHF potential curves are referenced
to the value of the potential at infinite separation (for practical
purposes, this was calculated at an internuclear separation of 5
× 109 Å), the potential decays proportionately to RH-H

-1.001 ( 0.005

for distances greater than 7.5 Å. Equivalently, as is expected
for correspondingly large values of η (where the function cosh
approximates to a single exponential term), the potential decays
exponentially with respect to η with the decay constant close
to 4 (actual value for the RHF/aug-cc-pV5Z curve: 3.9888).
The Fourier spectrum for the RHF/aug-cc-pV5Z curve exhibits
algebraic n-1.98 ( 0.04 dependence for the decay at high
frequency, indicating that the second derivative of the potential
curve is impulsive. This is expected because of the cusp
generated at the mid point of the data set when the double-
sided data set is generated, because the curve has not yet reached
its asymptotic value, even at 171 Å, and therefore has a
discontinuous first derivative. In this case, the algebraic index
of convergence, k ) 2, arises as a consequence of the finite
sampling window used rather than being due to any inherent
property of the potential energy curve.

QCISD Results. The transformed QCISD potential energy
curves are given in Figure 5a. At large RH-H, the potential should
decay with an expected RH-H

-6 dependence, consistent with
induced-dipole-induced-dipole interaction between the atoms.
Correspondingly, in the η coordinate system, the decay should

appear exponential with a limiting decay constant of -24, and
this is indeed the case for RH-H > 6 Å (η > 1.16), where the
constants for the QCISD/aug-cc-pVDZ, TZ, QZ, and 5Z curves
are -23.96, -24.32, -24.61, and -24.60, respectively.

The Fourier spectra of the QCISD potential energy curves
are shown in Figure 5b-d. Three distinct regions are identifiable
in the Fourier spectrum. Most of the intensity occurs for the
low frequencies, as is expected. The second portion contains
an approximately exponential decay of an oscillatory component,
and the third region represents the noise floor.

The existence of an exponentially decaying oscillatory compo-
nent in the frequency spectrum is evidence that the original potential
energy curve (in the η coordinate system) has continuous deriva-
tives to all orders. With reference to the shift theorem, oscillations
in the frequency spectrum indicate that there is some underlying
change in behavior originating at the point related to the frequency
of oscillations. The exponential convergence noted for the mid-
frequency region of the Fourier spectrum is characteristic of a
singularity lying on the complex plane, located off the real axis.
Physically, this type of mathematical structure is usually associated
with resonant behavior. The fundamental difference in the case
presented here, from the usual application of the term, is that the
resonance is of a spatial nature; that is, it is centered about a
particular value of the mapped coordinate, η, rather than a particular
value for the energy (or equivalently, the frequency corresponding
to the energy). In addition, the exponential decay constant obtained
from the spatial Fourier frequency spectrum presented in this
analysis relates to the spatial width of the underlying feature
contributing to the potential rather than the width of a spectral
feature with respect to the energy coordinate. This is a demonstra-
tion that although solutions to the time-independent Schrödinger

Figure 2. Transformed RHF potentials and their Fourier spectra. (a) RHF curves in the η coordinate system. (b) Full-frequency spectra (absolute
values plotted). Aug-cc-pVTZ and aug-cc-pVQZ spectra are similar to the aug-cc-pVDZ spectrum and are omitted for clarity. (c) Mid-frequency
region (absolute values plotted). (d) Low-frequency region.
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equation are of a stationary nature (with respect to energy),
nonstationary behavior with respect to spatial coordinates will still
be evident. The mathematical nature of this nonstationary behavior
with respect to the coordinate corresponding to the internuclear
distance takes on a particularly transparent form following the

hyperbolic coordinate mapping. Given that the coordinate point
about which the resonance is centered seems to be associated with
a switch from the limiting induced-dipole-induced-dipole interac-
tion to the onset of electron correlation, as shown in Figure 6, it is
tempting to associate the position of this resonance with the usual
chemical notion of a transition state, although the use of the term
for this situation requires further refinement (see below). Because
the derivatives to all orders are continuous (neglecting the white
numerical noise), the transition from one regime to the other is
not a discontinuous one but rather perfectly smooth.

The decay region varies only slightly between basis sets with
only the DZ curve showing a difference in the frequency.
Isolating the exponential decay region and applying eq 8,

C’(�))C(�)
�

e-0.2353�
(8)

(where � is the frequency) and normalizing the amplitudes yields
the oscillatory components shown in Figure 7. As can be seen
from the figure, the oscillatory component is well approximated

Figure 3. Transformed UHF potentials and their Fourier spectra. (a) UHF curves in the η coordinate system. (b) Full-frequency spectra (absolute
values plotted). Aug-cc-pVTZ and aug-cc-pVQZ spectra are similar to the aug-cc-pV5Z spectrum and are omitted for clarity. (c) Mid-frequency
region (absolute values plotted). (d) Low-frequency region.

Figure 4. Exponential decay of the UHF potential curves in the region
following the RHF/UHF bifurcation point.

TABLE 1: Location of the RHF/UHF Bifurcation Point
(Onset of Spin Contamination in the UHF Wavefunction)

basis set RH-H bifurcation (Å) η energy (a.u.)

aug-cc-pVDZ 1.21966 0.73999 -1.0579719
aug-cc-pVTZ 1.21660 0.73930 -1.0596936
aug-cc-pVQZ 1.21660 0.73930 -1.0599789
aug-cc-pV5Z 1.21655 0.73929 -1.0600727

TABLE 2: Analysis of the Exponential Decay Region of The
UHF Potential Curves Shown in Figure 4a

dasis set maximum RH-H (Å) A (a.u.) B (Å)-1 R2

aug-cc-pVDZ 3.184 -0.0593568 3.34532 0.999965
aug-cc-pVTZ 3.184 -0.0600103 3.36408 0.999999
aug-cc-pVQZ 3.705 -0.0600973 3.36770 0.999999
aug-cc-pV5Z 4.482 -0.0607021 3.38425 0.999994

a Data between the bifurcation points listed in Table 1 and the
maximum value given were used. R is the least-squares correlation
coefficient for the fit of the log values plotted in Figure 4.

8074 J. Phys. Chem. A, Vol. 112, No. 35, 2008 Harrison



by the single sine-wave component shown. At low frequency,
all the oscillations for each of the basis sets are in phase with
each other. At higher frequencies, the oscillations become
dephased, and the magnitudes of the oscillations are no longer
regular. It is clear that the smaller basis sets exhibit this behavior
at frequencies lower than those of the larger basis sets, and
therefore, the limiting behavior for an infinite basis set appears
to be that represented by the single-sinusoidal component in
Figure 7. Analysis of the frequency of the oscillations indicates
a corresponding position of 1.6866 Å (η ) 0.8276) for the DZ
curve and 2.1260 Å (η ) 0.88889) for the three largest basis
sets. Interestingly, this latter value lies close to the value of
four times the Bohr radius (4a0 ) 2.1167 Å).

The ultimate noise level in the frequency spectra would be
expected to be of the order of 10-8 a.u. (consistent with the
convergence criterion), but as is evident from the log plot, Figure
5b, the readily identifiable noise level is one order of magnitude
larger for the aug-cc-pVDZ basis set and two orders of
magnitude for the larger basis sets. The cause of this appears
to be minor instabilities at RH-H > 4 Å which are readily
observed if the second derivative (with respect to η) of the
potential energy curve is examined. It is therefore possible to
introduce a high-frequency cutoff by examination of the

Figure 5. Transformed QCISD potentials and their Fourier spectra. (a) QCISD curves in the η coordinate system. (b) Full-frequency spectra
(absolute values plotted). Aug-cc-pVTZ and aug-cc-pVQZ spectra are similar to the aug-cc-pV5Z spectrum and are omitted for clarity. (c) Mid-
frequency exponential decay region (absolute values plotted). (d) Low-frequency region.

Figure 6. Correlation energy in the η coordinate system. The curves
represent the QCISD(η)-UHF(η) values. Figure 7. The portion of the exponential decay region weighted to

remove the frequency and exponential terms. The sinusoid in the lower
portion of the graph has been offset by 2.5 units and has been sampled
and smoothed in a fashion identical to that for the QCISD curves for
comparative purposes.
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magnitude of the Fourier components. Using a practical criterion
for the introduction of this cutoff as the ratio of the absolute
value of the Fourier coefficient to the rms noise value equal to
four yields a cutoff at the 60th frequency component (not
counting the zero frequency value). By setting the values of
the frequency components higher than this to zero for the
QCISD/aug-cc-pV5Z potential curve and comparing the inverse
transform to the original curve, it is found that there is no
significant difference (root-mean-square difference ) 1.3 10-8

a.u.; maximum deviation ) 3.5 10-7 a.u. over the entire 1024
points of the original potential energy curve, as expected). The
most important consequence of this observation is that the same
information would be obtained if the potential curve had been
sampled by using only 60 (corresponding to twice the highest
frequency) evenly spaced points over the same range of
coordinate η rather than the 1024 points used in this study. For
practical purposes, 64 points are required in order to utilize the
numerical advantages of using the fast Fourier transform
algorithm which requires the length of the data set to be a power
of 2. This translates to a 16-fold saving in computational time
for this potential energy curve for all basis sets at the QCISD
level. Furthermore, because the curve needs only to be calculated
to the point at which the energy is within 10-7 a.u. (i.e., within
the observed noise level) of the asymptotic dissociation limit,
the actual number of points needing computation is reduced to
around two-thirds of this value, corresponding to values of RH-H

less than 15 Å. This is a minor saving compared to the removal
of oversampling because the relative computational expense of
points for very large values of RH-H is small. At the UHF and
RHF level, no such saving is possible because the components
of the Fourier spectra do not converge to the underlying noise
level in the exponential manner that the QCISD values do, nor,
in the RHF case, do the values of the potential converge to the
asymptotic value at the maximum bond length used in this study
(i.e., up to 171 Å).

Oversampling can have beneficial effects if the noise origi-
nates from random sources. By oversampling and averaging over
n points, the precision of each of the Fourier components
improves with dependence proportional to the square root of
the number of samples. This may be used as a strategy to
improve the accuracy of the highest frequency Fourier coef-
ficients which possess a low signal-to-noise ratio. The very slight
change in the calculated minimum energy point accompanying
oversampling is given in Table 3 and corresponds to fitting the
background noise. If the function is undersampled, a corre-
sponding error will be introduced, equivalent to the intensity
of the components which have been lost by truncation in the
frequency domain.

It could be argued that the nuclear-nuclear repulsion energy
term should be subtracted from the total energy before the
analysis is applied to avoid the singularity associated with R )
0 and yielding a smooth function more amenable to Fourier
analysis. The effect of removing this term is straightforward to
ascertain because the Fourier transform is a linear transforma-
tion, and terms remain additive in the transformed domain. At
the origin of the mapped coordinate system, the mapping reduces
to an exponential relationship, and hence, any function that is
increasing at a less than exponential rate (i.e., functions with
algebraic rate of increase) will be mapped to a function that
has a gradient of zero at the new coordinate system origin. The
H2 nuclear-nuclear repulsion term calculated for the nuclear
distances used in the coordinate system of Part 2 (below) is
shown in Figure 8a, and the absolute values of the corresponding
Fourier coefficients are shown in Figure 8b. The effect of the
hyperbolic mapping (Figure 8c) to the new coordinate system
is to place the singularity arising from the nuclear-nuclear
repulsion far enough from the real axis that it does not limit
the rate of convergence of the Fourier series at high frequency.
As can be seen in Figure 8b, this is indeed the case because the
Fourier series of the nuclear-nuclear repulsion energy in the
transformed coordinate system converges much more rapidly
than the corresponding convergence for the total H2 potential.
Any observations and conclusions drawn from analysis of the
high-frequency region apply equally to both the total energy as
well as the electronic energy. The limiting behavior for the
coefficients of the ground state in Figure 8b must be established
by renumbering the coefficients after all redundancies have been
removed. This effectively removes all interpolation and the
effects of double-siding the spectrum, so that an optimum
sampling is used, with only the minimum number of points
chosen. The limiting behaviors for the coefficients after applying
the new numbering scheme, n′, are shown in Figure 9a,b for
eqs 2 and 4, respectively. Only the values corresponding to
integral numbers of n′ are necessary; however, the nonintegral
values have been retained in the plots to give a clearer view of
the supremum limits. From the figures, it can be seen that for
the region corresponding to exponential convergence, r tends
to the value 1.0 (Figure 9a), and the limit for eq 4 is a constant
(Figure 9b). This is sufficient to establish the exponential and
geometric nature of the Fourier-series convergence. The limiting
rate of exponential convergence can hence be attributed to
singularities lying elsewhere on the complex plane. The RHF
and UHF curves both demonstrate algebraic convergence
indicating that these levels of theory place the position of the
convergence limiting singularity on the real axis. The QCISD
curve has the limiting singularity located off the real axis as

TABLE 3: Determination of the Minimum Energy Point (Equilibrium Bond Length) from Interpolation of the Derivative
Curve for Various Sampling Regimesa

number of sampling
points

minimum from
interpolation (Å) interpolating function

number of points used
for interpolation

R2 (for
interpolating function)

8 0.876649 linear 2 (1)
16 0.744637 cubic 4 (1)
32 0.741739 cubic 4 (1)
64 0.741651 cubic 7 0.99999972

128 0.741620 cubic 12 0.99999997
256 0.741622 cubic 17 0.99999997
512 0.741621 cubic 32 0.99999997

1024 0.741619 cubic 65 0.99999997

a The optimum sampling corresponds to 64 points with oversampling occurring for 128-1024 points and undersampling occurring for 8-32
points.
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exponential convergence is clearly evident in the frequency
region up to the region where the high-frequency white-noise
floor (attributable to finite numerical precision) dominates.

Analysis of the Stationary Points in the Potential Energy
CurWe. An additional application is the identification of the
stationary points of the potential energy curve. In particular,
the minimum energy point corresponding to the equilibrium
nuclear configuration has special significance to chemistry. This
point may be readily identified by calculating the first derivative
and obtaining the zero-crossing points. The first derivative is
most easily obtained by applying the derivative theorem, eq 9,

∫-∞

∞
V ’ (η)e-i2πη� dη) i2π�F(�) (9)

(where F(�) is the Fourier transform of V(η)) and applying the
inverse transform. The second derivative is as easily obtained
by a second application of the theorem before applying the
inverse transform. The minimum point is then obtained by
interpolating the first derivative in the region of the minimum
and solving the interpolating function.

It is instructive to illustrate the corresponding accuracy by
which the minimum of the curve can be established by the above
procedure as a function of the sampling interval. Table 3 details
the accuracy obtained from the various sampling strategies. The
curve was resampled, and the Fourier transform was obtained.
The derivative was calculated by applying eq 9. Points around
the zero crossing were fit to a cubic expression (with the
exception of the eight-point sample which was fit with a linear
interpolating function), which was then solved. Application of
the inverse of the coordinate transformation then gives the
minimum of the curve in the normal RH-H coordinate system
as given in Table 3. The table clearly shows a steep dependence
on the number of points used if undersampling is employed
(8-64 points) and minimal change in the oversampling region
(64-1024 points). The error in the undersampling regime is
compounded by the inadequacies of the fitting function because
of the small number of points to fit, as well as the error
introduced by truncation in the frequency domain. The data

Figure 8. Nuclear-nuclear repulsion energy term for the ground
state of H2 following inverse cosh mapping (a) and the corresponding
Fourier amplitudes (b). The upper curve in panel b is the corre-
sponding Fourier amplitude plot for the total energy. (c) Relationship
between the internuclear distance RH-H (<10 Å) and the mapped
coordinate system η.

Figure 9. (a) Limiting behavior for Fourier coefficients. The asymptotic
behavior for the lower bound tends toward 1 for the coefficients n′ <
13, indicating exponential convergence (exponential index of conver-
gence, r ) 1). Above n′ ) 13, algebraic convergence is evident. (b)
The trend to a (upper) limit evident around n′ ) 13 indicates geometric
convergence.
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presented in Table 3 further serve to illustrate that it is not
necessary to directly calculate the energy at the position of the
minimum as long as an adequate strategy has been employed
to adequately determine the frequency components that simul-
taneously describe the whole of the curve.

Extrapolation to the Infinite Basis Set Limit. A linear
dependence between the value of a particular Fourier coefficient
and 1/N2, where N is the number of basis functions, was noted
for the low-frequency region. This relationship was noted to
hold only for those components that were sufficiently far away
from the highest gradient regions in the Fourier frequency
spectrum. Because the frequency spectrum is dominated by only
a few components at low frequency, significant improvement
can be gained by extrapolating only these components. For the
QCISD results, this corresponds to the lowest six frequencies
(inclusive of the zero-frequency value). The six lowest frequency
Fourier components and their extrapolated values are listed in
Table 4, along with the correlation coefficients of the least-
squares fits. For a symmetric data set of 2048 data points, a
change in amplitude in the frequency spectrum of 1 unit for a
single component will result in a change in amplitude of that
sinusoidal component by an amount of 2/2048 or approximately
10-3 a.u when the inverse transform is taken. The zero-frequency
peak contributes 1/2048 (and represents a shift of the whole
curve up or down) and has the greatest effect. If corrections
are applied to the six lowest frequencies (with the remainder of
the frequencies obtained from the QCISD/aug-cc-pV5Z being
retained without further correction), an improvement to the
parameters for the minimum energy region is obtained. These
are compared in Table 5. The value for the minimum energy
from extrapolation of only the zero-frequency values shows
surprisingly good agreement with the most accurate available
value within the Born-Oppenheimer approximation,18 the error
being only 10 µhartree (or 2.2 cm-1).

The 1/N2 dependence noted for the convergence with respect
to the number of basis functions demonstrates that the conver-
gence with respect to the number of basis functions is algebraic
and hence far from optimal (i.e., exponential). The reason for
this is discussed by Boyd4 and has its origins in the need to
relate the choice of basis functions to a chemically sensible
starting point for the calculation.

2. Application to HX (X ) H-Ne) Ground and First
Excited States. The set of states comprising the ground and
first excited electronic states of HX, where X ) H-Ne, includes

states of various symmetries and spin multiplicities, states arising
from avoided crossings and states of a repulsive nature, while
also being small enough to be accessible to high levels of theory.
The following molecular states were examined: H2 X 1∑g

+ and
b 3∑u

+; HeH, X 2∑+, and A 2∑+; LiH, X 1∑+, and A 1∑+;
BeH, X 2∑+, and A 2Π; BH, X 1∑+, and a 3Π; CH, X 2Π, and
A 2∆; NH, X 3∑-, and a 1∆; OH, X 2Π, and A 2∑+; FH, X
1∑+, and A 1Π; NeH, X 2∑+, and A 2∑+. The values of R0

used to generate the coordinates at which the energies were
calculated are given in Table 6.

From the study on H2 in Part 1, it is seen that a large basis
set and a high level of treatment of electron correlation are
necessary in order to accurately obtain the high-frequency
components, whereas it is not necessary to sample at such small
intervals in the η coordinate. For the set of 20 potential curves,
multireference CI calculations performed by using basis sets
of cc-pVQZ and larger for the heavy atom and aug-cc-pV5Z
for hydrogen were performed at 512 equally spaced points. This
is expected to represent some degree of oversampling, so that
any instability would be clearly evident as algebraic convergence
at high frequencies. The curve was then padded to 2048 points
by using the asymptotic energy obtained at the largest atomic
separation distance. The results of these analyses are shown in
Figures 10-19. Most systems exhibited some form of conver-
gence instability at some point along the curve with aug-cc-
pVQZ on the heavy atom, proving to be more reliable than aug-
cc-pV5Z for C through Ne. Where instabilities did occur, as
evidenced by algebraic convergence in the Fourier spectrum,
in all but one case, the curves were continuous, exhibiting
discontinuities in the first or second finite differences.

The Fourier transforms in Figures 10b-19b are seen to have
three regions. At low frequencies, the Fourier coefficients are
all positive and decay rapidly with a much smaller amplitude
oscillatory component superimposed on the decay. For those
curves which exhibit algebraic convergence, the oscillatory
behavior is clearly visible through the whole of the mid- and
high-frequency regions. For the systems exhibiting exponential
decay, there is clear evidence of behavior ranging from
multiexponential decay of multiple, interfering oscillatory
components to simple single-frequency, single-exponential decay
in the mid-frequency portion. At high frequency, many of the
transformed curves exhibit a mixture of behavior: either a
randomly oscillating intensity pattern (characteristic of white
noise expected from numerical convergence truncation) or
oscillations with an envelope characteristic of algebraic
convergence.

The H2 X 1∑g
+ and b 3∑u

+ potential curves are shown after
mapping to the η coordinate in Figure 10 along with the first
500 values of the accompanying Fourier spectra. The properties
of the Fourier spectrum of the X 1∑g

+ mapped potential have
been discussed at length in the first section of this paper. The
first excited state is repulsive in nature with a very shallow
potential energy well at distances around 7.8 Å. The Fourier-
transformed spectrum of the mapped potential energy curve

TABLE 4: Comparison of Extrapolated Fourier Coefficientsa

freq. coeff. aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ aug-cc-pV5Z extrapolated R2

0 -1866.0087 -1896.1276 -1900.3057 -1901.1341 -1901.6121 0.99999
1 194.0795 168.6371 165.3397 164.7823 164.2325 0.99990
2 216.1317 197.3216 194.8859 194.5150 194.0825 0.99986
3 204.3253 193.0285 191.5093 191.3205 191.0538 0.99987
4 145.8061 140.4421 139.5953 139.5173 139.4148 0.99974
5 69.4731 67.7449 67.3143 67.2854 67.2941 0.99414

a The R value is the correlation coefficient obtained from the linear least-squares fit used for the extrapolation.

TABLE 5: Computational Parameters for the Calculated
Equilibrium Bond Length RH-H and Dissociation Energy, De

method equilibrium RH-H (Å) De (a.u.)

QCISD/aug-cc-pV5Z 0.74162 0.1742627
zero frequency extrapolation 0.74162 0.1744858
six term extrapolation 0.74112 0.1743441
MRCI/aug-cc-pV6Z 20 0.74154 0.1743609
exact 0.74143a 0.1744757b

a Experimental value from ref 19. b Born-Oppenheimer value
from ref 18.
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demonstrates a limiting algebraic convergence indicative of a
singularity located at 0.5585 Å. The potential curve does indeed
exhibit a discontinuous second derivative at this point, of
magnitude consistent with the features in the Fourier spectrum.
At lower frequency, the convergence behavior is exponential
but clearly contains multiple, interfering components. The
increased complexity of the decay, as well as the increased rate
of exponential decay, implies that there are multiple singularities
associated with the excited-state curve and that these singulari-
ties are located further away from the real axis than the
singularity associated with the ground-state potential. An
estimate of the relative imaginary coordinate location of the
convergence limiting singularity can be gained from a com-
parison of the estimated slopes of the exponential portions of
the Fourier spectra. This places the location of the limiting
singularity for the triplet excited state 1.85 times the imaginary
coordinate position of the singlet ground-state singularity.

Although the Fourier spectra for the series of molecules from
HeH to NeH exhibit more complex features than that shown
by H2, some general conclusions may be drawn. First, the
application of the same inverse hyperbolic mapping and
subsequent Fourier analysis leads to identification of resonances
in all of the potentials surveyed. The resonances are associated
with particular values of the internuclear distances and hence
have their origins in the formation of electronic configurations
which decay as this distance is varied. The origins of these
resonances appear to be associated with resonant modes of the
molecule, because it requires extensive MRCI in order to obtain
them; that is, they are not associated with a fluctuation of a
single electronic configuration term in the MRCI expansion.
The mapped spatial forms of the resonances corresponding to
the exponential decays also clearly show modulation of the
overall Lorentzian envelopes, consistent with a process involving
phase-sensitive behavior. There is an obvious similarity in
behavior to the Fano absorption line profiles observed in
photoionization experiments.21-23 If the similarity does translate
into an analogy, it would seem reasonable to suggest that the
dominant component (i.e., the component corresponding to the
unmodulated lowest-frequency Fourier coefficients) is respon-
sible for the background phase shift necessary to induce
asymmetry in the shapes of the curves of the smaller components.

The exponential decay constants, (with respect to the n )
4096 Fourier components) are tabulated in Table 6 for the

exponential decay regions. These values are to be regarded as
only an estimation of the supremum decay constants, especially
in the cases where there is evidence of multiple resonances
giving rise to complex interferences in the decay. The algebraic
index for the decay in the high-frequency region is also listed
in Table 6.

It is possible to filter out the dominant (unmodulated) low-
frequency component by truncating the Fourier series and
shifting the high frequencies to lower frequencies. By choosing
a truncation point that corresponds to a multiple of the central
frequencies of one or more of the components and applying an
inverse transformation, the original component(s) can be
retrieved without loss of the relative phase information.
Although this procedure sacrifices the absolute magnitude of
each of the components, the central peak position and phase
relationship are maintained for the chosen resonance. In practice,
this procedure can only be applied for situations where there is
a single component or where the locations of the peaks occur
at positions which are whole-number multiples of each other.
The peak must also have a clearly identifiable center frequency,
which can be difficult to ascertain when there are multiple,
overlapping components, accompanied by different relative-
phase offsets for each component. This phase sensitive behavior
and a possible relationship to the structure of the electronic state
manifold of the molecule is most clearly visible for the LiH
molecule. In the case of LiH, two resonances appear in both
the ground and first excited states (Figure 12c). In the
transformed coordinate system, the resonance at the largest
position is located at a (mapped) coordinate almost exactly twice
the value of that of the smallest, and therefore, it becomes
possible to preserve the relative phases between the two
resonances. Choosing a value for the frequency cutoff in the
Fourier spectra of both the ground and excited states so that
the low-frequency (all positive) component has been virtually
eliminated yields the peaks shown in Figure 12c after shifting
and inverse transformation. Evident in the figure is the relative
phase shift of approximately π between the two states for both
peaks, as well as a relative difference in phase of π/2 for the
two peaks within each state. Accompanying the changes in phase
is a reversal of the intensity pattern. The curves associated with
figures 10c-19c were obtained by attempting to identify the
center position of the largest resonance, filtering and shifting
the Fourier spectrum appropriately, and then applying an inverse

TABLE 6: Summary of convergence characteristics.

molecule: state R0 (Å)
exponential convergence rate, k

decay rate ) e-kn (an used for analysis)
algebraic convergence rate, s

decay rate ) xs (500 e an e 1500)

H2: X1∑g
+ 0.200479569 0.0642 (100-207) 0.134

H2: b3∑u
+ 0.28595596 0.119 (28-114) -1.060

HeH:X2∑+ 0.157693 0.036 (80-160) 0.156
HeH:A2∑+ 0.1594669 0.0427 (50-190) 0.0393
LiH: X1∑+ 0.1180439 0.0298 (100-400) -0.031
LiH: A1∑+ 0.119817339 0.0267 (100-400) -0.742
BeH:X2∑+ 0.0919627 0.0326 (94-342) -0.501
BeH:A 2Π 0.09201183 0.0312 (94-342) -1.14
BH: X1∑+ 0.073917107 0.0246 (93-151) -0.884
BH: a 3Π 0.07382902 0.0327 (100-300) -0.867
CH: X 2Π 0.06093221 0.0328 (112-170) -1.56
CH: A 2∆ 0.060940033 0.0372 (112-171) -0.854
NH: X 3∑- 0.05118992 0.0382 (120-165) -2.33
NH: a 1∆ 0.05155405 0.0731 (120-165) -1.19
OH: X 2Π 0.043764183 -1.82
OH: A2∑+ 0.04377572 -0.82
FH: X1∑+ 0.037852089 0.0312 (150-250) -1.04
FH: A 1Π 0.038045686 0.0313 (150-350) -0.382
NeH:X2∑+ 0.033332258 0.0378 (174-318) -0.386
NeH:A2∑+ 0.038045686 0.0569 (150-220) -1.576
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Fourier transformation. Any resonance with a center frequency
indicated by the arrows in the figures will then appear with the
correct phase and shape as in the original potential curve, but
the absolute contribution to the energy will not be accurate
because this information is lost by shifting the Fourier compo-
nents. Attempts at extrapolating the exponentially decaying
component back indicate that the absolute magnitudes of these
resonances are typically 1-2 orders of magnitude less than the
primary (nonmodulated) component. In favorable cases, there
is evidence of resonances of much smaller magnitude in the
filtered curves.

There appears to be relationships within the structures
observed in the filtered spectra for some of the molecules
chosen. For example, the OH ground state exhibits two
resonances which appear to be related by a phase shift of π.
The A state also has two resonances related by the same phase
shift, but they appear to be inverted with respect to the
resonances in the ground state that they are closest to. Ad-
ditionally, the excited-state curves appear to be shifted sym-
metrically with respect to the midpoint between the ground-
state resonances, suggesting a doublet structure. The absolute
magnitudes of the two resonances indicated by arrows in Figure

Figure 10. H2 X 1∑g
+ and b 3∑u

+ MRCI (H: aug-cc-pV5Z). (a) Mapped
potential energy curves. (b) Modulus of the n < 500 Fourier coefficients.
The Fourier coefficients of the b state have been vertically offset by
+5 units. (c) Filtered exponential decay region for the H2X and b states
after shifting and inverse Fourier transformation. Arrows indicate
regions with correct phase.

Figure 11. HeH X 2∑+ and A 2∑+ MRCI (H, He: aug-cc-pV5Z). (a)
Mapped potential energy curves. (b) Modulus of the n < 500 Fourier
coefficients. The Fourier coefficients of the A state have been vertically
offset by +5 units. (c) Filtered exponential decay region after shifting
and inverse Fourier transformation. Arrows indicate regions with correct
phase.
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17c are 0.133 and 2.46 millihartree for the ground and excited
states, respectively. It is possible to directly measure this because
in this case, both features are observable as distinct steps in the
MRCI potential-energy curves as expected from the algebraic
convergence noted for both Fourier spectra.

If, as is postulated here, the resonances correspond to the
formation of intermediate states, it suggests that those singu-
larities occurring on the real axis giving rise to algebraic
convergence are either extremely narrow (and hence correspond

to a singularity lying very close to the real axis, giving rise to
very slow convergence in the Fourier spectrum) and the sample
spacing between points is too great to accurately measure the
shape without introducing a discontinuity (undersampling) or
the level of theory used is inadequate (limited basis set, restricted
correlation) to correctly determine the spatial dependence of
the resonances ending up with a singularity on the real axis.

Figure 12. LiH X 1∑+ and A 1∑+ MRCI (H: aug-cc-pV5Z; Li: cc-
pV5Z). (a) Mapped potential energy curves. The insert details the bound
region for the two states. (b) Modulus of the n < 500 Fourier
coefficients. The Fourier coefficients of the A state have been vertically
offset by +5 units. (c) Filtered exponential decay region after shifting
and inverse Fourier transformation. Arrows indicate regions with correct
phase.

Figure 13. BeH X 2∑+ and A 2Π MRCI (H: aug-cc-pV5Z; Be: cc-
pV5Z). (a) Mapped potential energy curves (only the regions around
the potential minima are shown). (b) Modulus of the n < 500 Fourier
coefficients. The Fourier coefficients of the A state have been vertically
offset by +5 units. (c) Filtered exponential decay region for the BeHX
and A states after shifting and inverse Fourier transformation. Arrows
indicate regions with correct phase.
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The notion of a configuration that decays to one or more
configurations of greater stability is usually associated with the
chemical notion of an intermediate. Intermediates correspond
to positions of local potential energy minima located higher in
energy than the global minimum on the potential energy curve.
In the analysis for the series of molecules HX, above, the
resonances that are observed can give rise to quite complicated
oscillations in the potential-energy curves, resulting in distortions
away from purely Lorentzian components. The intensity of the
dominant low-frequency component also masks the individual

contributions from each of the minor resonances. At one
extreme, the phase is such that the peak appears to have the
structure associated with a transition state (positive, distinct
maximum); at the other extreme, the phase inverts to give rise
to an intermediate state (negative, distinct minimum), and in
between, there is quite complex oscillatory behavior as the
underlying components interfere.

Figure 14. BH X 1∑+and a 3Π MRCI (H,B: aug-cc-pV5Z). (a) Mapped
potential energy curves (only the regions around the potential minima
are shown). (b) The modulus of the n < 500 Fourier coefficients. The
coefficients for the a state have been vertically offset by -5 units. (c)
Filtered exponential decay region after shifting and inverse Fourier
transformation. Arrows indicate regions with correct phase.

Figure 15. CH X 2Π, A 2∆ MRCI (H: aug-cc-pV5Z; C: aug-cc-pVQZ).
(a) Mapped potential energy curves (only the regions around the
potential minima are shown). (b) Modulus of the n < 500 Fourier
coefficients. The Fourier coefficients of the A state have been vertically
offset by +5 units. (c) Filtered exponential decay region after shifting
and inverse Fourier transformation. Arrows indicate regions with correct
phase.

8082 J. Phys. Chem. A, Vol. 112, No. 35, 2008 Harrison



The various components due to the smaller resonances
combine in an additive manner with the dominant component
to give the overall total potential. For most of the molecules
and states surveyed in this work, it is apparent that there are
relatively few resonances contributing to the overall sum.
Identification of the positions, magnitudes, widths (i.e., decay
rates), and background phase offsets of each of the components
would give a concise and comprehensive description of the
overall potential curve.

Conclusion

After the application of an inverse hyperbolic cosine coor-
dinate transformation, the ab initio potential energy curves of
the ground and first excited electronic states of the first 10
diatomic hydrides become amenable to Fourier analysis. The
RHF curve for the ground state of hydrogen failed to locate
any singularity except for the one corresponding to nonconver-
gence over the sampling interval employed. The Fourier
spectrum of the UHF curve similarly demonstrated algebraic

Figure 16. NHX 3∑-, a 1∆ MRCI (H: aug-cc-pV5Z; N: aug-cc-pVQZ).
(a) Mapped potential energy curves (only the regions around the
potential minima are shown). (b) Modulus of the n < 500 Fourier
coefficients. The Fourier coefficients of the a state have been vertically
offset by +5 units. (c) Filtered exponential decay region after shifting
and inverse Fourier transformation. Arrows indicate regions with correct
phase.

Figure 17. OH X 2Π and A 2∑+ MRCI (H: aug-cc-pV5Z; O: aug-
cc-pVQZ). (a) Mapped potential energy curves (only the regions around
the potential minima are shown). (b) Modulus of the n < 500 Fourier
coefficients. The Fourier coefficients of the A state have been vertically
offset by +5 units. (c) Filtered exponential decay region after shifting
and inverse Fourier transformation. Arrows indicate regions with correct
phase.
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convergence because of the location of a singularity along the
internuclear coordinate. The Fourier spectra obtained from the
potential-energy curves for the ground state of hydrogen
calculated at the highest level of theory (full-CI) are compact
and decay with exponential convergence, indicating that the
limiting singularities are located off the real axis in the complex
plane. For the ground and first excited states of the series of
molecules HX (X ) H-Ne), the limiting convergence was either
exponential or algebraic, indicating the presence of singularities
located on the complex plane or on the real axis, respectively.

For the cases that exhibit exponential convergence, the
magnitude of the random errors in the calculated potential-
energy curves can be clearly seen from the noise floor in the
Fourier spectrum which can be trivially removed by introducing
a high frequency cutoff. The introduction of this cutoff
frequency allows for an optimum sampling strategy to be
established over the whole of the potential-energy curve.
Undersampling of the potential curve has deleterious conse-
quences for the determination of the equilibrium bond length,
whereas oversampling gives no further improvement in the

Figure 18. HF X 1∑+and A 1Π MRCI (H: aug-cc-pV5Z; F: aug-cc-
pVQZ). (a) Mapped potential energy curves (only the regions around
the potential minima are shown). (b) Modulus of the n < 500 Fourier
coefficients. The Fourier coefficients of the A state have been vertically
offset by +5 units. (c) Filtered exponential decay region after shifting
and inverse Fourier transformation. Arrows indicate regions with correct
phase.

Figure 19. NeH X 2∑+ and A 2∑+ MRCI (H: aug-cc-pV5Z; Ne: aug-
cc-pVQZ). (a) Mapped potential energy curves (only the regions around
the potential minima are shown). (b) Modulus of the n < 500 Fourier
coefficients. The Fourier coefficients of the A state have been vertically
offset by +5 units; (c) Filtered exponential decay region after shifting
and inverse Fourier transform.
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determination of the position of the minimum in the curve. The
lowest-frequency Fourier components of the QCISD curves
show an empirical N-2 dependence (where N is the total number
of basis functions used), allowing a straightforward extrapolation
to the infinite basis set limit.

From a theoretical perspective, the trends associated with the
different levels of theory, especially those associated with
increasing the size of the basis set as well as dramatic differences
due to inclusion of electron correlation, are clearly evident in
the Fourier spectra. Although application of the Fourier
transform requires information over the whole of the potential
energy curve, as demonstrated by this work, the resulting
information that can be extracted from the transformed curve
allows definite statements to be made regarding the location of
singularities associated with the curves. The general methodol-
ogy could be expected to have widespread applicability for
analysis, sampling, and interpolation of potential energy surfaces
including straightforward generalization to multidimensional
applications. In particular, the compact nature of the Fourier
spectra obtained at the full-CI level indicates that this methodol-
ogy should be useful for the evaluation of the performance of
theoretical methods over the whole of the potential curve and
should thus be a complimentary method to comparison with
thermochemical data.

In addition to the practical applications described above, the
existence of a compact Fourier spectrum obtained following an
inverse hyperbolic coordinate transformation is anecdotal
evidence that the chemical bond may have hyperbolic character
with respect to the internuclear distance. Such an observation
is seemingly without precedence in the chemical literature and
is not an obvious prediction from existing molecular electronic
structure theory. Alternatively, there is no general theorem
precluding such a relationship, and it may be possible to recast
the existing theory by using an alternative coordinate system,
such as the one presented in this work, so that the equations in
Fourier space take on a particularly simple form, as the results
presented here are suggestive of.

Additionally, it would appear that for accurate potential-
energy curves, there are features that are best described by
singularities existing in the complex plane. The ability to
accurately locate singularities on the complex plane is dependent
on the level of theory employed in the calculation, as well as
being able to isolate individual resonances from overlapping
combinations. The nature of the singularities and their locations
are likely to have an underlying fundamental physical signifi-
cance because such mathematical entities usually arise from
resonances in physical theories. The resonances observed here
appear to have properties analogous to resonances in scattering
theory (i.e., phase and rate of decay are important quantities)
and would therefore appear to represent the formation and decay
of intermediate electronic configurations as the internuclear
distance is varied. As these resonances contribute directly to
the value of the total potential, it would appear that an
understanding of their origins and lifetimes could contribute
directly to understanding the processes of formation and rupture
of the chemical bond.

The identification of the underlying resonances required the
introduction of the hypothesis that there is an underlying
hyperbolic characteristic to the chemical bond. The coordinate
mapping via the application of an inverse hyperbolic cosine

transformation has been introduced from a heuristic viewpoint
and does not have any rigorous a priori theoretical basis. The
observation that the resonances for the variety of systems studied
here are more or less symmetrical (once the phase shift has been
accounted for), independently of the value of their position in
the mapped coordinate, suggests that the general transformation
used is not grossly in error and should be applicable to a wider
range of systems than just those studied here. The facility with
which mathematical methods of analysis have been applied to
the series of states presented here suggests that there is good
reason for pursuing this methodology.
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