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We propose an importance sampling technique for the conformational analysis of flexible molecules that
bridges the gap between currently used uniform random search and random walk methods, and compare
performances of these methods in their application to selected open-chain and closed-ring hydrocarbons. It is
suggested that, if no information on conformational properties of a molecule is available, the optimum strategy
of its conformational analysis should include a uniform random search followed by an importance sampling
biased as prescribed by the uniform search and concluded by a random-walk or genetic algorithm routine to
rectify the properties of the most important parts of the conformational space.

1. Introduction

Random search techniques1 have become a tool of choice in
the conformational analysis of flexible molecules because of
the enormity of the conformational space, whose size scales
exponentially with the number of flexible links in a molecular
system. With few exceptions, the most important of which are
genetic algorithms2 and importance sampling,3 these methods
can be classified as either random walk or uniform random
search techniques.4 Each has advantages and disadvantages:
random walk methods are fast, focused, and information-
efficient, but are localized around the starting point and show a
significant dependence on this choice. In addition, they are data-
dependent and not suitable for parallel computing. Uniform
random search methods are ideally suited for parallel computing
and provide global coverage of the conformational space, but
lack focus and are slow in identifying specific targets, such as
low-energy minima. Genetic algorithms seem to combine the
advantages of both techniques but do not preserve closed rings
and so cannot be used for cyclic systems unless they operate
on a set of reasonably close structures. Importance sampling is
widely used in various other applications,5 and if the proper
bias for sampling is provided, should afford an efficient search
technique suitable for the conformational analysis of open-chain
and cyclic molecules. In this work we formulate such a
technique, demonstrate its efficiency, and compare it to other
conformational search methods.

2. Computational Details

Randomly generated conformations were fully optimized with
the MM3 program6 and at the AM1 level7 with Gaussian03.8

The nature of optimized structures was verified by frequency
calculations. Geometries of the minimized conformations were
compared and duplicates removed. All energies are reported
with reference to the respective global minima.

For the comparison of different methods, sets of randomly
generated structures were prepared by using the importance
sampling method described below, our earlier reported version
of the uniform random search,4 the corner flap method,9 and
two simplified genetic algorithms (Figure 1) with operations
restricted to mutations only or crossovers only.

To ensure that global minima have been found, comparisons
were limited to 12-, 15-, and 18-membered hydrocarbon chains
(with all-anti as global minima10) and 15- and 18-membered
hydrocarbon rings (MM3 and AM1 global minima are shown
in Figures 2 and 311). To avoid multiple duplicates in the
minimized structures of these relatively small molecules, the
size of the sample sets was limited to 200 structures.
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Figure 1. The flow charts of the simplified genetic algorithms with
operations restricted to mutations only (a) or crossovers only (b).
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3. The Method

The objective is straightforwardsto sample efficiently the
entire conformational space or its essential parts by creating a
bias favoring structures of interest. This is achieved by generat-
ing sample conformations with torsion angles randomly selected
according to a specified probability distribution function. This
biasing distribution function can be obtained either from the
experimental structural data or through the frequency analysis
of dihedral angles in a uniformly generated sample set. If
necessary, this estimate can be further improved self-consistently
in a sequence of iterations involving biased samples (see the
flow chart of Figure 4). We used one- (1D) and two-dimensional
(2D) torsion angle distribution functions. The latter, well-known

in protein conformation analysis as Ramachandran maps,12 allow
for correlations between neighboring torsion angles. In the 1D
case the random torsion angles were generated independently
of each other. This difference did not seem to be important for
open chains of relatively small size, but had a notable effect in
cyclic structures (Table 1).

The method can be illustrated by its application to the search
of low-energy conformations of n-pentadecane. First, a uniform
sample of 200 conformations was generated and minimized,
producing a rather broad energy distribution centered at about
8 kcal/mol and ranging from 3 to 12 kcal/mol (Figure 5). The
first-generation bias (Figure 6) was then extracted from the
structural information on the lowest 3-kcal minima of this

TABLE 1: Performance of the Uniform and Biased Samplings in Identifying Low-Energy MM3 Minima of 200-Molecule
Samples of Hydrocarbons

bias

none (uniform search) 1D (“weighted search”) 2D (“correlated search”)

hydrocarbon 0-1 kcal 0-3 kcal 0-1 kcal 0-3 kcal 0-1 kcal 0-3 kcal

n-C9H20 3 28 4a 33 4a 41
n-C12H26 0 4 6a 113 6a 112
n-C15H32 0 0 7a 131 7a 126
n-C18H38 0 0 8b 151 8b 130
cyclo-C18H36 1 8 2 18 7c 38

a All known minima. b Of the 9 known minima; the finding that one minimum was not found within the first 200-molecule sample reflects
the increasingly large size of the conformational space of a flexible chain molecule. c The actual number of minima within 1 kcal range from
the global minimum of cyclooctadecane is not known; for cycloheptadecane (C17H34) it is three.4

Figure 2. MM3 (a) and AM1 (b) global minima of cyclopentadecane.
Interestingly, AM1 shows preference for a minimum of higher
symmetry. Figure 3. MM3 (a) and AM1 (b) global minima of cyclooctadecane.11
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uniformly sampled set and used to produce a first-generation
biased sample of 200 conformations, which was also minimized,
producing a much narrower energy distribution centered at about
5 kcal/mol (Figure 5). A refined (second-generation) bias was
then extracted from the lowest 3-kcal minima of the biased set
of the first generation, and so on. The biasing probability
distribution functions were produced over a discrete 10°
torsional angle grid:

P(τ)) N(τ- 5 ° ;τ+ 5 ° )
Ntotal

; τ) 10 ° n (n)-18, ..., + 18)

For example, the probability of a 60° torsion P(60°) was
estimated as the fraction of dihedral angles greater than 55°

but less than or equal to 65°:

P(60 ° ))N(55 ° < τe 65 ° ) ⁄ Ntotal.

The dihedral angle distributions for the initial uniform and
the final biased sample are fairly close, although the former
displays semieclipsed conformations with ( 90° torsions in 1D
distribution (Figure 7), and energy-unfavorable g+g- junctions
in 2D distribution.

The energy distributions show a remarkable sensitivity to the
choice of the biasing function. As seen in Figure 8, a biasing

Figure 4. Energy distributions for 200 MM3-minimized random
conformations of n-pentadecane (uniform and biased samples).

Figure 5. A flow chart of the importance sampling conformational
search. The torsion angle probability distribution bias is obtained either
from the experimental data or from a preceding cycle of random
conformational search (uniform or biased).

Figure 6. First-generation bias: A Ramachandran-like 2D distribution
function for the neighboring dihedral angles τ1 and τ2 extracted from
the lowest 3-kcal subset of 200 MM3-minimized uniformly sampled
random conformations of n-pentadecane.

Figure 7. 1D distribution functions for the dihedral angles in 200
MM3-minimized random conformations of n-pentadecane (uniform and
biased samples).

Figure 8. Energy distributions for 200 MM3-minimized random
conformations of n-pentadecane (uniform sample and samples biased
toward particular energy ranges).
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function extracted from the conformations of a given energy
range produces a narrow energy distribution centered within
that range.

4. Performance of the Method

The performance of the method was tested in a search of
low-energy conformations of hydrocarbon chains and rings in
comparison with the uniform random search,4 the corner flap
method,9 and two earlier mentioned simplified genetic algo-
rithms2 with operations restricted to mutations only or crossovers
only. The results are shown in Figure 9.

In all cases, importance sampling, even with the first-
generation bias, produced distributions of minima shifted further
toward low-energy conformations than other techniques. Neither
method was able to locate the global minima of n-pentadecane,
n-octadecane, and cyclooctadecane in the first batch of 200
structures. However, all of these minima were present in the
third-generation biased sample obtained as described in the
previous section.

5. General Strategy

Equipped with a proper biasing function, importance sampling
offers a significant improvement over a uniform random search,
while maintaining global coverage of the conformational space
or its parts and suitability for parallel computing. The first-
guess biasing function can be obtained from the available
experimental data, preliminary uniform random search, or a
combination of both. If necessary, this function can be refined
iteratively in a sequence of biased searches. The most promising
leads revealed by the importance sampling can be pursued
further by using random walk techniques or genetic algorithms.
Such combinations of search techniques would provide a fast,
highly parallelizable, and focused method for the conformational
analysis of flexible systems. For complex molecules including
different structural elements, such as helices, strands, or loops,
the biasing function can be chosen differently for different
segments of the molecule to reflect its structural inhomogeneity.

Figure 9. Energy distributions for 200 AM1-minimized random conformations of hydrocarbons obtained by different techniques: (a) n-dodecane,
(b) n-pentadecane, (c) n-octadecane, (d) cyclopentadecane, and (e) cyclooctadecane
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