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To improve the accuracy of the fragment molecular orbital method (FMO), we introduce a new fragmentation
scheme based on using frozen orbitals to describe fractioned bonds. By applying this scheme to a set of
polyalanine systems of up to 40 residues for the R-helix and �-strand isomers, we established its accuracy,
which is considerably improved compared to the original hybrid orbital projection method used for detaching
bonds in FMO. For instance, at the two-body FMO expansion with the 6-311G* basis set, the error was
typically reduced 2-4 times, and for 6-31G* the accuracy increase was even larger (10 times in terms of the
maximum error). For the Trp-cage protein (PDB file 1L2Y) with many charged residues, a fairly large error
was observed, which was shown to become small with a larger fragment size or at the three-body level.
Consequently, we applied the new scheme to the adsorption of toluene and phenol on a faujasite zeolite, and
we demonstrated that good accuracy can be achieved in reproducing ab initio results.

1. Introduction

Ab initio quantum-mechanical methods have been widely
successful in describing various kinds of phenomena, owing to
their generality and systematic improvability. By the appropriate
choice of method, one can attain not only chemical1 (1 kcal/
mol) but often spectroscopic2 (1 cm-1) accuracy. The downside
of ab initio methods is their steeply rising computational cost,
which for the basic methods, such as restricted Hartree-Fock
(RHF), scales as N3, where N is the system size, and the scaling
is even higher for correlated methods, being N5 and N7 for
second-order Møller-Plesset perturbation theory (MP2) and
coupled cluster [CCSD(T)], respectively. Recently a number
of methods has been developed to reduce the computational
costs of ab initio methods.3-10

An alternative approach is taken by fragment-based methods,
which recently have been extensively reviewed.11 The system
is divided into pieces (fragments); typically ab initio calculations
of fragments are performed, and hence the total properties are
constructed, such as the energy or its gradient. These methods
not only offer a very considerable reduction of the computational
costs but also allude to the chemical building blocks in larger
systems, such as residues taken as fragments, and provide details
of the interaction and other properties of these fragments-in-
molecules. However, the common need for manual manipula-
tions, the lack of easy-to-use software to set up the calculations,
and the necessity for long-term improvement have reduced many
of the fragment-based approaches to a brief method development
without consequent practical applications.

The fragment molecular orbital method (FMO) was intro-
duced by Kitaura et al.12 in 1999 and remains one of the actively

developed fragment-based methods.13 The distinctive features
of FMO are the inclusion of the electrostatic field from the whole
system into each individual fragment calculation and the use
of systematic many-body expansion14 to include interfragment
interaction. Most common wave functions have been incorpo-
rated into FMO,15-23 permitting one to describe various kinds
of processes. The method is efficiently parallelized on large PC
clusters24 and vector computers (the Earth simulator),25 making
it suitable for efficient use of ever-growing computational power.

In addition to a very extensive method development, FMO
has been applied to a large number of chemical processes, which
can be divided into the following groups: (a) protein-ligand
binding,26,27 (b) protein-DNA interaction,28 (c) explicit
solvation,29,30 (d) enzymatic reactions,31 and (e) excited states
in proteins.32-35 Geometry optimizations36 and molecular
dynamics37,38 simulations can be performed with FMO. The
method was implemented into the freely distributed ABINIT-
MP13b and GAMESS39 software and made readily available to
the end user through the development of the free graphical user
interface Facio.40

Quantum-mechanical studies of solids and surfaces frequently
rely on a cluster model,41-43 which may be well suited for
considering a defect in the periodicity, but the edge effects
resulting from the surface truncation can be significant and
sometimes even change the qualitative picture. At present, a
common approach to quantum-mechanical studies of surface
chemistry is via the ONIOM method,44,45 or other somewhat
similar schemes, all of which share the feature of describing a
part of the system with quantum mechanics and the rest with
molecular mechanics (MM). In particular, integrated molecular
orbital (MO) and MM method (IMOMM)46 and its surface
version (SIMOMM)47-49 have been suggested. Among the
fragment-based or similar approaches, the elongation50,51 and
the incremental9,52 methods have been applied to polymers and
covalent crystals. Alternatively, for periodic systems one can
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also utilize some quantum-mechanical methods (frequently
density functional theory, or DFT) with periodic boundary
conditions.53

The fragmentation process13a in FMO is in general suitable
for detaching single covalent bonds when those with strong
electron delocalization are avoided, such as the peptide bond,
and the following bonds have been detached in the applications
so far: C-C,12 C-O,23 Si-Si,54 and Si-O.54 Although it was
hoped54 that, with successful tests of Si-O fragmentation
accuracy on simple linear model systems, one could now apply
FMO to zeolites, no application of FMO to solids or surfaces
has been published so far, to the best of our knowledge. The
reason for this lies partially in the fragmentation scheme used
in FMO, and now we suggest an alternative one, which will be
shown below to be suitable for the computation of solids and
should be applicable to surfaces as well.

Zeolites are industrially important microporous crystalline
materials that possess the unique property in functioning as
shape-selective catalysts in many reactions.55 The acidic form
of faujasite zeolites has been found to be significantly active in
catalytic cracking of hydrocarbons in the petrochemical industry.
Moreover, its supercage with a diameter of approximately 13
Å can be considered as a catalytic microreactor for the reactions
of bulky molecules, including alkylation of toluene and phenol.56,57

The protonated form of faujasite zeolites has been used as an
eco-friendly catalyst in the liquid-phase tert-butylation of toluene
for obtaining 4-tert-butyltoluene, which is an intermediate
product for fine chemicals.55 The products formed by alkylation
of phenol are used as important raw intermediates for the
synthesis of drugs, resins, pharmaceuticals, and dyes. In this
paper we investigate the adsorption behavior of toluene and
phenol in the acidic form of a faujasite zeolite by the FMO
method.

2. Computations

2.1. Methodology. The original13a fragmentation scheme
used in FMO is described below, where for the sake of clarity
we assume a C-C bond (see Figure 1). Two electrons from a
detached bond are assigned to one fragment and none to the

other. Thus, the bond fragmentation is performed at an atom,
not midway between the two atoms forming a bond, and this
atom is referred to as the bond detached atom (BDA). The other
atom on which the fractioned bond is retained is referred to as
the bond attached atom, or BAA. BDA keeps all other electrons
except the one which is assigned to the other side (BAA) of
the detached bond, and in order to force the electron density
on BDA not to occupy the bond region (which is taken up by
the other fragment), the hybrid orbital projection technique is
used, which is abbreviated HOP.58 It is rather easy to accomplish
this by use of the sp3 hybrid orbitals (obtained from a
preliminary calculation of CH4), by shifting the orbital energies
corresponding to the bond orbital (the sp3 orbital on BDA, which
points out toward BAA) to a large value, given by B below
(typically, 106 au). The projection operator has the following
form:

P)B∑
i)1

NP

|φi
h〉〈 φi

h| (1)

where �i
h are hybrid orbitals (put on all BDAs) to be projected

out and NP is their total number. For the case of one single
detached bond (see Figure 1), and the fragment, which does
not include the bond (BDA fragment), one projects just a single
hybrid orbital describing the bond (NP ) 1). For the detached
bond including the fragment on the other side (BAA fragment),
one projects out 1s and the other three sp3 orbitals on the BDA
except the one describing the bond (NP ) 4). In general, there
are several bonds to be treated and NP varies.

On the BAA fragment, one has to place a pseudoatom in the
place of BDA, in order to have the carbon basis functions to
describe the bond. For the purpose of a meaningful pair
interaction analysis, one proton from BDA is also formally
moved to the pseudoatom, which does not alter the total
properties, since such a proton reassignment does not change
the Coulomb field acting upon the fragment (because all nuclei
contribute to it in FMO, from the particular fragment as well
as from all other fragments). Similarly, one has to apply the
projection operator to the pseudoatom on the BAA side to avoid
its falling, for instance, into 1s orbital on C.

The projection operator technique succeeds in detaching the
bond, and it leaves considerable freedom to the electron density
distribution on both BDA and BAA as to how to adjust to the
total electronic state in fragments and their pairs (dimers), under
the restriction of not encroaching upon each other’s electron
levels of the BDAs. For proteins, where the fragmentation points
(at CR atoms adjacent to peptide bonds) are far from each other,
the HOP scheme works quite well, as was extensively proved
for various wave functions and basis sets11 by comparing the
total properties to ab initio calculations. Now, the problem
occurs when this scheme is taken to surfaces or crystals, because
the three-dimensional network of covalent bonds makes it
practically impossible to avoid detaching close bonds.

While the HOP scheme does detach the bond in the desired
way as far as the particular bond is concerned, there are two
sources of problems when there are other close fractioned bonds.
One is the polarization of the bond on the BAA side by other
detached bonds. Another is the unphysical interfragment (and,
possibly, intrafragment) charge transfer resulting from this strong
polarizing environment. Thus, the pair corrections, which in
FMO eliminate the fragmentation artifacts and introduce the
interfragment interaction, are not good enough when applied
to solids and surfaces.

The idea of employing frozen orbitals for the covalent bond
division is very extensively used in the quantum mechanics/

Figure 1. Fragmentation schemes used in FMO. (a) Original HOP;
(b) AFO from this work, shown for the C-C bond adjacent to a peptide
bond (for residues other than glycine, one hydrogen adjacent to BDA
is replaced by -CH3). The two atoms involved in the detached bond
(BDA and BAA) are shown divided by the magenta line indicating
the fragmentation. The model system used for the hybrid (HOP) or
frozen (AFO) orbital construction is shown next. The actual virtual
(projected out of the Fock space) and occupied (frozen) orbitals (6-
31G*) are plotted for the BDA and BAA fragments, as indicated under
each orbital [for example, virt(BAA) is a virtual orbital projected out
from the BAA fragment]. The green atomic symbols show the atoms
used in the orbital expansion over atomic orbitals. All virtual orbitals
are strongly (AFO) or completely (HOP) localized on the BDA. The
occupied orbital in AFO is localized between the BDA and BAA.
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molecular mechanics (QM/MM) hybrid approaches.59,60 Now
we apply these ideas to the fragmentation in FMO by taking
advantage of the particular scheme developed for the effective
fragment method (EFP) 61,62 by Kairys and Jensen,63 in which
it is shown that the frozen orbital treatment can be practically
performed in the form of the Fock matrix F transformation,
and we now apply it to fragments and their pairs as shown
below. Note that in FMO one is interested not in one but in
both sides of the detached bond, and similar to the HOP scheme,
one has to project not only the appropriate occupied but also
the virtual orbitals, which corresponds to removing the undesired
orbital from the Fock space by shifting it with the B constant
in HOP.

F̃ )U†FU (2)

F̃
˜

ij ) { B for i) j and Mo < ieM

0 for ieMo and j > Mo or for jeMo and i > Mo

F̃ij otherwise

(3)

F′ ) SUF̃
˜

(SU)† (4)

where S are overlap integrals and the matrix of the frozen
orbitals U consists of Mo occupied followed by M - Mo virtual
frozen orbitals (see below), and the other vectors in U are
computed as the orthogonal complement to the first M vectors.

In constructing F̃
˜

, the matrix elements of the transformed Fock
matrix F̃ are copied with two exceptions, as shown above in eq
3: (a) the diagonal element of F̃ is replaced by the large universal
constant B ) 106 for the virtual frozen orbitals, corresponding
to the HOP projection, and (b) the mixing of the occupied
frozen orbitals and all other orbitals is prohibited

(F̃
˜

ij ) 0). Finally, F̃
˜

is transformed back and F′ replaces the
Fock matrix F during SCF on each iteration.

It can be noted that only the occupied orbitals are frozen (as
determined by prohibiting orbital mixing with the virtuals in
the Fock matrix), whereas the virtual orbitals are given the
freedom to mix; thus they are not frozen but simply projected
out, similar to the HOP method. The real large difference from
the original HOP fragmentation is thus in freezing the occupied
orbitals (see Figure 1); there is also some small difference in
the virtual projection, which is because (a) the model system is
somewhat different, (b) the frozen orbital expansion is over
several atoms versus only one in HOP, (c) the virtual AFOs
are orthogonal, and (d) different localization schemes are often
used.

A complication arises here as the HOP method applies only
to the BDA basis functions, and in order to use it in practical
calculations, one needs to supply a single set of sp3 orbitals,
which are localized for a model system (e.g., CH4) and rotated
as needed to match the bond direction in the actual system. Now
we attempt to freeze the electron density, and it is not possible
to meaningfully freeze it just on one atom for a simple model
system (CH4). The model system includes several atoms
(typically, 11 or 14 for polypeptides), and it would be very
tedious to enforce the required order of atoms in the real and
model systems. In addition, one would have to enforce fixed
bond lengths or angles, or else assume that the model system
with some set of geometric parameters can describe well the
actual atomic environment.

Thus we took a different approach, in which we generate the
frozen orbitals on the fly for each given system, and this new
fragmentation scheme in FMO is referred to as the adaptive

frozen orbital (AFO) scheme. Adaptive implies their construc-
tion in the model system made for each fragmentation point
found in a given system to be computed, with the geometric
parameters of the real system. Consequently, in FMO calcula-
tions these orbitals are frozen or used for projection. This is
rather convenient from the practical viewpoint, as the only
information one has to supply to perform calculations is the
pairs of atoms specifying the fragmentation points, and all kinds
of bonds can be fragmented, such as Si-O bonds, subject to
the general practice in FMO (single bonds without a strong
electron delocalization).

Practically, the algorithm implemented in GAMESS to
construct the model system works as follows. For a given
fragmentation point, two atoms (BDA and BAA) are specified.
Then all atoms covalently bound to either BDA or BAA are
identified from the set of atomic coordinates. Next, hydrogen
caps are added as needed to all atoms thus chosen, by use of a
predefined X-H set of distances for atoms X.64 This forms the
model system, for which RHF14 (or DFT)65 calculations are
performed, and molecular orbitals are localized with the
Edmiston-Ruedenberg scheme.66

Next, one has to identify the orbitals that describe the bond
and other orbitals on the BDA. This is done also completely
automatically, based on the overlap criterion LiR related to the
Mulliken charge of the molecular orbital i computed just for
atom R:

LiR) ∑
µν∈ R

Cµi
* SµνCνi (5)

where C contains the MO coefficients, S is the overlap matrix,
and µ, ν run over atomic orbitals. A large value of LiR is taken
to imply that orbital i is localized on R, and the required number
of orbitals (e.g., 1s and four sp3) are chosen on the basis of the
largest values of LiR where R is BDA (Li�, where � is BAA, is
also used to identify the orbital describing the bond to be
detached).

Finally, the orbital coefficients for all necessary orbitals (e.g.,
sp3 and 1s for C) are stored for a set of atoms in the close
vicinity of a detached bond (Figure 1). Practically, we save
coefficients only for atoms covalently bound to BDA (one side)
or to BAA (the other side). As found by the previous study,62

one can simply truncate other coefficients without a more
complicated basis-set transformation. Then, for each fragment
and fragment pair, these orbital coefficients are put into the
matrix U and orthonormalized by the Gram-Schmidt procedure.

The AFO orbitals were thus used in individual fragment and
fragment pair calculations, following the standard FMO
scheme13a of obtaining the total properties of the system in the
many-body expansion:

EFMO3 )∑
I

N

EI +∑
I>J

N

(EIJ -EI -EJ)+

∑
I>J>K

N

[(EIJK -EI -EJ -EK)- (EIJ -EI -EJ)-

(EJK -EJ -EK)- (EKI -EK -EI)]+ · · · (6)

where EI, EIJ, and EIJK are the monomer (fragment), dimer
(fragment pair), and trimer (fragment triple) energies, respec-
tively, and all n-mers (n ) 1, 2, 3) in FMO are computed in
the Coulomb field due to the rest of the fragments. The above
EFMO3 energy corresponds to the three-body expansion (FMO3),
which can be truncated at the two-body level FMO2 (by removal
of the last sum), whose energy is denoted by EFMO2. The total
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properties such as EFMOn can be directly compared to the total
RHF energy ERHFwithout fragmentation.

The above scheme permits the following choices regarding
the definition of the orbitals: (a) the model system size and the
particular way of its construction, (b) the number of orbitals to
freeze, and (c) the size of the AFO expansion in terms of the
atomic orbitals. We performed elaborate tests to find the
optimum choice for FMO, and the results indicate the following.
The model system size cannot be too small, and the one
indicated in Figure 1 is the smallest to gain reasonable results.
Further increase in the size of the model system does not lead
to a noticeable improvement in the accuracy.

Only one orbital can be frozen in FMO. This is contrary to
the typical scenario in QM/MM or EFP calculations, when
usually more orbitals are frozen.63 FMO differs from QM/MM
in describing the whole system quantum-mechanically, and it
is necessary to describe both sides of a fractioned bond well.
Freezing more orbitals very strongly restricts the proper
polarization of the system, increasing the error manifold. The
AFO expansion should be at least over the atoms bonded to
the BDA and BAA (e.g., four atoms for a peptide bond; see
Figure 1). A further increase imposes stronger restrictions upon
the variational freedom in SCF and appears to worsen the
accuracy.

Summarizing, we observe that the intuitive supposition, that
the best choice of the frozen orbitals would be by the localized
orbitals obtained for the whole system, appears to be wrong
for FMO. Fragments in FMO provide the basis for the many-
body corrections (from pair and triple calculations), and
especially for small basis sets, the full relaxation of the
fragments permitting their unrestricted polarization provides a
nearly perfect set of fragment electronic densities, with the
caveat that the fractioned bonds should not be near each other.
Thus, for a systems like polypeptides and small basis sets (e.g.,
STO-3G), fully relaxed orbitals in the corresponding fragments
describing the fractioned bonds appear to be a better choice
than frozen orbitals even if the latter were generated for the
whole system. This can be seen from the submillihartree
accuracy of FMO/HOP for the STO-3G basis set.14 The fully
relaxed set of orbitals (i.e., the HOP scheme) does lead to fairly
considerable errors with large basis sets (6-311G* and up) or
when fractioned bonds are too near, as shown below in zeolite
calculations.

2.2. Calculation Details. The AFO fragmentation scheme
was implemented in GAMESS,39 which was used for all
computations in this work. Model systems are constructed before
any other fragment calculations in FMO start, and the appropri-
ate molecular orbital coefficients for the AFOs are stored. These
calculations are parallelized in the two-level hierarchical
scheme,24 distributing the model systems to groups of CPUs
and the particular workload for a model system among the
CPUs, similar to the FMO parallelization. The SCF and integral
accuracy in ab initio calculations was increased to match the
default values in FMO. Spherical d-orbitals (5d) were used
throughout.

Facio40 was employed to set up the input files for the AFO
fragmentation. Practically, one only needs to specify pairs of
atoms defining the fragmentation points, by use of its graphical
user interface, and choose the computation level (wave function
and basis set), and the rest is done automatically. The orbitals
visualized in Figure 1 were plotted with MacMolPlot.67

When discussing the accuracy below, the following definitions
of the errors were used:

∆En )EFMOn -ERHF

∆Dn ) |DFMOn -DRHF| ⁄ 3 (7)

where DFMOn and DRHF are the dipole moment vectors for FMOn
(n ) 2, 3) and RHF, respectively. The dipole moment is of
particular interest, as the AFO scheme can be expected to affect
the polarization of the system. Just looking at the energy may
be misleading, as error cancelation can hide the problems.

To discuss the binding energy for the zeolite adsorption, we
divided it into the following contributions:

∆Ebind )EAB -EA
0 -EB

0 )∆Eint
AB +EAB

A +EAB
B -EA

0 -

EB
0 )∆Eint

AB +∆Edestab
A +∆Edestab

B

∆Edestab
A ≡ EAB

A -EA
0

∆Edestab
B ≡ EAB

B -EB
0

(8)

where A stands for zeolite and B for guest.
The total FMO energy of the zeolite-guest complex EAB is

divided into the zeolite-guest interaction energy ∆Eint
AB and the

partial energy of zeolite EAB
A and guest EAB

B inside the complex.
EA

0 and EB
0 are the energies of zeolite and guest, respectively,

in their free state. Thus, the destabilization energies ∆Edestab
A

and ∆Edestab
B include the deformation energy68 (the energy related

to the structure change during adsorption) and the destabilization
component69 of the polarization in the complex (since the
energies EAB

A and EAB
B correspond to the fully polarized state in

the complex in FMO). The stabilization component of the
polarization is included into ∆Eint

AB along with other interactions,
such as the charge transfer.

Charge transfer often serves as a quality criterion in FMO,
because at the monomer level no charge transfer is allowed,
and large charge transfer values in the dimer calculations
indicate that monomers, which determine the electrostatic field
in FMO and in general serve as the basis for the pair corrections,
do not represent well the electronic state of the system. We
defined the following value to analyze the accuracy:

∆Q)∑
I>J

N

|∆QIJ| (9)

where ∆QIJ is the charge transfer69 between fragments I and J.
We note that there is some ambiguity in the definition of ∆QIJ

for the connected dimers (those between which at least one
covalent bond is detached), and it is meaningful to look at ∆Q
differences.

The timings for AFO are very similar to those of HOP, which
were published in detail elsewhere.70 The AFO construction
takes little time, although it does involve a two-electron integral
transformation for the occupied orbitals only.66 In addition, AFO
requires fewer monomer calculations, as the monomer densities
converge faster with it (which is a direct consequence of freezing
the detached bond orbitals.)

3. Results and Discussion

3.1. Application to Polypeptides. We calculated linear
capped polyalanine chains CH3CO-(Ala)n-NHCH3 for the
R-helix [denoted as R-(ALA)n] and the �-strand [denoted as
�-(ALA)n] with n ) 10, 20, and 40 residues. In addition, we
also computed the small synthetic Trp-cage protein (PDB file
1L2Y), consisting of 304 atoms. The structures used for the
calculations were taken from our previous work.70 Two fragment
sizes, one and two residues per fragment, as well as two basis
sets (6-31G* and 6-311G*) were compared (for the Trp-cage
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protein, we added diffuse functions on all carboxyl groups).
The results are summarized in Table 1.

For both isomers of (ALA)n, the AFO scheme delivered a
very much improved accuracy of FMO2 in the energy with
respect to ab initio RHF. For the 6-31G* basis set, the FMO2/
AFO reproduces the full RHF energies within 3.1 kcal/mol error,
compared to 30.7 kcal/mol errors of FMO2/HOP. The relative
stability of the two isomers is very well reproduced by the
FMO2/AFO method, whereas the original HOP scheme over-
estimated the stability of the R-helix. For instance, for two
residues per fragment and n ) 40, HOP has an error of 7.2
kcal/mol, whereas AFO has an error of only 0.5 kcal/mol.

At the three-body level, AFO and HOP deliver similar
accuracy for the 6-31G* basis set, with the largest errors being
1.0 and 2.8 kcal/mol, respectively. Doubling the fragment size
has a very large accuracy improvement for HOP, while for AFO
the effect is less pronounced, perhaps because the calculations
for the smaller fragment size already are quite accurate. For
dipole moments at the 6-31G* level, both AFO and HOP
schemes have similar errors. The dipole moment of the R-helix
is overestimated by the HOP method and is considerably
improved by AFO; for �-strand, the former method produces a
somewhat better value.

Most observations on the accuracy remain the same when
the basis set is increased to 6-311G*. The absolute error

magnitude is larger compared to 6-31G*, but the FMO2/AFO
method still reproduces the relative stability of the R-helix versus
the �-strand within 2.2 kcal/mol for the one residue per fragment
division. When the fragment size is increased to two residues,
the �-strand total energy is nearly identical to the ab initio value,
while the R-helix has a somewhat larger error (up to 12.5 kcal/
mol). The HOP scheme has much larger errors in the energy
than AFO at the FMO2 level. For FMO3, both schemes
reproduce well the total RHF energies, almost exactly at the
two residues per fragment level, but for one residue per
fragment, HOP and AFO have maximum errors of 12.5 and
3.0 kcal/mol, respectively. The dipole moments at the 6-311G*
level follow the trends for 6-31G*.

Summarizing the (ALA)n results, the energies are much
improved by AFO compared to the original HOP, while for
dipole moments the errors are similar and neither method
appears to be systematically better than the other.

The small Trp-cage protein has five charged residues out of
20. As can be seen from Table 1, for 6-31G* and one residue
per fragment, the original HOP had better accuracy (-4.6 vs
10.8 kcal/mol, respectively), and we also note the sign difference
(AFO predicted a somewhat destabilized energy vs ab initio
RHF, whereas HOP overstabilized the system). Going either to
two residues per fragment or to FMO3 permitted a nearly exact
reproduction of the ab initio results, with errors under 1.3 kcal/
mol (again, AFO predicted a destabilized energy).

For the larger 6-311G* basis set, AFO delivered much more
accurate energies than HOP, except at the FMO3 level with
two residues per fragment, when both had comparable accuracy.
However, the dipole moment in the AFO scheme had consider-
able errors. Both methods almost exactly reproduced the ab initio
properties at the FMO3 level with two residues per fragment.

Pair interaction energy decomposition analysis (PIEDA)69

gives the means to analyze the above results. As found by
performing comparative tests, the original FMO with fully
variational monomer density relaxation (HOP) exactly69 de-
scribes the polarization of the system, and in AFO the
polarization is somewhat reduced (i.e., underestimated) by the
frozen fractioned bond orbitals. The main source of the FMO
error is in the inclusion of coupling terms between the
polarization, exchange, and charge transfer at the two- and three-
body levels for FMO2 and FMO3, respectively.

What AFO accomplishes is the reduction of full polarization
in FMO, and it is quite successful in balancing the omitted
many-body terms (the coupling of polarization with other
interactions) with the reduced polarization, as can be seen for
the (ALA)n systems. However, in the case of highly polar
systems, such as proteins, the reduced polarization in AFO leads
to considerably larger errors compared to HOP, when medium-
sized basis sets are used and the many-body terms are much
less important than the proper polarization of the system. For
large basis sets (6-311G*), these many-body terms play a very
important role, comparable to the polarization itself (it was often
argued71 that the polarization in the energy decomposition
analysis,72 which is a predecessor of FMO, becomes hardly
distinguishable from charge transfer when large basis sets are
used), and then the two schemes AFO and HOP may be
competitive, although the latter is perhaps more reliable.

Thus, one can conclude that increasing the basis set size in
the well-established series, such as from 6-31G* to 6-311G*
or from cc-pVDZ to cc-pVTZ, results in larger charge transfer
and coupling of charge transfer to polarization, which are
introduced in FMO as two- and three-body corrections; to obtain
good accuracy with these large basis sets, one has to increase

TABLE 1: Accuracy of the FMOn-RHF Methods (HOP
and AFO) versus ab Initio RHFa

6-31G* 6-311G*

method m ∆E2 ∆E3 ∆D2 ∆D3 ∆E2 ∆E3 ∆D2 ∆D3

R-(ALA)10

HOP 1 -4.8 0.3 0.23 0.01 -14.6 -2.0 0.79 0.08
AFO 1 0.4 0.3 0.23 0.02 -3.2 0.4 0.35 0.02
HOP 2 -1.0 0.0 0.02 0.00 -5.5 -0.1 0.21 0.02
AFO 2 -0.8 0.0 0.04 0.01 -1.7 0.0 0.10 0.02

�-(ALA)10

HOP 1 -6.6 -0.1 0.19 0.04 -11.2 0.1 0.33 0.01
AFO 1 -0.1 -0.2 0.41 0.11 -5.3 - 0.6 0.70 0.23
HOP 2 0.0 0.0 0.02 0.00 0.1 0.0 0.05 0.01
AFO 2 0.1 0.0 0.06 0.01 0.2 0.0 0.08 0.01

R-(ALA)20

HOP 1 -12.0 1.2 0.55 0.03 -38.0 -5.5 2.20 0.34
AFO 1 -0.7 0.5 0.46 0.05 -9.7 0.5 0.95 0.16
HOP 2 -3.0 0.1 0.02 0.05 -15.9 -0.3 0.57 0.06
AFO 2 -2.4 - 0.1 0.03 0.01 -5.2 -0.2 0.23 0.04

�-(ALA)20

HOP 1 -14.6 - 0.2 0.50 0.15 -24.8 0.4 0.83 0.09
AFO 1 -0.1 -0.3 0.93 0.29 -11.5 -1.4 1.58 0.57
HOP 2 0.0 0.0 0.07 0.02 0.2 0.1 0.17 0.04
AFO 2 0.2 0.0 0.16 0.04 0.5 0.1 0.23 0.05

R-(ALA)40

HOP 1 -27.2 2.8 1.27 0.15 -87.1 -12.5 5.17 0.93
AFO 1 -3.1 1.0 0.86 0.06 -23.7 0.7 2.17 0.43
HOP 2 -7.2 0.4 0.08 0.14 -37.5 -0.7 1.29 0.12
AFO 2 -5.6 -0.1 0.05 0.10 -12.5 -0.6 0.44 0.04

�-(ALA)40

HOP 1 -30.7 -0.3 1.13 0.38 -51.8 1.2 1.87 0.28
AFO 1 -0.1 -0.7 2.00 0.65 -23.9 -3.0 3.33 1.25
HOP 2 0.0 0.0 0.19 0.07 0.6 0.2 0.42 0.13
AFO 2 0.5 0.1 0.37 0.10 1.1 0.3 0.53 0.14

PDB file 1L2Y
HOP 1 -4.6 0.3 0.32 0.03 -35.9 -5.2 0.51 0.03
AFO 1 10.8 0.2 0.31 0.01 -1.9 -7.6 1.18 5.04
HOP 2 -0.2 -0.1 0.15 0.02 -11.4 -0.2 0.25 0.04
AFO 2 1.3 -0.1 0.14 0.02 -1.4 -0.1 0.29 0.04

a In terms of the total energy ∆En (kilocalories per mole) and
dipole moment ∆Dn (debyes), for the m residues per fragment
division of capped polyalanine with 10, 20, and 40 residues.
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the fragment size and, depending on the desired accuracy,
consider using the three-body expansion.

3.2. Application to Solids. As noted above, FMO with HOP
cannot reproduce well the total properties of surfaces and
covalent crystals, due to a high density of interacting fractioned
bonds, because no caps are used in FMO to terminate detached
bonds. To demonstrate the efficiency of AFO and compare it
to HOP, we computed the adsorption of two small molecules
(toluene and phenol) on a faujasite zeolite containing three Al
atoms at the 6-member ring of the supercage in a faujasite
zeolite, which was modeled by a 171-atom cluster (Figure 2).
It should be noted that zeolites represent a rather difficult test
system, since guest molecules enter pores in zeolites and interact
with various parts of the inner surface. Studying processes on
the surfaces may be easier.

First, we fully optimized the structure of zeolite and
zeolite-guest complexes using ab initio RHF with the 6-31G*
basis set. The optimized structure for zeolite without guests is
of a nearly perfect C3 symmetry (the C3 axis is perpendicular
to the Al-containing 6-member rings). Consequently, we defined
a reaction coordinate and varied its values to obtain an energy
profile, while fixing all other geometric parameters. Such a
profile should be very useful in determining the reliability of
energy evaluation by FMO, but it does not necessarily reproduce
the actual binding mode. It should be noted that we did not
compare various binding sites and conformations of zeolite.
Instead, we chose one such site for each molecule, because our
purpose here is to test FMO accuracy on a realistic system.

For a better test of FMO reliability, we took two isomers of
a faujasite zeolite, denoted as 1 and 2 below. In the first isomer
(Figure 2), three hydrogen atoms were attached to oxygens in
the 4-member rings, adjacent to Al atoms. In the second isomer
(Figure 3), the corresponding hydrogen atoms were attached to
oxygen atoms on the 6-member ring containing Al atoms. The
4- and 6-member notation applies to the number of Si and Al
atoms in a ring, which always includes an equal number of O
atoms, so a 4-member ring stands for (-Si-O-)4. We used isomers
1 and 2 for the adsorption of toluene and phenol, respectively.

The adsorption site (Figure 4) for phenol is on the border
between the Al-containing 6-member ring (the central part of
Fa) and an adjacent 4-member ring (in the direction of Fab).
For toluene, it is also somewhat at the same location but is more
separated from the Al site. Al atoms have formal charges of
+1 and the acidic oxygen atoms bound to Al have a formal
charge of -1. The Mulliken charges on Al and acidic oxygens
are equal to the formal charges within about 16%. It should be
noted that the presence of Al defects (Si substituted by Al) is
the key factor in the catalytic activity of zeolites. Thus, this

system is polar to a large extent, presenting some difficulty for
a proper description in the fragment-based methods; FMO seems
advantageous as it properly includes the polarization due to self-
consistent optimization of fragment densities in the total
electrostatic field.

Figure 2. Faujasite zeolite (isomer 1). (a) Top view with the
Al-containing 6-member ring in the center; (b) side view with this ring
on the bottom. H, Si, O, and Al atoms are shown in blue, green, red,
and magenta, respectively. (c) Basic fragmentation scheme of a faujasite
zeolite, with red line showing detached bonds. Zeolite contains four
6-member rings, connected to each other by edges with three 4-member
rings. There are 10 fragments encompassing four 6-member rings (Fa,
etc.) and six 4-member rings (Fab, etc.), as shown.

Figure 3. Fragmentation of a faujasite zeolite (isomer 2) in FMO at
a glance. Atoms are colored by fragments. Yellow, red, light brown,
and green fragments are the 6-member rings. The position of acidic
oxygens in isomer 2 is shown by red arrows. In isomer 1, hydrogen
atoms attached to those oxygens are moved to oxygen atoms indicated
by black arrows.

Figure 4. Adsorption of (a) toluene and (b) phenol on a faujasite zeolite
(RHF/6-31G* optimized structures). The active site is shown with ball-
and-stick models; the reaction coordinate is depicted with a violet stick,
and the value at equilibrium is shown in angstroms. The Brønsted acidic
hydrogens are shown as black spheres with a red atomic symbol (H).
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We tried several fragmentation schemes. The basic one
denoted by F10 is shown schematically in Figure 2c and also
in Figure 3, in which zeolite is divided into 10 fragments, and
guest also forms a separate fragment. Another scheme is to
combine Fa and Fab into one fragment to have nine fragments
in zeolite (F9a). This is done since the adsorption site is between
Fa and Fab and both are important. In the third scheme, we
took F10 and added the guest to fragment Fa, since the binding
(adsorption) is of primary interest (fragmentation F9b). In the
forth scheme, F8, we combined Fa, Fab, and guest into one
large fragment. It should be noted that since in FMO fragment
pair calculations are performed, such fragment enlargement is
not crucial but affects the total accuracy to a small degree. Also,
the following discussion of the contributions of zeolite fragments
involves some subjective definition of fragments, which is in
some sense artificial; however, in chemistry one often deals with
functional groups and such, supposing them to represent units
to which some properties can be assigned, and our fragments
are like that.

A comparison of the two isomers is given in Table 2. It can
be seen that AFO provides a very close total energy compared
to the ab initio RHF, whereas HOP gives a large systematic
error (∆ε). The relative stability of the two isomers is reasonably
described by AFO (the largest error being 3.4 kcal/mol), while
HOP gave considerably larger errors (7.4 kcal/mol or more).
The charge transfer values ∆Q are much larger for HOP
compared to AFO. It can be noted that ∆Q2 is larger than ∆Q1,
which is related to the larger error in the absolute energy ∆ε2

(compared to ∆ε1). For comparison, ∆Q in R-(ALA)10 was 0.38
and 0.44 for AFO and HOP, respectively (6-31G*). We note
that throughout this work we use the Mulliken atomic charges
and define the interfragment charge transfer according to the
computational scheme suggested for FMO earlier.69

The main source of charge transfer in all schemes is the
electron density donation from the 6-member ring fragments
(Fa, Fb, Fc, and Fd) into the adjacent 4-member ring fragments
(Fab, etc). For Si-only and Al-containing 6-member rings,
respectively, 0.04 and 0.08/0.09 e is transferred in AFO; for
HOP, the corresponding values are 0.12 and 0.09/0.14 e. The
two values for the Al-containing ring are given for the two
isomers of the zeolite (isomer 1 has the smaller value in the
pair). The relative stability of the two isomers is considerably
better reproduced with AFO; for HOP, error cancelation results
in fairly small errors. This is because the two isomers are not
very different from each other.

Using a smaller number of fragments (F9a vs F10) gives
better results. It should be noted that for zeolite without guests
there are three nearly equivalent 4-member ring fragments (Fab,
Fac, and Fad), and the addition of one to Fa in F9a gives a
partial improvement as far as the zeolite by itself is concerned,

but this addition is important to describe the binding. The mostly
electrostatic repulsive interaction between the 6-member ring
fragments (Fa, Fb, Fc, and Fd) is very large: for each pair,
about 30 and 50 kcal/mol in AFO and HOP, respectively. Since
it is not accompanied by a charge transfer, it probably does not
affect the accuracy, as pair calculations effectively take care of
it.

For analysis of the binding it is more convenient to use a
larger number of fragments, so we summarized the interactions
between zeolite and guest in Table 3 for the fragmentation
scheme F10. One can see that the main contributor to the
binding is the Al-containing 6-member ring fragment (Fa),
especially for phenol, which is natural because phenol is closer
to zeolite (R) than toluene. Two other important sites can be
seen for both guests: Fb and Fab. As indicated above, the
binding site is between Fab and Fa, and it is not surprising that
Fab has a larger interaction energy. Fb is in fact also close to
adsorbant molecules. A large charge transfer occurs between
the guest and Fa, as well as Fab and, to a smaller extent, Fb.
Larger charge transfer values indicate that it is more important
to include Fab to the binding site (as in F9a) than Fb, as far as
FMO is concerned.

In Table 4, the FMO binding energies are decomposed into
components for the adsorption of toluene and phenol, defined
(eq 8) relative to the free state of zeolite isomers 1 and 2,
respectively. A much larger interaction occurs in phenol, which
is also more strongly destabilized by zeolite (and zeolite is more
strongly destabilized by phenol).

The total binding energies for various fragmentation schemes
are summarized in Table 5. Regarding the AFO and HOP
comparison, the same trends are observed as discussed above
for Table 2. HOP gives a very large absolute error in the total
energies (∆ε), which due to the error cancelation mostly
disappears, since the structure of zeolite and guest is not much
deformed upon binding (otherwise HOP would give worse
results). The importance of the binding site definition during

TABLE 2: Comparison of the Two Zeolite Isomersa

method ∆ε1 ∆ε2 ∆E2-1 ∆Q1 ∆Q2

AFO/F10 6.9 12.0 -12.2 0.61 0.63
AFO/F9a 6.1 9.5 -14.0 0.53 0.53
HOP/F10 180.4 192.6 -5.1 1.33 1.47
HOP/F9a 149.7 156.4 -10.6 1.25 1.35

a The two isomers are optimized with RHF/6-31G*) and are
denoted by subscripts 1 (anionic oxygens on 4-member rings) and 2
(anionic oxygens on 6-member rings); all energies are in
kilocalories per mole. ∆ε is the error in the FMO total energy vs ab
initio RHF. ∆E2-1 is the relative stability of the two structures (the
ab initio value is -17.4). ∆Q is the total interfragment charge
transfer (au). F10 and F9a denote fragmentation schemes.

TABLE 3: Guest-Zeolite Pair Interaction Energies ∆E,
Charge Transfer ∆Q, and Separation Ra

toluene phenol

fragment R (Å) ∆Q (au) ∆E (kcal/mol) R (Å) ∆Q (au) ∆E (kcal/mol)

Fa 2.47 -0.06 -8.4 1.82 -0.13 -21.0
Fb 3.21 -0.02 -3.6 3.37 -0.01 -1.6
Fc 4.54 0.00 0.0 6.46 0.00 0.7
Fd 7.10 0.00 0.2 4.64 0.00 -0.6
Fab 3.50 -0.06 -3.4 3.01 -0.03 -1.8
Fac 4.27 -0.00 0.2 5.58 0.00 -0.9
Fad 5.95 0.00 0.2 3.91 0.00 -1.0
Fbc 4.51 0.00 0.2 7.86 0.00 -0.1
Fbd 7.11 0.00 0.1 7.05 0.00 0.1
Fcd 10.33 0.00 -0.1 8.87 0.00 -0.1

a For a faujasite zeolite divided into 10 fragments (F10) in
FMO-RHF/AFO with 6-31G*, at the minimum geometry. See
Figure 2 for the fragment definition.

TABLE 4: Contributions to Binding Energies ∆Ebind
a

toluene phenol

∆Eint
tot (kcal/mol) -14.5 -26.3

∆Edestab
guest (kcal/mol) 1.5 3.1

∆Edestab
zeolite (kcal/mol) 0.9 2.4

∆Ebind (kcal/mol) -12.1 -20.8

a Total guest-zeolite interaction (∆Eint
tot), guest destabilization

(∆Edestab
guest ), and zeolite destabilization (∆Edestab

zeolite) are listed for a
faujasite zeolite divided into 10 fragments (F10) in FMO-RHF/AFO
with 6-31G*.
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fragmentation can be seen. All schemes gave fairly reasonable
binding energies, with errors of several kilocalories per mole
at most. However, if a high accuracy is sought (such as when
deciding where the preferable binding site is), a larger active-
site fragment may be needed. For toluene it is clear that the
addition of guest to the binding site fragment is more important
than the binding site expansion (F9b vs F9a), but for phenol,
which comes closer to zeolite, both factors are equally important,
and when both are taken into account (F8), the error in the
binding energy becomes very small (AFO, 0.2 and 0.1 kcal/
mol for toluene and phenol, respectively; HOP, 0.8 and 0.5 kcal/
mol, respectively).

The adsorption energy profiles are depicted in Figure 5. All
curves resemble each other, being nearly parallel, indicating that
various fragmentation schemes in FMO work reasonably well,

with the errors being about 1-4 kcal/mol for both toluene and
phenol. AFO/F10 apparently has the largest deviation from RHF
in both cases. For phenol, AFO/F10, HOP/F10, and AFO/F9
feature a small unevenness in Figure 5b around 1.6 Å. On the
contrary, AFO/F9b and AFO/F8 have smooth curves, which is
because they include the guest molecule in the binding site
fragment. It can also be seen in both cases that the latter two
methods are the most reliable, almost exactly reproducing the
RHF curve (which is nearly indistinguishable from RHF for
AFO/F8).

Thus, including the adsorbant molecule with the binding site
fragment gives very accurate binding energies and can be
recommended to refine the final energetics. The downside of
this usage is the inability to do the interaction analysis (Table
3), which applies to interfragment interactions; thus both
schemes (such as F8 and F10) can be used for binding energies
and interaction analysis, respectively. Practically, it is easy to
switch to another scheme by a simple fragment assignment
change in the calculation setup and redoing the computation.

Finally, we turn to future practical applications. The AFO
scheme of bond division was shown to work reasonably well.
However, it does not completely eliminate the problems of the
dangling bond interaction, and the success of the zeolite
fragmentation is partially due to the careful choice of fragmen-
tation points avoiding close dangling bonds. It seems desirable
to include the adsorbant molecule with the binding site fragment,
and perhaps the rest of the fragmentation details are not very
important as far as the binding energy is concerned; however,
the remaining structure may be not unimportant, such as when
comparing adsorption to different isomers (for the two faujasite
zeolites in this work). Upon performing a fragmentation, one
can look at ∆Q values and also at individual ∆QIJ terms to
uncover potential problems.

4. Conclusions

By developing the new fragmentation scheme for the fragment
molecular orbital method, we achieved a considerable expansion
of its application field from mostly proteins, DNA, and
molecular clusters into the industrially important field of
catalysis and, possibly, surface chemistry. By careful comparison
to the original method as well as to ab initio calculations, we
demonstrated a considerable improvement in the description of
polyalanine chains, and we identified problems with highly polar
systems, such as proteins.

Application to the adsorption on the faujasite zeolite surface
of the two adsorbant molecules showed that accurate binding
energies (at most 0.2 kcal/mol error vs ab initio) can be achieved
by careful fragmentation. Somewhat larger errors for the relative
stability of the two faujasite zeolite isomers (3.4 kcal/mol)
indicate that it may be useful to include three-body terms in
the final energetics (FMO3) if such comparison is conducted.

For future development, the analytic gradient can be very
useful for structure optimization. Recent advances73 in the MP2
algorithms can be combined with our method, providing means
to add the dispersion interaction to the binding energies. Also,
the application of FMO to the calculation of chemical shifts74

apparently suffered some accuracy loss from a distortion of the
electronic structure in the vicinity of the detached bonds, and
the application of AFO to NMR studies may be advantageous.
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