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We investigated the mechanical nature of multiply hydrogen-bonded systems by means of ab initio quantum
chemical calculations, and we derived a set of force constants to reproduce the anisotropic vibration modes
of such systems. Twenty multiply hydrogen-bonded molecular dimers were selected for evaluation of the
stiffness of their hydrogen bonds. By means of a multivariate analysis, the principal values of the stiffness
tensor were divided into the contributions from each hydrogen bond. Force constants in the stretching directions
were estimated to be 20.2 and 11.5 N m-1 for NH · · ·O and NH · · ·N pairs, respectively. The obtained parameter
set was used to reconstruct the various intermolecular vibration motions, and reasonable values in the low-
frequency (ca. terahertz) region were obtained. Comparison of the multivariate analysis with the normal-
mode analysis suggested that the off-diagonal terms for the transverse and rotational motions may appreciably
contribute to the coupling of those basic motions.

1. Introduction

Systems of multiple hydrogen bonds serve as reversible and
flexible cross-links in supramolecular polymers and supramo-
lecular elastomers as well as in highly organized biomolecular
structures such as proteins and nucleic acids.1,2 The reversibility
and moderate strength of hydrogen-bonded cross-links in these
structures are responsible for such characteristic properties as
thermal plasticity, viscoelasticity, and the dielectric property.3

Introduction of a network of hydrogen bonds provides supramo-
lecular polymers with practical properties, for example, me-
chanical strength, thermal durability, and non-Newtonian
fluidity.4-7

Molecular building blocks that have the potential to form
multiple hydrogen bonds are known as supramolecular syn-
thons.8 The greater the number of hydrogen bonds a synthon
can form, the stronger it will be as a linker. Note that the term
“strong” has two aspects, namely, stability and stiffness. From
the viewpoint of energetic stability, the pioneering work of
Jorgensen9 clearly demonstrated that additivity and secondary
interactions between the bonding pairs are important, although
some cases that preclude the additivity rule have been
reported.10-13 In view of elasticity and dielectric response, such
mechanical parameters as the restoring force provide more useful
information than what energetic parameters do. For example,
force constant parameters have been used to generate sets of
normal-mode vibrational frequencies by means of analyses based
on the Hessian matrix method, lattice dynamics, and Wiener-
Khintchine’s theorem combined with molecular dynamics
calculations.14-16 Comparison of theoretical and experimental
vibrational spectra can provide a molecular-level picture of
macroscopic phenomena of materials. Thus far, however, the
mechanical properties of multiply hydrogen-bonded systems
have not been as thoroughly studied as the energetic properties,
especially in terms of additivity and secondary interactions
between the individual hydrogen bonds.

Recently, terahertz spectroscopy has been used for direct
observation of hydrogen bonding in the context of analyses of
the hydration of sugars, the arrangement of nucleobases in DNA,
the polymorphism of medicinal drugs, and so on.17-19 The
terahertz region (∼300 GHz to 3 THz) covers hydrogen bond
vibrations, van der Waals interactions, overall molecular distor-
tion, and molecular rotation, and hence, peak assignment is
rather difficult. Accordingly, the theoretical simulation of spectra
has been studied, and several quantum-chemical- and molecular-
mechanics-based approaches have been reported.20-26 The
normal modes of multiple hydrogen bonds involve in-plane and
out-of-plane vibrations, and distinguishing between the two
implicitly requires that the force field parameters have aniso-
tropic character. Although some parameter sets account for the
anisotropy of the hydrogen bond,27 reliable prediction of
terahertz spectra requires the development of a “purpose-built”
parameter set. In addition, as is often pointed out, the framework
of the harmonic oscillator approximation may lead to serious
deviation from experimental results.28 It should be noted that
vibrational anharmonicity of terahertz modes can also play a
significant role in determining frequency shifts as well as
absorption intensities. Now, at the primary stage of our study,
it seems important to clarify the behavior of a hydrogen-bonded
system around its potential minimum and hence to understand
the fundamentals of spectra in the terahertz region. In this study,
we investigated the mechanical nature of multiply hydrogen-
bonded systems by means of ab initio quantum chemical
calculations, and we derived a set of force constants to reproduce
the anisotropic vibration modes of such systems.

2. Theoretical Basis

2.1. Formulation of Anisotropic Force Constants. If
functional groups -XH and Y- exert a hydrogen-bonding force
FHB on each other originating in the hydrogen-bonding potential
φ(r), the force vector should be divided into three anisotropic
components of an appropriately selected coordinate system
according to the molecular symmetry. At the potential minimum,
atom X is located at the origin, atom H is on the x axis, and the
hydrogen bond acceptor (Y) is located at (x, y, z). Upon first-
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order expansion of FHB around the potential minimum (x0, y0,
z0), a force constant matrix K can be defined as follows:

FHB )- ∇ · φ(r))-(k11 k12 k13

k21 k22 k23

k31 k32 k33
)(x- x0

y- y0

z- z0
) (1)

where
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When φ(r) is an isotropic function such as a Lennard-Jones-
type potential, φ(r) is a function of a unique argument r, the
norm of r. Then each component kij can be written as
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Some of these terms vanish depending on the nature of φ(r).
For example, if one assumes that the XH · · ·Y pair acts as a
harmonic oscillator, then φ(r) is a quadratic function, φ(r) )
a(r - r0)2 + b, where r0 is the distance between X and Y at
equilibrium. When Y is at position (r0, 0, 0), the force constants
kij are given by

k11 ) 2a k22 ) k33 ) 0 k12 ) k21 ) k13 ) k31 ) k23 ) k32 ) 0

(3)

The first term of kii (i ) 2, 3) vanishes owing to the isotropic
character of φ(r), and the second term vanishes owing to the
harmonic approximation. The off-diagonal terms kij can be
eliminated by selecting the coordination system to fit the
molecular symmetry. Therefore, if k22 and k33 are explicitly
evaluated, then either the anisotropy or the nonharmonic
character of the hydrogen-bonding potential, or both, must be
incorporated.29

When we applied the above potential for a single hydrogen
bond to multiply hydrogen-bonded systems, we assumed that
the force exerted between a pair of molecules can be divided
into the contribution of each individual hydrogen bond and the
contributions of secondary interactions between neighboring
hydrogen bond donors and acceptors (Figure 1). The force
constants of NH · · ·N and NH · · ·O pairs were designated kNH-N

and kNH-O, respectively (OH · · ·O and OH · · ·N pairs were not
studied in this work). The idea of introducing the secondary
interactions was inspired by the work of Jorgensen, who
attempted to interpret energetic stability by considering the
arrangement of donor-acceptor (XH · · ·Y) pairs.9 We took into
account two different types of force constants: one (kpara) for
the parallel arrangement of XH · · ·Y pairs and one (kanti) for
antiparallel arrangement. For simplicity, differences in the
hybridization states of the atoms were neglected; for example,
amino NH and amide NH were treated identically. Conse-

quently, the intermolecular force Fi induced by ith direction
displacement is given by

Fi )-{m(kNH-O)ii + n(kNH-N)ii + p(kpara)ii + q(kanti)ii} ×

(xi - xi0) ≡-Ki(xi - xi0) (4)

Coefficients m and n are the numbers of NH · · ·O and NH · · ·N
hydrogen bonds, respectively, in the dimeric system in question.
Coefficients p and q are the number of diagonally opposite
donor-acceptor pairs and that of either acceptor-acceptor or
donor-donor pairs, respectively. These parameters serve as
cross-terms, whether or not the donors and acceptors are actually
involved in a hydrogen bond. In the 2-aminopyridine dimer
(Figure 1), for example, two NH · · ·N bonds are aligned in
antiparallel form, so m ) 0, n ) 2, p ) 0, and q ) 2. The
components of the force constants, kNH-O and kNH-N, represent
the contributions of NH · · ·O and NH · · ·N hydrogen bonds,
respectively, and kpara and kanti represent neighboring interactions
of hydrogen bonds in parallel and antiparallel alignments,
respectively.

Accordingly, FHB can be formulated as a function of the shear
vector:

FHB )-(K1 0 0
0 K2 0
0 0 K3

)(x- x0

y- y0

z- z0
) (5)

According to the above formulation, the hydrogen-bonding
energy is derived as follows:

EHB )
1
2

{K1(x- x0)
2 +K2(y- y0)

2 +K3(z- z0)
2}-EHB

(0)

(6)

where EHB
(0) is the hydrogen-bonding energy at the potential

minimum. Alternatively, EHB can be defined as the association
energy Eassoc that is obtained by subtracting the total energy of
the constituting monomers from that of the dimer:

EHB )Eassoc )Edimer -Emonomer 1 -Emonomer 2 (7)

Therefore, once the association energy was obtained as a
function of the displacement vector, the force constants Ki were
calculated by regression analysis based on quadratic functions
of xi.

2.2. Calculations. Twenty hydrogen-bonded dimers (1-20;
Figure 2) were studied. The geometry of each dimer was optimized
by means of the Hartree-Fock (HF) method using the 6-311G**
basis set. Then the association energy Eassoc was calculated at the
same level either with or without correction for the basis set
superpositional error (BSSE) by means of the counterpoise method,
and the energy was also calculated by the MP2 perturbation method
using the same basis set. The potential curve of the association
was obtained by scanning the center of mass of each monomer in
0.05 Å increments in the x, y, and z directions. In every step of the
scan, all the geometrical parameters were fixed (i.e., the frozen
rigid approximation was used), and the alignment of the coordina-
tion system of each monomer was retained. The frozen rigid
approximation is appropriate for this study because our purpose
was to reproduce terahertz region vibrations that are essentially
whole-molecule motion. All calculations were performed using the
Gaussian03w program.30

Basically, the local minimum structure was confirmed by the
normal-mode vibrational analysis. When we had difficulty in
optimizing the structure, some of the geometrical parameters
were fixed so as not to influence the evaluation of the hydrogen-
bonding strength. For structures 1-3, for example, the amide

Figure 1. Secondary interactions of hydrogen bond donors and
acceptors. In this 2-aminopyridine dimer, there are two antiparallel
NH · · ·N bonds; hence, q ) 2 (the number of double-headed arrows).
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plane was forced perpendicular to the heterocyclic plane, with
the hydrogen bond running along the x axis. For the other cases,
the coordination system was set up so that the molecular planes
fell on the xy plane, with the hydrogen bond running along the
x axis. In molecules in which the amino group(s) was found to
be in a pyramidal form, the structure was fixed to a planar form
(saddle point structure) to avoid ambiguity in the selection of
the displacement direction. This treatment is appropriate because
the activation energy of the flip-flop conversion between the
pyramidal forms of the amino group is much less (<∼10%)
than the error in the subsequent regression analysis.

3. Results and Discussion

3.1. Derivation of Force Constants. Figure 3 shows poten-
tial curves for the 2-aminopyridine dimer obtained when the
dimer’s center of mass was scanned along the x axis (for the
coordinates used, see the “Calculations” section). Similar results
were obtained for the scans along the y and z axes. The curves
are well fitted by quadratic functions in the range from -0.25

to +0.25 Å around the potential minimum. This range agrees
fairly well with the amplitude of interatomic oscillation in the
classical picture of the vibrational spectrum. From regression
analysis of the potential curves, force constants K1, K2, and K3

were derived at the HF and MP2 levels (Table 1).
Although the K values depended on the calculation level, the

trend of the change in K is quite understandable. Because the
basis set overlap underestimated the total energy when two
monomers were close to each other, the correction by the
counterpoise method resulted in a decrease in the K values. This
decrease in K was prominent for K1 (displacement in the x
direction). The incorporation of electronic correlation energy
by means of the MP2 method resulted in a decrease in the total
energy, especially around the potential minimum, which led to
an increase in the K values. Therefore, these two corrections
are expected to compensate for each other. Indeed, when both
corrections, i.e., electronic correlation and counterpoise, were
taken into account, the K values fell between those obtained by
means of either correction alone. For the sake of saving time,
we thus carried out the calculations at the HF/6-311G**//HF/
6-311G** level, and these calculations gave reasonable K values
in view of the cancellation of the two corrections. This
calculation might give an error of ∼20%, but the relative
amplitude of the displacement directions and the types of
hydrogen bonds are expected to be retained.

Table 2 summarizes the regression coefficients for 1-20
derived from eq 6. Table 2 also contains the parameters m, n,
p, and q, which were determined from the hydrogen-bonding
pattern of the dimers (see the “Theoretical Basis” section). The

Figure 2. Chemical structures of the molecular dimers studied.

Figure 3. Potential curve for stretching of the 2-aminopyridine dimer
in the x direction: HF (b), HF + BSSE correction (O), MP2 (9), MP2
+ BSSE correction (0). The solid lines are the least-squares fitting
against the quadratic function.

TABLE 1: Force Constants Derived by Regression Analysis
of Data from HF and MP2 Calculations Either with or
without BSSE Correction

force constants
K (N m-1)

K1 K2 K3 EHB
(0) (kJ mol-1)

HF/6-311G**//HF/6-311G** 24.34 9.25 3.90 33.79
HF/6-311G**//HF/6-311G** +

BSSE correction
21.71 8.44 3.84 27.49

MP2/6-311G**//HF/6-311G** 38.49 12.35 5.59 56.21
MP2/6-311G**//HF/6-311G** +

BSSE correction
31.50 10.22 5.73 41.56
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values of the coefficients in the table roughly depended on the
structure of the dimer: as the multiplicity of hydrogen bonding
increased, both K and EHB increased, indicating that these values
were composed of the contributions from the individual
hydrogen bonds. However, it is also obvious that simple
additivity does not hold.

To abstract a simple relationship for these data, we utilized
multivariate analysis.31 Namely, we determined the values of
kNH-O, kNH-N, kpara, and kanti so that the K value could be best
reproduced as a function of m, n, p, and q based on eq 4 by a
least-squares method. Figure 4 shows the correlation between
the K values directly obtained from the quadratic curve fitting
and the values (K′) obtained from the multivariate analysis. As
can be seen from this figure, K and K′ are in good agreement (r
) 0.92-0.96). Although the data/variable ratio (20/4 ) 5) was
not high, the good correlation suggests that the proposed model
(eq 5) is acceptable. The present model may be too simplified,
but it would not be expedient to use additional parameters that
lower the data/variable ratio. Table 3 summarizes the values of
each contribution to the force constant K.

The kNH-O and kNH-N values represent the anisotropy of the
restoration forces of NH · · ·O and NH · · ·N interactions, respec-
tively. Although the x component, which represents stretching
elasticity, predominated, the y and z components (bending
elasticity) made appreciable contributions (10-30% of the x
component contribution). These contributions are large enough
to infer that the force field is intrinsically anisotropic.29 The x
components of the kNH-O and kNH-N values are as reasonable
as the force constants (10-20 N m-1) of normal hydrogen bond
stretching. Interestingly, the results imply that the NH · · ·O bond
has uniaxial symmetry, whereas the NH · · ·N bond has biaxial
symmetry. Although we need further detailed analysis, we can
assume that this difference arose from the anisotropy of the
electronic distribution in acceptor atom Y. For a carbonyl

oxygen atom, the 2s, 2pz, and 2py orbitals contribute equally to
the electronic distribution around the x axis; hence, the tolerance
for bending of the hydrogen bond in the y direction is equal to
that for bending in the z direction. In contrast, because the 2py

orbital is fully concerned in the σ bond of the imino nitrogen

TABLE 2: Regression Coefficients of Dimeric Structures

force constants K (N m-1)

dimer m n p q K1 K2 K3 EHB
(0) (kJ mol-1)

Single HB

1 1 0 0 0 20.37 0.72 0.33 34.97
2 0 1 0 0 14.53 4.35 2.70 25.05
3 1 0 0 2 17.90 2.65 0.68 19.51
4 0 1 0 0 18.92 5.67 1.90 33.49
5 1 0 0 0 24.43 0.97 0.73 43.8

Double HB

6 2 0 0 2 35.08 8.00 6.86 52.98
7 2 0 0 2 36.96 8.65 7.10 48.56
8 2 0 0 2 38.64 9.22 6.68 54.65
9 0 2 0 2 24.34 9.25 3.90 33.79

10 1 1 0 3 35.98 12.47 5.08 47.27
11 1 1 0 3 36.81 12.04 4.91 49.50

Triple HB

12 0 3 4 0 33.27 3.32 6.34 59.67
13 0 3 0 4 31.77 14.38 1.08 33.18
14 2 1 0 4 41.99 15.41 5.15 51.89
15 2 1 2 2 60.08 11.87 8.12 100.79

Quadruple HB

16 2 2 4 2 88.89 12.96 13.04 161.24
17 1 3 4 2 74.89 12.74 11.56 118.98
18 0 4 4 2 66.36 12.94 11.16 113.94
19 2 2 2 4 75.37 18.01 8.56 132.42
20 2 2 4 2 83.04 12.58 13.04 124.97

Figure 4. Correlation of the principal values of stiffness tensors derived
from ab initio calculations (Ki) and those reconstructed from the
contributions listed in Table 3 (Ki′).
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atom, the electronic distribution is rather localized in the xz
plane, resulting in a smaller tolerance (larger k value) for shear
in the y direction.

The kpara and kanti values represent the effects of neighboring
hydrogen bond donor-acceptor interactions. The relatively large
contribution of kpara (4.3 N m-1) to K1 (the x component) can
be interpreted in terms of Coulombic attraction, and the
negligible contribution of kanti (-0.1 N m-1) suggests that
attractive and repulsive Coulombic interactions are canceled in
the antiparallel alignment. A similar interpretation is valid for
the z components of kpara and kanti (1.1 and 0 N m-1,
respectively). The contributions of kpara and kanti (-0.7 and 1.8
N m-1, respectively) to K2 (the y component) are rather small
but not negligible, and they oppose each other. This relationship
can also be explained in terms of electrostatic interactions. For
example, for two hydrogen bonds in a parallel arrangement
(Figure 5a), displacement in the y direction leads to attractive
interactions, which decrease the curvature of the potential
surface. Therefore, the parallel arrangement gives a negative
contribution to K2. In contrast, for two hydrogen bonds in an
antiparallel arrangement (Figure 5b), displacement in the y
direction leads to repulsive interactions, which increase the
curvature. Therefore, the antiparallel arrangement gives a
positive contribution to K2.

3.2. Validation of the Force Constants. In the above
section, we discussed how the contributions (kNH-O, kNH-N, kpara,
and kanti) to each component of the K value were obtained, and
we clarified their physical meaning. Although the k values may
depend on the calculation method and on the structures used
for multivariate analysis, the expected maximum error is ∼20%.
These parameters should be validated by comparison with
various experimental results and should be consistent with
parameters obtained by means of other theoretical methods. For
example, normal-mode analysis is a powerful method for
interpreting experimental absorption peaks. For the stretching
vibration of hydrogen-bonded pairs, there have been some
attempts to derive force constants on the basis of the comparison
of experimental and theoretical analyses of normal-mode
vibrations.32 These studies suggest that the stretching force
constants are in the range of 10-20 N m-1, and our results
agree fairly well with this range. Figure 6 illustrates the normal-
mode vibrations for a dimer that originate mainly in distortion
of the hydrogen-bonding system.33 Out of the six modes shown,
only two (stretch and opening) can be explained by assigning
the x component of the force constants to each bond; the other
four modes (shear, propeller twist, buckle, and stagger) require
y and z components. Therefore, our results given in Table 3
play a decisive role in evaluating the frequencies of these
intermolecular vibrational modes in the framework of molecular
mechanics approximation.

Leutwyler et al. estimated the force constant of NH · · ·O
stretching in a 2-pyridone homodimer to be 37.7 N m-1 on the
basis of a two-color resonant two-photon ionization (2C-R2PI)
spectroscopy measurement.34a,b They also report that the stretch-
ing force constant of the 2-hydroxypyridine-2-pyridone het-
erodimer is 70 N m-1 (35 N m-1 per hydrogen bond).34d These
values are very large as compared to the normal range, and the
authors suggest the effects of resonance-assisted hydrogen
bonding.13 On the other hand, by assuming that the force
constant of 35 N m-1 is assigned to NH · · ·N stretching, the
force constant of NH · · ·O in the 2-aminopyridine-2-pyridone
heterodimer was estimated to be 17 N m-1.34c Although this
value is in good agreement with our kNH-O value (20.2 N m-1),
the overall results contradict ours. In those studies, the force
constants were derived by means of the pseudodiatomic
approximation, in which each monomer is regarded as a point
with a mass equal to its molecular weight.32 In addition, the
result was based on simple additivity of the force constants. To
gain insight into the hydrogen bond vibrations and to clarify
the limitation of the pseudodiatomic approximation, we per-
formed normal-mode calculations on a series of 5-halogenated
2-aminopyridine dimers. Figure 7 shows the frequencies (ν,
cm-1) of the normal modes corresponding to those in Figure 6
as functions of the square root of M0/M, where M is the
molecular weight of a monomer and M0 is the molecular weight
of 2-aminopyridine. Ideally, the frequency should be propor-
tional to (M0/M)1/2. As shown in Figure 7, the frequencies are
approximately linearly related to (M0/M)1/2 for shear, opening,

TABLE 3: List of Contributions k (N m-1) to Force
Constants Ki (i ) x, y, z)

axis kNH-O kNH-N kpara kanti

x 20.2 11.5 4.3 -0.1
y 2.7 3.0 -0.7 1.8
z 2.7 1.2 1.1 0

Figure 5. Neighboring interactions in a y-sheared dimer.

Figure 6. Representative intermolecular vibration modes.

Figure 7. Frequencies of intermolecular vibration modes of 5-substi-
tuted 2-aminopyridines as a function of the square root of the relative
molecular weight (M0/M)1/2.
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and propeller twist, whereas the frequencies of the other four
modes are relatively insensitive to M.

This observation suggests that the pseudodiatomic ap-
proximation does not always work appropriately. The frequency
of the stretch mode tended to be higher than that expected from
the molecular weight. This discrepancy must have arisen from
the fact that the frequency of the intermolecular vibration
depends on the moment of inertia around an axis through the
center of mass of each molecule.35 Consequently, one reason
for the discrepancy between the force constants derived from
the 2C-R2PI experiment and those derived from our own
experiments is the treatment of the reduced mass of the
molecules. However, it should also be noted that our present
model is based on a frozen rigid approximation and therefore
cannot account for any coupling terms between intermolecular
vibration (whole-molecule motion) modes and intramolecular
vibration (localized diatomic motion, for example) modes. If a
molecular system is subject to resonance-assisted hydrogen-
bonding effects,13 the frozen rigid approximation would result
in appreciable errors.

Here we qualitatively explain the dependence of the frequency
on the molecular weight. If we assume that a molecular dimer has
C2h symmetry, we can assign an irreducible representation to each
normal mode as follows: propeller twist (au), buckle (au), opening
(bu), shear (ag), stagger (bg), and stretch (ag). As can be seen from
Figure 6, each normal mode is a combination of the transverse
(Tx, Ty, and Tz) and rotational (Rx, Ry, and Rz) motions of each
monomer unit. Therefore, the displacement vectors of these motions
can be described in a 12-dimensional space that is expanded by
the displacement vectors of the Tx, Ty, Tz, Rx, Ry, and Rz motions.

Here the notation Tx + Tx, for example, refers to a symmetric
combination of Tx. In view of the symmetry of these basic motions,
the shear and stretch modes are composed of the combinations Tx

- Tx, Ty - Ty, and Rz + Rz, all of which are assigned to an ag

representation. For all the modes, the correlation between the
normal modes and the basic motions is schematically illustrated
in Figure 8. The apparent insensitivity of the frequency to the
molecular weight (Figure 7) may have arisen from the complicated
mixing of basic transverse and rotational motions, as shown in
Figure 8.

Of the six intermolecular vibration modes, only opening has
a bu representation, originating in Rz - Rz motion. This finding
explains the fact that the frequency of the opening mode is
approximately proportional to (M0/M)1/2. Because the Rz - Rz

vibration originates from an antisymmetric stretching of the
NH · · ·N bond, the stretch elasticity of this bond is more directly
reflected in the opening mode than in the stretch mode. Using
the force constants derived above, we attempted to calculate
the frequency of Rz + Rz and Rz - Rz mode vibrations by purely
mechanical means. Using the geometrical parameters shown in
Figure 9, one can obtain eigenvalues, Izω2, of the equation of
motion:

Rz -Rz mode: Izω
2 )K1 +K2 (8a)

Rz +Rz mode: Izω
2 )K1 -K2 (8b)

K1 and K2 are defined as follows:

K1 ) kx(l1
2 sin2

φ1 + l2
2 sin2

φ2)- ky(l1
2 cos2

φ1 +

l2
2 cos2

φ2) (9a)

K2 ) 2kxl1l2 sin φ1 sin φ2 + 2kyl1l2 cos φ1 cos φ2 (9b)

Because the 2-aminopyridine dimer is an antiparallel doubly
hydrogen-bonded system, the force constants of the hydrogen
bonds are kx ) 11.5 N m-1 and ky ) 4.8 N m-1. The moment
of inertia Iz around the z axis through the center of mass was
calculated to be 4.44 × 10-45 kg m2. Then we obtained 61.9
and 18.4 cm-1 as the frequencies ω of the Rz - Rz and Rz + Rz

modes, respectively. The value of 61.9 cm-1 is in good
agreement with the frequency (63.6 cm-1) of the opening mode.
This agreement confirms that our analysis based on mechanical
parameters and the normal-mode analysis based on a rigorous
Hessian matrix treatment give consistent results. We must
emphasize that our strategy, namely, the segmentation of
intermolecular force constants into the contributions from
constituent hydrogen bonds, enabled us to correctly reproduce
an intermolecular bending force from the force constants for
transverse deformation. For the other 11 basic modes, similar
calculations gave the corresponding frequencies of vibration
(Figure 8), and all the calculated values were within a reasonable
low-frequency range. The correspondence between the levels
of the 12 basic motions and the 6 normal modes is not simple,
suggesting that the off-diagonal terms such as Tx - Tx versus
Rz + Rz appreciably contribute to the normal-mode frequencies.
In addition, it should also be noted that the normal-mode analysis
was performed for the energy minimum structure, which has
not C2h symmetry but Ci symmetry, because of the pyramidiza-
tion of the amino group; this fact results in contamination of ag

with bg representations and contamination of au with bu

representations. Implementation of the coupling effect of the
vibrational modes into more-practical simulations, such as lattice
dynamics, would require another approach, including a detailed
analysis of the eigenvectors of normal-mode vibrations.

Figure 8. Correlation diagram of intermolecular vibration modes
between the monomers (left) and dimers (right). The number below
each level is the frequency (cm-1).

Figure 9. Geometrical parameters used for calculating the modal
vibration of 2-aminopyridine.
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4. Conclusions

We formulated an explicit representation of anisotropic force
constants to realistically describe the motion of interacting
molecules. We applied the formulation to multiply hydrogen-
bonded systems and demonstrated that the stiffness of a
hydrogen bond has apparent anisotropy, responsible for the
occurrence of several types of intermolecular vibration modes.
On the basis of a multivariate analysis of 20 molecular dimer
systems with one to four hydrogen bonds, we succeeded in
dividing the force constants into the contributions of each
hydrogen bond (NH · · ·N or NH · · ·O) and each secondary
interaction with neighboring hydrogen-bonded pairs in a parallel
or an antiparallel alignment. The principal values of the stiffness
tensor were 20.2, 2.7, and 2.7 N m-1 for the NH · · ·O bond and
11.5, 3.0, and 1.2 N m-1 for the NH · · ·N bond. The results
suggested that the symmetry of the tensors is related to the
hybridization of the atoms in question. The secondary interac-
tions were relatively small but not negligible, and the difference
in parameters kpara and kanti accounts for the difference in
intermolecular forces between the systems with various align-
ments of the hydrogen bonds. The origin of the secondary
interactions can be qualitatively explained in terms of electro-
static interactions. Although the stiffness tensor values had an
intrinsic error of ∼20% that came from the precision of
calculation, we expect that the relative magnitude of anisotropy
and the additivity of the contributions are intrinsic properties
of the hydrogen-bonded system, and hence, they are not much
influenced by the level of calculation.

The consistency between our force constants and the experi-
mental and theoretical normal-mode vibrational frequencies was
also checked. The difference in force constants kNH-N and kNH-O

between the 2C-R2PI results and ours may originate from an
inappropriate derivation of force constants from experimental data
or from a lack of the resonance-assisted effects in calculation. By
means of a mechanical method, we derived the frequencies of 12
basic motions that are represented as a combination of transverse
and rotational motions of the monomers. The good agreement
between the observed and calculated frequency regions validated
our approach in collecting the parameters, although the discrepancy
between the frequency values highlighted the importance of off-
diagonal terms of transverse versus rotational motions. We pointed
out that the nature of the normal-mode vibrations must be
considered in discussions of force constants based on spectral data.
Classification of the normal mode based on group theory led us to
the important deduction that the stretch elasticity was not purely
reflected in the stretch mode, but was directly reflected in the
opening mode. Our parameters reproduced fairly well the frequency
of the opening mode derived from normal-mode analysis. Through
the comparison between mechanical and quantum calculations, we
demonstrated that the parameter set is valid for calculating the
bending stiffness, even though the set was derived from trans-
verse displacement only. We expect that these parameters will be
effective for simulating various intermolecular motions in biological
systems and condensed matter.
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