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Six-dimensional wave packet calculations on an accurate potential energy surface are used to obtain the
quantum mechanical capture (QM C) probabilities for CH + H2 corresponding to a variety of total angular
momenta and internal reactant states. Rate constant calculations are made feasible by employing a Monte
Carlo based sampling procedure. The QM C probabilities alone are also used to estimate the high pressure
CH + H2 rate constants corresponding to stabilization or CH3 formation. The rate constants for CH + H2 f
CH2 + H reaction in the low pressure limit are obtained by combining the QM C probabilities with a phase
space theory (PST) approximation for product formation from the complex. Our results are compared with
the experimental results of Brownsword et al. (J. Chem. Phys. 1997, 106, 7662), as well as with purely
classical PST calculations. The QM C probabilities are shown to be highly dependent on the initial rotational
states of the reactants corresponding to orientational restrictions on complex formation. Consistent with this,
our QM C high pressure rate constants for CH3 formation are lower than the purely classical PST rate constants.
These QM C rate constants also are in reasonable accord with experiment. A similar but somewhat more
subtle picture emerges regarding the QM C/PST rate constants for CH2 + H formation.

I. Introduction

The gas phase reaction system:

CH(2Π)+H2fCH3
*fCH2(X

3B1)+H (R1)

V[M]

CH3 (R2)
is interesting from several perspectives. First, it is one of the
simplest systems involving the methylidene radical, CH, a highly
reactive species of relevance to combustion chemistry. Second,
it involves intermediate methyl radical CH3* (X2A2′′ ) com-
plexes, making it a good test case for understanding the role of
complexes in bimolecular chemical reactions. Finally, the
minimum energy path for CH3* formation is somewhat unusual
in that the two diatomic reactants are oriented parallel to one
another as they approach, and only at a surprisingly short
separation of their centers of mass (∼2.5 au) do they adopt the
more intuitive C2V insertion path.1-3 Consequently, there have
been numerous experimental and theoretical studies of this
system. 1-9 Reaction (R1) is a barrierless, endothermic reaction
with ∆H0(0 K) ) 0.145 ( 0.006 eV, whereas ∆H0(0 K) )
-4.592 ( 0.003 eV for (R2).3

In a previous work3 (hereafter, Paper I), we carried out
quasiclassical trajectory (QCT) and quantum wavepacket cal-
culations on the forward reaction (R1) consistent with the low
(“zero”) pressure gas phase limit where (R2) is not relevant.
These calculations used a global potential energy surface that
incorporated very high level ab initio electronic structure
information.10 Severe zero-point energy violation was found to

occur in the classical trajectories, leading to a flat, near gas-
kinetic QCT-based rate constant of ∼4 × 10-11 cm3 molec-1s-1

in the 300-1000 K temperature range. In contrast, experimental
measurements of the low pressure rate constant5 vary from ∼3
× 10-12 cm3 molec-1s-1 to ∼3 × 10-11 cm3 molec-1s-1 across
this temperature range, i.e., only agree with the QCT result in
the high temperature limit. The quantum calculations were
limited to total angular momentum, J ) 0, thus not permitting
a reliable estimate of the full rate constant. However, we were
able to validate a quantum mechanical capture/phase space
theory (QM C/PST) model for approximating the quantum
reaction probabilities, wherein the reaction probability is equated
with a product of a quantum mechanical capture (QM C)
probability and a phase space theory (PST) probability for
product formation. Our use of such capture-based quantum
mechanical ideas was motivated by the earlier capture-based
wave packet work of Lin and Guo 11,12 and time-independent
scattering work of Manolopoulos and co-workers. 13 A statistical
quasiclassical trajectory method has also been developed by
Aoiz and co-workers. 14 While not involving capture ideas, we
note also the statistical sampling approach of Matzkies and
Manthe15 which allows the direct, quantum mechanical calcula-
tion of thermal rate constants. In finite pressure experiments,
the loss of CH + H2 is due to a competition between (R1) and
(R2). Whereas in the low pressure limit (R1) is the dominant
loss mechanism, in the high (”infinite”) pressure limit, (R2)
dominates. The quantum mechanical capture probabilities we
compute here are actually most directly related to this latter
process and infinite pressure rate constants can therefore be
estimated from them without any additional PST approximations.

The purposes of the present paper are (i) to estimate the
quantum rate constant for reactions (R1) and (R2) based on
extensive J > 0 four-atom wavepacket calculations of the
capture probability and (ii) to discuss the dynamical role of
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rotational excitation and alignment in determining reaction
probabilities and rate constants. In order to accomplish (i), in
addition to use of our previously developed QM C/PST model
[Paper I], we have developed a Monte Carlo sampling procedure
for selecting which reactant quantum states are considered.

Section II below outlines the theoretical methods employed,
Section III presents our results, Section IV gives concluding
remarks, and Appendices A and B concern details of the Monte
Carlo sampling procedure and PST calculations, respectively.

II. Theory

A. Quantum Mechanical Capture/Phase Space Theory
(QM C/PST) Model for Rate Constants. We begin with the
standard formula for the reaction rate constant at a given
temperature, T, which involves a Boltzmann distribution over
the cumulative reaction probability:

k(T))
σel

2πpQr(T)∫ dEe-E ⁄ kBTN(E) (1)

where N(E) is the cumulative reaction probability, σel is an
overall electronic degeneracy factor for reaction, E is the total
energy of the system, and Qr(T) is the partition function of the
reactants. At the energies relevant to our work, the reactants
will be in their vibrational ground state so that
Qr(T))Qtrans(T)Qrot(T). Thus, we need only consider the partition
functions corresponding to relative translation and the rotational
states of the diatoms. The electronic factor, σel, is taken to be
σel ) 1/2 to account for the fact that only one of two electronic
potential energy surfaces correlates with either CH3 of (R2) or
the CH2 + H products of (R1).3 For a reaction of two diatomic
molecules, we may rewrite the expression for the rate constant
in terms of a Boltzmann-weighted average over state-specific
reaction probabilities as follows:

k(T))
σel

2πpQtrans(T)∑J)0

Jmax

(2J+ 1)∑
j

σnuce
-Erot⁄kBT

Qrot(T)
×

∫dEe-Etrans ⁄ kBTP J(j, E)
(2)

In eq 2 above, E ) Etrans + Erot + Evib. Since we consider only
the vibrational ground state, exp(-Evib/kBT)/Qvib is essentially
unity and is thus not included.

We employ two strategies to reduce the amount of compu-
tational time required to compute the low pressure rate constants
for (R1) and the high pressure rate constants for (R2). The first
strategy is to approximate PJ(j, E) in eq 2 with either the QM
C/PST model of Paper I in the case of reaction (R1), or to simply
use the quantum mechanical capture probabilities directly for
PJ(j, E) in the case of reaction (R2):

(R1) : PJ(j, E))Pcap
J (j, E)Pstat

J (E) (3)

(R2) : PJ(j, E))Pcap
J (j, E) (4)

The second strategy that we employ is to use a Monte Carlo
sampling method to approximate the sums over quantum
numbers given in eq 2. (See Section IIC and Appendix A). A
sampling method is necessary because even though the capture
probabilities are not terribly time-consuming, even at low
energies, there are many thousands of possible initial states.

B. QM C/PST Probability. The method for computing the
QM C/PST reaction probability is given in detail in Paper I.3

Thus, we will give a brief description here. To compute the
capture probabilities, Pcap

J , we employ the real wavepacket

method,18 along with a diatom + diatom Jacobi coordinates four-
atom representation.17 The wavepacket is a function of six
nuclear degrees of freedom which are illustrated in Figure 1:
the separation of the CH and H2 centers of mass, R; the HH
and CH internuclear distances, r1 and r2; and three angular
coordinates θ1, θ2, and φ. We define R to be the body-fixed z
axis. The angular coordinates correspond to the angles made
by the HH and CH bonds with the R axis and an associated
torsional angle. Evenly spaced grids are used to represent r1

and R and the dispersion fitted finite difference (DFFD) method
is used to compute the action of the kinetic energy operator.19

Parity-adapted angular basis functions or equivalent primitive
grids are used to represent the angular degrees of freedom.17

The CH bond, r2, is described with a potential-optimized discrete
variable representation (PODVR).20 We neglect Coriolis cou-
pling, treating K as a good quantum number, which greatly
facilitates calculations involving high J values since then K is
treated as a conserved quantum number. Coriolis terms can
become large when R is small since these terms are proportional
to (1/(2µR2) and/or when large values of j1 and j2 are important.
Because we absorb the wavepacket prior to its reaching the
interaction region, neither of these conditions is met. The
Boltzmann weighting of the initial rotational states does not
favor large values of j1 and j2, and there is not much mixing of
the rotational states prior to entering the interaction region. It
is possible that Coriolis coupling could be somewhat important
near our inner absorption region, but we do not think that
inclusion of these terms would significantly alter our results.

Unlike standard wavepacket calculations, our capture wave-
packet calculations include absorption of the wavepacket as it
enters the interaction region.11,12 Thus, there are two absorption
strips along the R grid, the usual one at the large R end for
absorbing noncomplex forming CH + H2 and one at the small
R end associated with absorbing CH3 complexes as they form
in the interaction region. The absorption at small R “captures”
the complex so that it cannot dissociate to form products or,
more importantly, reform reactants. In preliminary testing, we
found that we got very similar capture probabilities using 2 au
e Rabs e 3 au to define the absorption strip at small R. (See
Table 1.) The capture probabilities are computed directly from
a flux analysis. The flux is evaluated at a value of R, R†, that is
between the inner and outer absorption regions. As long as R†

is not too close to the absorption region, we find that the results
are independent of its exact value. For the work reported here,
we set R† to be 5.8 au Numerical parameters for the capture
wavepacket calculations are given in Table 1. We employ the
same potential energy function that was used in Paper I. 3

However, the only portion of the potential relevant to these
calculations is the entrance channel. Thus, calculations of this
type do not require a global potential energy surface, simply
that the entrance channel be well characterized.

Sometimes probabilities can be difficult to converge at low
translational energies. Due to the endothermicity of the reaction

Figure 1. Schematic diagram of the four-atom Jacobi coordinates
employed in our quantum calculations.
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(R1), we rarely had to consider very low translational energies
when finding capture probabilities relevant to the rate constants
for this process. Additionally, for either (R1) or (R2), our finite
T ensembles favor J > 0, and centrifugal barriers reduce the
importance of the low translational energies. In cases where
low translational energy was important, we used an additional
initial wavepacket centered at low energy to better converge
the capture probabilities near threshold. In a few cases,
oscillations in the capture probabilities near threshold did occur,
but we were able to extrapolate from slightly higher translational
energies to avoid them.

The probability Pstat
J (E) is a statistical or PST reaction

probability for the complex, i.e., the ratio of the number of
available product states at energy E and total angular momentum
J to the total number of available reactant and product states:
eq B2 of Appendix B. In subsequent equations in Appendix B,
centrifugal barrier effects in the reactant and product channels
are included in the available state counts. We will refer to QM
C/PST calculations including such centrifugal barrier effects in
the PST component as QM C/PST-1. While this QM C/PST-1
model might seem to be the most consistent one, it is possible
that dynamical effects may substantially modify the effects of
the barriers. One simple alternative model for Pstat

J (E) is one
that completely neglects centrifugal barrier effects in the reactant
and product sum of states, i.e., effectively sets these barriers to
zero. We will refer to this model as QM C/PST-2. (Note,
however, that all purely PST results presented in this paper
correspond to PST-1. See Appendix B.)

C. Monte Carlo Sampling Procedure. To motivate our
sampling procedure, we rewrite eq 2 as follows:

k(T))
σel

2πpQtrans
∑
J)0

Jmax

(2J+ 1)∑
j

σnuce
-Erot ⁄ kBT

Qrot
P̃J(j, T) (5)

where

P̃J(j, T))∫ dEe-Etrans ⁄ kBTPJ(j, E) (6)

is the reaction probability averaged over a Boltzmann distribu-
tion of kinetic energies.

We use a Boltzmann weighted sampling method to choose
an ensemble of initial states for the wavepackets. Many of the
technical details of the procedure are given in Appendix A. For
ensemble state, i, with quantum numbers J(i) and j(i), we
compute PJ(i)(j(i),E) as defined in eq R2 and then integrate over
the translational energies to obtain P̃J(i)(j(i),T) as defined in eq

3. For an N-member ensemble, the reaction rate is then
computed as follows:

k(T))
σel

2πpQtrans

1
N∑

i)1

N

P̃J(i)(j(i), T)(Jmax + 1)2 (7)

Note that the rotational weighting factors and partition
functions in eq 2 are not in eq 4 because they are accounted for
in the sampling procedure. Note also that in the expression for
the rate constant, eq 2, each J has a weight of (2 J + 1), whereas
in the ensemble, eq 4, each J has a weight of (2 J + 1)/(Jmax

+ 1)2 (see Appendix A). This gives rise to the(Jmax + 1)2 factor
in eq 4, which is analogous to the b2

max factor in the
corresponding classical expressions for rate constants, where
bmax is the maximum impact parameter.

III. Results and Discussion

A. Capture Probabilities. In general, the quantum mechan-
ical capture probabilities, Pcap

J (j, E), are complex functions of
J and j ) { K, j1, j2, k1, p}. However, for K > 0, assuming that
K is a good quantum number, the results are independent of
parity, p. (For K ) 0, the even and odd parity results may differ.)
For given J, j1, j2, the quantum number, K, ranges from 0 to
min (J, j1 + j2). The allowed values of k1 are a function of j1,
j2 and K and in some cases may be negative.16 In this subsection,
we discuss certain trends we have found in Pcap

J (j, E) with
particular focus on the projection quantum numbers K, k1 and
k2 ) K - k1 that relate to the initial orientations of the diatomics.
We first present some general expectations based on the
underlying potential energy surface and the nature of the initial
wave functions. We move on to a discussion of a variety of
capture probabilities that are consistent with these expectations.
The dependence on J is also touched on at the end.

Figure 2 displays the potential surface as a function of (a) R
and θ1 and (b) R and θ2, optimized with respect to the other
coordinates. As discussed in greater detail in ref 3, the minimum

TABLE 1: Computational Details of Capture Wavepacket Calculations

parameters (au ) atomic units) 0 e J < 25 25 < J e 32a

Rmin(au), Rmax(au), NR 0.5, 17.0, 216 0.5, 20.0, 255
rHHmin (au), rHHmax (au), NHH 1.0, 6.0, 76 1.0, 6.0,48
no. of rCH PODVR points 1 1
largest value of jHH (j1 ) 12a,13a 12a,13a

largest value of jCH (j2) 18 18
absorption parameters:c Rabs(au) Cabs(au), for R 13.5, 0.005 16.5, 0.005
absorption parameters: rabs(au), Cabs (au) for rHH 2.0, 0.005 2.0, 0.005
absorption parameters: Rabs(au) Cabs(au) for R in the interaction
region

2.0, 0.1 2.0, 0.1

incoming Gaussian function:d p2 k o
2/(2 µ)(eV), R0(au), R (au) 0.3, 12.0, 0.3 (0.05, 12.0, 0.3) 0.3, 14.0, 0.3 (0.05, 14.0,0.3)

rotational constants (cm-1): B1, B2 60.85, 14.46 60.85, 14.46
Evib (eV) 0.44 eV 0.44 eV

a Due to symmetry, the rotational basis for H2 contains only even or odd values of j1. c The absorption is given by exp[-Cabs(R - Rabs)2], R
g Rabs, except in the interaction region where it is applied for R e Rabs. d Defined as in ref 18. For some values of the initial parameters, it was
necessary to use two different initial wavepackets to cover the entire relevant spectral range. In this case, a second set of parameters was also
used.

TABLE 2: Parameters Relevant to Calculations at Different
Temperatures

T (K) max Etrans (eV) Jmax

202 0.15 30
294 0.20 32
300 0.20 32
364 0.30 35
484 0.35 38
584 0.4 39
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energy path for complex formation for R > 2.5 au corresponds
to the planar configurations with the diatomics being parallel
to each other and perpendicular to R, i.e., θ1 ) θ2 ) 90° (and
φ ) 0) in Figure 1. The more intuitive C2V insertion becomes
operative at R < 2.5 au and corresponds to θ1 ) 90° and θ1 )
0°. These features are reflected in the optimized potential plots
in Figure 2.

Due to the parallel diatomic alignment preference in the
entrance channel noted above, if all other things are equal, we
expect that larger K quantum numbers will tend to have larger
capture probabilities at the energies relevant to this study. To
understand this expectation, it is important to realize that the
“hidden” quantum number, k2 ) K - k1, corresponds to the
CH z-axis projection quantum number. The initial rotational H2

and CH wave functions are given by a product of associated
Legendre functions:

Pj1

k1(cos θ1)Pj2

k2(cos θ2) (8)

Optimal alignment occurs when k1 and k2 attain their
maximum values, i.e., ji ) ki because then the associated
Legendre functions are proportional to sin k(θ) which peaks at
θ ) 90°. The alignment is least optimal when ki ) 0, and
becomes more optimal as ki increases. Figure 3 illustrates this
point by plotting the reduced probability density as a function
of R and cos θ2 of four different wavepackets after having been
propagated a fixed time (0.05 ps) toward the interaction region.
In each case, J ) 10, j1 ) 1, j2 ) 3, and k1 ) 1 but K differs.
(Note that the H2 is optimally aligned.) From top to bottom,
we have K ) 1 (k2 ) 0), K ) 2 (k2 ) 1), K ) 3 (k2 ) 2), and
K ) 4 (k2 )3). As k2 increases, there is much more density
concentrated near cos θ2 ) 0. For the K ) 4 case, we have
j1 ) k1 ) 1 and j2 ) k2 ) 3, thus the system is optimally aligned
to form CH3 complexes (bottom panel). The least optimal
alignment occurs when K ) 1 or k2 ) 0, with more wavepacket
density at cos θ2 ) ( 1 (top panel).

Figures 4 and 5 display Pcap
J (j, E) results consistent with the

above arguments. In each panel of Figure 4, we show Pcap
J (j,

E) for a particular choice of K (dashed curve) and K + 1 (solid
curve) with with J, j1, j2, and k1 kept the same. One sees,
sometimes quite dramatically and other times less so, that the
K + 1 capture probability is the higher one over the energy
range considered. A somewhat surprising but completely
consistent result with the above considerations is shown Figure
5. If all else is equal, then higher CH rotation reduces the capture
probability. This is the case because for a fixed value of k2 <
j2, increasing j2 leads to further disparity between k2 and j2, and
thus less optimal alignment. Each panel of Figure 5 shows that
the higher j2 case, all other quantum numbers equal, has the
lower capture probability.

We have focused on the role of k2 in this discussion, but of
course, similar remarks can be made regarding k1. However,
due to the large H2 rotational constant, the most important H2

rotational states are relatively low so that there is not as much
variation with k1 in our ensemble.

Another important determinant of the capture probability is
the total angular momentum quantum number, J. In general,
all else being equal, at a given collision energy Pcap

J decreases

Figure 2. Optimized potential energy, V, as a function of R, the
distance between the H2 and CH centers of mass, and the angles made
by the diatomics with R: (a) θ1 (H2), (b) θ2 (CH).

Figure 3. Snapshot of real wavepacket densities after effectively 0.05
ps of propagation from the initial condition of Table 1. In each case,
the initial wavepacket had J ) 10, j1 ) 1, j2 ) 3, and k1 ) 1. The K
quantum number increases from 1 to 4 as one goes from top to bottom
panels, which corresponds to k2 ranging from 0 to 3 as indicated. Light
blue represents low density and dark blue represents high density.
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with increasing J, as illustrated in the left-hand panel of Figure
6. This can be understood in terms centrifugal barriers in the
reactant channel rising as J increases. For a given J, however,
there will be very different capture profiles, depending on the
values of the other rotational quantum numbers as seen in the
right-hand side of Figure 6. We have used capture profiles such
as those shown in Figure 6 to determine the Jmax for each
temperature.

To conclude this subsection, we note that the reactant
quantum number dependence of the capture probabilities,

particularly the dependence on the projection quantum numbers,
implies that not all orientations have the same capture prob-
ability. Figures 4 and 5 show that this is true for reactants with
the same total energy. A statistical theory based on total energy
considerations and/or simple approximations to centrifugal
barriers that do not depend on these projection quantum
numbers, as in Appendix B, would likely overestimate the
capture probabilities.

B. Rate Constants for High Pressure Collisional Stabili-
zation, (R2). We begin with the high pressure collisional
stabilization, reaction (R2), rate constants because the quantum
mechanical capture probabilities alone, without additional
statistical assumptions, can be used to obtain these rate constants.
It is also the case that the uncertainties placed on the
experimental rate constant for (R1) from ref 5 are significantly
lower than those for (R1). Figure 7 presents our corresponding
quantum mechanical capture (QM C) rate constants for colli-
sional stabilization (filled circles), and contrasts those with
experiment (red dashed curve) and phase space theory (PSTssee
Appendix B). The experimental rate constant in Figure 7 is from
what Brownsford et al.5 estimated to be their best estimate of
the rate constant for reaction (R2), which was given in the form
of a power law fit to their data. The solid error bars correspond
to application of the 95% confidence limits to the parameters
of the fit.

The QM C rate constants in Figure 7 are in good accord with
experiment, whereas the PST rate constants overestimate the
rate constant by about a factor of 3. This result is consistent
with the dynamical effects noted in Section IIIA, i.e., the
observation that orientation effects not included in PST will
limit complex formation. (Of course a simple manner of
determining the centrifugal barriers was used in Appendix B
that ignored dependencies of these barriers on reactant quantum
numbers aside from the orbital angular momentum quantum
number associated with the approaching H2 and CH fragments.
More sophisticated treatments could conceivably lead to lower
PST rate constants.)

C. Rate Constants for Low Pressure CH2 + H Formation,
(R1). The QM C/PST rate constants, calculated using a
combination of quantum mechanical capture probabilities and
phase space theory, are shown in Figure 8 and compared with
experimental and full classical PST results. The experimental
rate constant is taken to be the best estimate of the zero-pressure
(R1) rate constant from ref 5, which was given in the form of
an Arrhenius fit (dashed red curve and solid error bars) in their
abstract. It should be mentioned that the experimental rate
constant for T < 500 K for R1 is not directly measured because,
even at the lowest pressures in the experiment, there are
contributions from both R1 and R2.5 The error bars are inferred
from the 95% confidence limits on the fit parameters. The QM
C/PST-1 results (open circles), which include centrifugal barrier
effects in the PST portion of the calculations, lie just at or
slightly under the lower uncertainty limit of the experimentally
based curve. The corresponding PST results (solid curve), which
are only slightly above the experimental dashed curve, are about
a factor of 3 larger than the QM C/PST-1 ones. In view of the
experimental uncertainties, which are larger for (R2) than (R1),
perhaps one could call the agreement between QM C/PST-1
and experiment adequate. This situation is therefore similar to
the high pressure capture rate constant case of Section IIIB with
the PST rate constant being larger than the QM C/PST-1.

However, if one assumes that the level of disagreement
between QM C/PST-1 and experiment is significant, then there
are two curious features in the results of Figure 8. First, in light

Figure 4. Capture probabilities as a function of initial translational
energy. This plot shows the dependence of the capture probabilities
on the projection quantum number, K. The initial rotational quantum
numbers are given in the figure legends.

Figure 5. Capture probabilities as a function of initial translational
energy. This plot shows the dependence of the capture probabilities
on the j2, the initial rotational quantum number of CH. The initial
rotational quantum numbers are given in the figure legends.
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of full PST overestimating the (R2) experimental capture rate
constant in Section IIIB, it is surprising that PST appears to be
in much better agreement with experiment for (R1). Second, it
is surprising that an approach like QM C/PST-2, that neglects
centrifugal barrier effects, gives a result in better accord with
experiment than QM C/PST-1, which includes these effects.
Regarding the first feature, given that we know that the full
PST capture probability is too high, eq R2 for (R1) implies that
the only way to obtain (accidentally) a correct rate constant from
PST is to then underestimate the statistical probability of
forming products once a complex has formed. This implies that
it is likely that the centrifugal barriers for product formation
used in our PST calculations, relative to those for going back
to reactants, are too high due to dynamical reasons yet to be
determined. In other words, the correct centrifugal or dynamical
barriers in the product and reactant channels that are operative
may be closer to one another than expected on the basis of
simple arguments. If this is the case, then one can see how the
second curious feature arises. Because QM C/PST-2 uses no
centrifugal barriers in the PST portion of the calculation of the

calculation, it effectively lowers the relative differences between
reactant and product barriers, albeit in the most extreme way.
Thus, both a dynamically correct capture probability (QM C)
and a possibly more correct statistical probability are being used
in this case, which leads to the agreement with experiment.

IV.Concluding Remarks

We carried out calculations of the quantum mechanical
capture (QM C) probabilities for CH + H2 in six dimensions
and for a variety of reactant and total angular momentum states.
Rotational state dependencies in the QM C probabilities were
identified which reflect orientational effects in the complex
formation. We then calculated quantum-based rate constants
corresponding to the infinite pressure collisional stabilization
of the complexes, reaction (R2), and to the zero pressure limiting
rate constant for CH2 + H formation, reaction (R1). These
results were compared with classical phase space theory (PST)
results and experimental results. The rate calculations for (R1)

Figure 6. Capture probabilities as a function of initial translational energy. This plots shows the dependence of the capture probabilities on the
overall angular momentum. On the left, all initial states have j1 ) 1, j2) 3, k1)1, and K ) 1. On the right, results for J ) 37 from different initial
conditions are presented.

Figure 7. Infinite pressure rate constants for CH + H2f CH3 inferred
via the quantum mechanical capture (QM C) model, phase space theory
(PST) and the experiments of ref 5. The solid vertical red line is an
indication of the experimental uncertainties.

Figure 8. Low pressure rate constants for CH + H2 f CH2 + H
inferred via the quantum mechanical capture/PST (QM C/PST-1 and
QM C/PST-2) model, phase space theory (PST) and the experiments
of ref 5. The solid vertical red line is an indication of the experimental
uncertainties. See text for further details.
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involved a combination of the quantum mechanical capture (QM
C) probabilities and statistical or phase space theory estimates
of the probability to form products.

We found very good agreement with experiment concern-
ing our QM C rate constants for stabilization, pointing to
the goodness of the potential energy surface employed and
the Monte Carlo (MC) sampling procedure for evaluat-
ing the quantum rate constant. The PST rate constants are
larger than the experimental and the QM C ones, consistent
with the orientation effects noted in the detailed QM C
probabilities. A similar but more complex picture emerged
for reaction (R1). Our QM C/PST-1 rate constants for (R1),
the zero pressure rate constant to form CH2 + H, agree with
the lower uncertainty limits of the experimental results.
However, a QM C/PST calculation neglecting centrifugal
barriers (QM C/PST-2) and full PST with centrifugal barriers
agreed better with experiment. Assuming such differences
are significant given the uncertainty in the experimental rate
constant, it was argued that the effective dynamical barriers
for product formation, relative to those for reactants, might
be lower than those assumed in the PST calculations.

In the future, we plan to examine the quantum dynamics of
product formation in more detail in order to confirm the
inferences above. It would also be interesting to apply the QM
C/PST method to larger systems that react via metastable
intermediates. This method requires only that the full potential
energy surface is known in the entrance channel. It is also quite
possible that most of the vibrational degrees of freedom would
not have to be treated explicitly, so that quantum wavepackets
could be computed rather efficiently.

Appendix A: Monte Carlo Sampling Procedure

This Appendix discusses in greater detail the Monte Carlo
approach for evaluating eq 2 which leads to the working
equation, eq 4, of the text. The sampling procedure is
essentially a discrete version of the standard Boltzmann
weighted sampling procedure used in quasiclassical calcula-
tions of the rate constant. 21

For each initial state, we need to choose five quantum
numbers, J, j1, j2, K, and k1. By allowing the projection quantum
numbers K and k1 to have both positive and negative values,
we account in our ensemble for both parity states. Only in the
case of K ) 0, however, do the even and odd parity calculations
give different results and actually require separate wavepacket
calculations.

The first step is to choose the three quantum numbers that
can be chosen independently, J, j1 , and j2. To choose J, we
choose an integer, i, at random between 1 and (Jmax + 1)2.
The maximum value of the total angular momentum, Jmax, must
be obtained according to dynamical considerations and requires
test calculations to determine the largest J that contributes
significantly to the capture probability. For a particular i, there
is just one J that satisfies:

J2 < ie (J+ 1)2 (A1)

It is easy to see that application of this procedure results in
integer J values being chosen in the range J ) 0 to Jmax with
probability:

PJ )
2J+ 1

(Jmax + 1)2
(A2)

The numerator arises from the (2J + 1) degeneracy factor in
eq 2, which is due to M, the number of possible space-fixed
z-axis projections of the total angular momentum. The denomi-

nator in eq A1 represents the total number of possible J, M
quantum states if J values up to Jmax are considered.

The maximum values of j1 and j2 used in the ensemble are
found using the Boltzmann weighting,

Pji
(T))

σi(2ji + 1)e-Biji(ji+1) ⁄ kBT

Qrot,i(T)
(A3)

that determines the probability of a particular rotational state at
temperature T. Nuclear spin degeneracy factors, σi, defined
below eq R2 in the main text, are included. We choose j1max

and j2max such that Pji(T) > 1.0 × 10- 5. We find j1 and j2 with
a standard Von Neuman sampling technique.22 For each ji, we
choose an integer, j, at random between 0 and jimax. To decide
whether or not to include it in our ensemble, we choose a
random number, r, between 0 and 1 and accept ji ) j if and
only if Pji(T) e r.

Once the rotational quantum numbers J, j1, and j2 are chosen,
we must then select the remaining quantum numbers K and k1,
and p. Here, we simply enumerate all of the micro states
consistent with J, j1, and j2, and randomly pick one of them. If
the chosen state is not already a member of the ensemble, then
it is added to it. The ensemble is chosen to be large enough to
converge the reaction rate at the chosen temperature. In most
cases, J g j1 + j2, and there are (j1 + 1)(j2 + 1) possible
combinations of K and k1 or microstates. In this case, the
probability of choosing a particular microstate with quantum
numbers j ) { J, j1, j2, K, k1} is as follows:

(2J+ 1)

(Jmax + 1)2

σnucexp(-Erot ⁄ kBT)

Qrot
(A4)

where σnuc ) σ1 σ2 as defined below eq 2 in the text and Qrot

) Qrot,1 Qrot,2. If J < j1 + j2, there are fewer than (j1 + 1)(j2 +
1) microstates available, so that the probability of choosing a
particular microstate is somewhat larger than what would be
computed for eq A3. This introduces a slight bias into our
sampling which can be corrected. Wavepackets with J < j1 +
j2, however, account for only 5% if the ensemble. The error
introduced by this bias is typically <∼1%, and we do not correct
for it in the results reported here.

We note several subtle points, however, regarding the
selection of K and k1. By permitting both projection quantum
numbers to attain both positive and negative values, we account
for both parity states. In the case of K ) 0, a negative value of
k1 is considered to correspond to odd parity. For K * 0, even
and odd parity initial conditions give rise to identical results.
Therefore, if our ensemble were to include both {J, j1, j2, K,
k1} and {J, j1, j2, - K, - k1} we would only compute one Pji(T)
but count it twice. The second consideration is whether to
eliminate the possibility of choosing a given set of initial
conditions more than once. In the limit of very large ensembles,
one would allow this possibility. Otherwise, by eliminating
highly probable initial conditions from consideration, one would
bias the sample in favor of less probable ones. In the limit of
rather small ensembles, however, where one might want as much
variety as possible, one might not allow it. In our particular
case, we determined that each alternative gave rise to nearly
identical results. With the above sampling procedure for the
initial states, eq 2 in the text is then reduced to its Monte Carlo
form, eq 5.

For each temperature examined in the text, we find that
sampling typically up to 300 initial reactant states in the MC
average leads to rate constants converged to within a few
percent.
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Appendix B: PST-Based Rate Constant

We will first outline the PST rate constant without the
complication of nuclear spin degeneracies. In the final paragraph
of the Appendix, we outline the changes to this approach
required for including nuclear spin effects. Following ideas in
refs 23-27, we approximate the rate constant for reaction (R1)
as follows:

kPST(T))
σel

hQr
∫ dEe-E⁄kBT∑

J

(2J+ 1)Nreact
J (E)Pstat

J (E)

(B1)

where

Pstat
J (E))

Nprod
J (E)

Nreact
J (E)+Nprod

J (E)
(B2)

and NreactJ and Nprod
J are reactant and product sum of states.

The PST rate constant for reaction (R2) is simply the same as
eq A4 but with the PstatJ(E) factor omitted.

We take the reactant sum of states to be,

Nreact
J (E)) ∑

V1,V2

∑
j1,j2

∑
j
∑

L

θ(εreact -Vreact,L
* ) (B3)

The use of a space-fixed angular momentum representation,
as opposed to the body-fixed representation used in our quantum
dynamics work, is more intuitive and convenient in this case.
In eqs A4 and B2, the sums over total angular momentum, J,
and diatomic vibrational and rotational quantum numbers, j1

and j2, all range from 0, 1, 2, .... The range of the j sum is
determined by angular momentum addition of j1 and j2 to make
j to be from j1 - j2 to (j1 + j2). Similarly, the range of the L
sum, based on adding j and L to make J, is J - j to (J + j).
For a given set of reactant quantum numbers, the translational
energy is εreact ) E - Ereact

rot (j1, j2) - Ereact
vib (V1, V2). The step

function θ(x) ) 1, x > 0 and 0 otherwise ensures that the
translational energy is greater than the centrifugal barrier in the
reactant channel, Vreact,L

* . Notice that θ(εreact - Vreact,L
* ) in eq B2

represents the PST approximation of the more dynamically
based Pcap

J (j, E) of the main text.
If Vreact (R) denotes the minimum energy path for complex

formation starting from reactants as a function of R, the
distance between the center-of-masses of CH and H2, the
reactant channel centrifugal barrier Vreact,L

* for orbital angular
momentum quantum number L is the maximum of Vreact (R)
+ L(L + 1)p2/(2µR2). The minimum energy path was
determined as outlined in Paper I.3

We take the product sum of states to be,

Nprod
J (E)) ∑

V1
, ,V2

, ,V3
,

∑
jCH2

∑
kCH2

(2- δkCH2
,0)∑

L

θ(εprod -Vprod,L
* )

(B4)

where {Vi
,} are CH2 vibrational quantum numbers, jCH2) 0, 1,

2,..., kCH2) 0, 1, ..., jCH2, and angular momentum addition of
jCH2 and J determines L ) jCH2 - J,..., jCH2 - J. In this case,
the product translational energy is determined by εprod ) E -
Eprod

rot (jCH2, kCH2) - Eprod
vib (V 1

, , V 2
, , V 3

, ). Note the energy scale of
the product energy must be the same as that assumed for E. A
prolate symmetric rotor model was assumed for the product
rotational energy (A ) 73.811 cm-1, Bav ) 7.187 cm-1) and
the vibrational energies from ref 10 were employed.

The centrifugal barriers, Vprod,L
* , in the CH2 + H product

channel were obtained by finding the maximum of Vprod(R̃) +

L(L + 1)p2/(2 µ′ R̃2), where R̃ is the distance of H to the center
of mass of CH2 and µ′ ) mH mCH2/(mH + mCH2). The potential,
Vprod(R̃), is found by assuming H approaches CH2 along the
bisector of the CH2 angle, equating the two CH bond distances,
and minimizing the full potential with respect to the remaining
degrees of freedom.

As noted in ref 10, the endothermicity calculated for the
potential energy surface is 0.055 eV higher than an accurate
experimentally based estimate. To correct for this feature we
note the following:

∆H(0 K))Eprod
vib (0,0,0)-Ereact

vib (0,0,0)

) (Vendo + ZPEprod)- ZPEreact (B5)

with Vendo being the bare potential energy difference between
reactants and products and ZPE denoting zero-point energy. We
use an energy scale such that the reactants’ bare potential is
zero, i.e., ZPEreact ) Ereact

vib (0,0,0).) The product vibrational
energies required in the computation of eq B2 may then be
written as follows:

Eprod
vib (V1

, , V2
, , V3

, ))∆E(V1
, , V2

, , V3
, )+ ZPEprod +Vendo

)∆E(V1
, , V2

, , V3
, )+∆H(0 K)+ ZPEreact

(B6)

where (B3) has been used and ∆E ) Eprod
vib (V1

, , V2
, , V3

, ) -
Eprod

vib (0,0,0) . Use of (B6), with the ab initio values for ∆E and
ZPEreact, but with the empirical value ∆ H(0 K) ) 0.145 eV3

or 3.34 kcal/mol corrects for the ab initio error in the
endothermicity. Thus, an empirical correction to the endother-
micity is included in all our PST calculations that involve the
sum of states for products.

It is possible to incorporate tunneling into the PST calculations
by replacing the step functions that enter into the state counts
with tunneling probabilities as in ref 28. We have done this at
the parabolic level and found that for both reactions (R1) and
(R2), it has a negligible effect for the temperature range studied.
This is partly due to the fact that the centrifugal barriers are
relatively thick (small magnitude imaginary frequency at the
barrier), which makes the tunneling probabilities for energies
less than the barrier relatively small.

It is not difficult to incorporate nuclear spin effects into the
approach above. We will specialize to the CH + H2 system of
interest to this work where there is a nuclear spin degeneracy
factor of σnuc ) 1 with j1 ) even H2 rotational states, and σnuc

) 3 for j1 ) odd states. One simply includes these factors in
the rotational summations of the reactant partition function, Qr,
as well as in Nreact

J (E) of eq A4. For reasons of dynamical
consistency in treating the complex decay, no such factors are
included in Pstat

J (E). (Note, for example, that CH3 complexes
formed from j1 ) even H2 states can decay back to H2 with j1

) even or odd.) This type of calculation is also completely
analogous to how we treat nuclear spin degeneracy in the
quantum case (Appendix A). While technically we account for
the nuclear spin degeneracy in this manner in all of the PST
calculations we report, these effects are very small for T g 200
K and results obtained without inclusion differ at most in only
the second or third significant figure.
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