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We present an analytic scheme for the calculation of pure vibrational contributions to linear and nonlinear
optical properties such as the polarizability and the first and second hyperpolarizabilities. The formalism is
fully expressed in terms of a perturbation- and time-dependent atomic orbital basis, using the elements of the
density matrix in the atomic orbital basis as the basic variables. We calculate perturbed densities up to third
order with respect to the electric field in accordance with the n + 1 rule, and the approach is therefore
applicable for the calculation of pure vibrational contributions involving all vibrational coordinates in large
molecular complexes. In the case of static electric fields, we therefore only need to calculate 19 response
equations, independent of the size of the molecule. If we can determine the molecular energy and force field,
the calculation of pure vibrational contributions to the nonlinear optical properties of the molecule is therefore
a rather straightforward task. We illustrate the implementation by calculating pure vibrational contributions
to the first and second hyperpolarizabilities of molecules containing up to 66 atoms using basis sets of good
quality.

I. Introduction

Nonlinear optical properties of organic molecules have
received increasing interest in recent years, experimentally as
well as theoretically. The possibilities offered by combining the
flexible material properties of organic molecules with the
applicability of materials with large nonlinear optical properties
in fields such as noninvasive imaging, 3-dimensional optical
data storage and optical power limiting, have led to a steadily
increasing research effort in these fields of science (see, e.g.,
ref 1 and references therein).

Whereas much attention has been paid to the electronic
contributions to the hyperpolarizabilities, arising either from
multiphoton virtual excitations in the electronic manifold of the
molecules or from multiphoton absorption processes,2 many
theoretical studies have demonstrated that the nonlinear optical
processes arising from excitations within the vibrational mani-
fold may be as large as, and in some cases even dominate, the
electronic contributions.3,4 It is generally recognized that these
pure Vibrational contributions are most significant when static
electric fields enter the nonlinear optical process, such as electric
field-induced second-harmonic generation or electro-optical
Pockels or Kerr effects.5 The pure vibrational effects are thus
particularly large in the case of the static hyperpolarizabilities.

Several approaches have been introduced to calculate pure
vibrational contributions. The first study that paved the way for
a large number of calculations of pure vibrational contributions
to hyperpolarizabilities was the perturbation theory approach
of Bishop and Kirtman.6,7 In this approach, the potential energy
surface and the properties are expanded in a Taylor series around
the molecular equilibrium geometry along the different normal
coordinates of the molecule. As a consequence, the approach
requires the calculation of geometrical derivatives of the
molecular energy as well as the dipole moment and the

(hyper)polarizabilities. Until recently, the lack of analytical
methods for calculating these polarizability derivatives prevented
studies on larger molecules. The development of an analytical
scheme for calculating first-order geometrical derivatives of the
polarizability8 and first hyperpolarizability9 by Quinet and
Champagne partially rectified this situation. Still, as their
approach requires solving response equations for all geometrical
perturbations, and because it is formulated in the molecular
orbital basis, the size of the molecules that can be studied
remains limited.

Bishop, Hasan, and Kirtman later introduced a scheme in
which the geometry of the molecule was allowed to relax in
the presence of applied static electric fields.10 By calculating
the hyperpolarizabilities at these different optimized geometries,
the vibrational contributions to the hyperpolarizabilities, includ-
ing also some of the anharmonic corrections as well as the zero-
point vibrational corrections, could be determined without
explicitly determining the molecular force constants, leading
in principle to computational savings. However, the need to
determine finite difference results from different geometries
optimized in the presence of different finite electric fields, made
the approach susceptible to numerical instabilities. Furthermore,
the infinite optical frequency approximation11 has to be applied
in order to calculate the required pure vibrational contributions,
although this restriction was later lifted at the price of added
computational complexity.12

Luis et al. later introduced an approach involving electric
field-relaxed coordinates.13 In this approach, a set of field-
induced coordinates were introduced, making the calculation
of the pure vibrational contributions only dependent on the
definition of a limited number of these field-induced coordinates.
The number of field-induced coordinates are independent of the

J. Phys. Chem. A 2008, 112, 11942–1195011942

10.1021/jp806197p CCC: $40.75  2008 American Chemical Society
Published on Web 10/24/2008



size of the molecule and only depends on the process being
studied and the extent to which anharmonic corrections are
included.

In this work we will use the perturbation theory approach of
Bishop and Kirtman, calculating the necessary (hyper)polariz-
ability derivatives using analytic techniques. We recently
presented an atomic orbital-based scheme for calculating
response functions of arbitrary order for time- and perturbation-
dependent basis sets.14 In this formalism, we can calculate the
geometrical (hyper)polarizability derivatives using the n + 1
rule. We therefore have to determine third-order perturbed
density matrices with respect to the applied electric fields.
However, as there is a fixed and limited number of third-order
perturbed density matrices, independent of the size of the
molecule, this allows for calculations of pure vibrational
contributions in large molecules. Nevertheless, we will still need
to calculate the perturbed densities with respect to geometrical
distortions in order to determine the molecular force field, and
if both the force field and the (hyper)polarizability gradient are
determined at the same level of theory, it is advantageous to
use the geometry-perturbed density matrices as far as possible
by applying the 2n + 1 rule. Both approaches are implemented
in our code,14,15 but as we are going to use different approxima-
tions for the force field and the (hyper)polarizability gradients,
the n + 1 rule will be used in this work. The formalism is also
integrated with a linearly scaling energy16 and response solver,17

allowing us to study pure vibrational contributions of large
molecules using basis sets of good quality.

There has been a recent study of the pure vibrational
contributions of large donor-acceptor polyene-like systems.18

It was demonstrated in this work that the pure vibrational
contributions are very significant in comparison to the electronic
contributions. However, small basis sets have been used and,
in order to facilitate the comparison with experiment, primarily
the contributions to the longitudinal component of the hyper-
polarizability arising from the dominant in-chain vibrational
modes were discussed. In this work we will therefore investigate
the validity of this approximation by calculating the pure
vibrational contributions to the hyperpolarizabilties of these
molecules, including all vibrational modes in the molecules, and
we will explore the importance of the choice of the basis set
for such calculations. Although electron correlation effects have
been demonstrated to be important for the calculation of pure
vibrational contributions,19-23 we will limit ourselves to calcula-
tions of the (hyper)polarizability derivatives at the Hartree-Fock
level of theory. We will concentrate on the pure vibrational
contributions to the studied polarizabilities, Rv, �v, and γv, but
we will nevertheless also report the corresponding electronic
contributions, Re, �e and γe.

The remainder of the paper is organized as follows: in
section II we will give a brief outline of the theory for pure
vibrational contributions to (hyper)polarizabilities in the
perturbation theory approach, as well as give an outline of
our approach for calculating the necessary geometrical
derivatives of the (hyper)polarizabilities in an atomic orbital-
driven scheme. In section III we summarize the computational
details of the calculations presented in section IV. In sectionV
we give some concluding remarks and an outlook.

II. Theory

For completeness, we will here briefly introduce the perturba-
tion theory approach for the calculation of pure vibrational
corrections to nonlinear optical properties developed by Bishop
and Kirtman.6,7 The goal is here not to provide a full overview

of this method, but instead highlight the essential features of
the methodology, focusing on the terms which we will consider
in this work. Following the discussion of the pure vibrational
contributions to the second hyperpolarizability, we will briefly
outline our approach for analytic calculations of the geometry
derivatives of the (hyper)polarizabilities that determine the pure
vibrational corrections to the nonlinear optical properties.

A. Pure Vibrational Corrections. In the sum-over-states
expressions for the (hyper)polarizabilities, the summations run
in principle over the vibronic states of the molecule and can in
the case of the polarizability be written as

RR�(-ωσ;ω1))∑ P-σ,1 ∑
k,K*0,0

〈0, 0|µ̂R|k, K〉〈 k, K|µ̂�|0, 0〉
ωkK,00 -ωσ

(1)

where k is used to denote an electronic state and K the
vibrational states. P-σ, 1 permutes the dipole moment operator
components and their associated frequencies (µ̂R, ω-σ) and
(µ̂�, ω1). Atomic units have been used in the above equations
and will be used throughout this paper. Assuming the
Born-Oppenheimer approximation,24,25 in which the vibronic
wave function can be written as a product of a nuclear wave
function CK

N and an electronic wave function ψk
el which depends

parametrically on the nuclear positions

Ψk,K(R, r))CK
N(R)ψk

el(r, R) (2)

we may divide the summation in eq 1 into a term in which the
summation only runs over the vibrational manifold of the
electronic ground state, and a term in which the summation
involves all the electronic excited states

RR�(-ωσ;ω1))∑ P-σ,1[∑
K*0

〈0, 0|µ̂R|0, K〉〈 0, K|µ̂�|0, 0〉
ω0K,00 -ωσ

+

∑
k*0

{ 〈0, 0|µ̂R|k〉〈 k|µ̂�|0, 0〉
ωk,0 -ωσ

} ] (3)

where we have introduced the completeness of the vibrational
manifold for the electronic excited states, so that ∑K|K〉〈 K| )
1, and where we have made the approximation ωkK, 00 ≈ ωk,0.
The first term in this equation is conventionally referred to as
the pure vibrational contribution to the polarizability, and this
is the term that will be the focus of the present work. The second
term corresponds to the zero-point vibrationally averaged
electronic polarizability.

A perturbation-theory approach for the calculation of these
corrections has been developed by Bishop and Kirtman,6,7 and
this will be the basis for our calculations of the pure vibrational
contributions. In this approach, the zeroth-order vibrational wave
functions are represented as products of standard harmonic-
oscillator wave functions for each of the normal modes of the
molecule. Although corrections to the pure vibrational contribu-
tions arise both from mechanical anharmonicities (arising from
the contributions from the force field beyond second order) and
from electric anharmonicities (due to contributions from the
geometry dependence of the electric properties beyond linear
terms), and can in many cases be significant (see for instance
ref 20), we will in this work assume that these anharmonic
corrections are less important and can be ignored. This assump-
tion is primarily motivated by the size of the molecules involved,
making a full calculation including also anharmonic corrections
practically impossible. As such, the results reported in the
present paper will be obtained within the so-called double-
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harmonic approximation. We also note that anharmonic cor-
rections may to a large extent cancel each other for some of
the molecules studied here (see, e.g., the results previously
reported for hexatriene13).

In order to calculate the properties of interest, the geometry
dependence of the electric properties is expanded in a Taylor
series with respect to the nuclear displacements. Since the
electronic contribution to the electric properties at the reference
geometry does not contribute to the pure vibrational contribu-
tions (since all integrals involving different vibrational states
would vanish), the leading order contributions arise from the
terms linear in the nuclear displacements. Combining this linear
geometry dependence with the harmonic approximation for the
vibrational wave function, we obtain the double-harmonic
approximation in which electrical and mechanical anharmo-
nicities are neglected.

In the notation of refs 6, 7, and 11, the contributions to the
polarizability R, the first �, and second γ hyperpolarizabilities
can in the double-harmonic approximation be written

RV) [µ2](0,0) (4)

�V ) [µR](0,0) (5)

γV ) [R2](0,0) + [µ�](0,0) (6)

where the superscripts specify the order of mechanical and
electrical anharmonicities, repectively, and we shall omit them
in the following. Moreover, since we shall evaluate only the
static hyperpolarizabilities, we shall not specify the (zero)
frequencies.

The explicit expressions for the terms in the above equations
are given by7

[µ2]R� )
1
2 ∑ P-σ,1∑

v

∂µR

∂Qv

∂µ�

∂Qv
λv
(σ (7)

[µR]R�γ )
1
2 ∑ P-σ,1,2∑

v

∂µR

∂Qv

∂R�γ

∂Qv
λv
(σ (8)

[µ�]R�γδ )
1
6 ∑ P-σ,1,2,3∑

v

∂µR

∂Qv

∂��γδ

∂Qv
λv
(σ (9)

[R2]R�γδ )
1
8 ∑ P-σ,1,2,3∑

v

∂RR�

∂Qv

∂Rγδ

∂Qv
λv
(23 (10)

where Qv denotes a normal mode, and the frequency term is
defined as

λv
(σ ) 1

ωv +ωσ
+ 1

ωv -ωσ
(11)

We thus note that the critical quantities needed in order to
calculate the pure vibrational corrections to the (hyper)polar-
izabilities are (1) the vibrational force field in order to determine
ωV, and (2) the geometrical first derivatives of the dipole moment
and (hyper)polarizabilities, and we will in the next subsection
describe our approach for calculating these geometrical deriva-
tives of the (hyper)polarizabilities.

We note at this point that an analytic procedure for calculating
geometrical derivatives of polarizabilities and hyperpolariz-
abilities has been presented by Quinet and Champagne.8,9 Our
approach differs from their approach in that it is developed fully
in the atomic orbital basis and uses the n + 1 rule instead of
the 2n + 1 rule in order to avoid the computation of perturbed
densities with respect to the geometrical distortions (vide infra).
Given that an affordable and accurate vibrational force field is
available, our approach is thus in principle more directly

applicable to large molecular systems but provides otherwise
the same functionality as that provided by the work of Quinet
and Champagne.89

B. (Hyper)polarizability Gradients. In the following, we
briefly outline the key elements of our approach for calculating
the (hyper)polarizability gradients. The details of the formalism
have been described elsewhere,14 as well as in a recent paper
concerned with coherent anti-Stokes Raman scattering
(CARS),15 and we will therefore be brief in the derivation of
the geometrical derivatives of the dipole moment, the polariz-
ability, and the first hyperpolarizability gradient. We do not
discuss the calculation of the electronic contribution to the
(hyper)polarizabilities, as these can be obtained from well-
established response theory formulations,26-34 although we use
an AO-based quasi-energy formalism also for these quantities,
following refs 14 and 17.

The starting point for deriving the (hyper)polarizability
gradients is the generalized gradient formula14

Qg ) d
dg

Q )
Trt ∂

∂g
E(D)- SgW (12)

where Q in our case is the Hartree-Fock quasi-energy (not to
be confused with the normal mode Qv introduced in eq 7), Qg

its derivative with respect to a nuclear displacement parameter
g (perturbation strength), which makes a (generally) time-
dependent perturbation of both the Hamiltonian and the AO
basis, E(D) the generalized Hartree-Fock energy, Sg ) (d/dg)S
the geometry-derivative overlap matrix, and W the generalized
energy-weighted density matrix (vide infra). Trt is here used to
denote that we will take the trace of all matrix quantities and
perform a time average. We note the close similarity between
the expression for the quasi-energy gradient in eq 12 and that
previously derived by Pulay for the conventional molecular
geometrical gradient.35 However, eq 12 is valid for a general
time-dependent system expressed in a time- and perturbation-
dependent atomic orbital basis.14

The generalized Hartree-Fock energy E(D) in eq 12 contains
an additional matrix T arising from the time dependence of the
AOs, and we furthermore define the generalized Fock matrix F
as the partial derivative (transposed) of E(D)

Tµν ) 〈	µ|	·ν〉 -〈	·µ|	ν〉 , 	·µ )
d
dt

	µ (13)

E(D) )
Tr

hnuc +Vnuc + (h+V- i
2

T)D+ 1
2

G(D)D (14)

F) ∂

∂DT
E(D)) h+V- i

2
T+G(D) (15)

where hnuc is the nuclear repulsion energy, Vnuc the potential
energy between the nuclei and the external fields, h the integral
matrix of the one-electron Hamiltonian, V the integral matrix
of the electron-field interaction, and G the two-electron integral
operator (Coulomb and exchange). Since (i/2)T is a Hermitian
matrix, E(D) is a real-valued function of time. For the
unperturbed system (static, no fields), T, V, and Vnuc are zero.

The generalized energy-weighted density matrix W contains
the generalized Fock matrix in addition to two terms arising
from the time dependence of the density matrix

W)DFD+ i
2

ḊSD- i
2

DSḊ, Ḋ) d
dt

D (16)

We note that although we in this work only calculate the static
gradient (ωg ) 0, Tg ) 0) induced by static electric fields, eqs
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12, 14, and 16 could in principle be used to calculate frequency-
dependent gradients induced by frequency-dependent fields.

The (homogeneous) electric field enters the potential operator
as the negative dot product of the electric field vector F and
the electric dipole operator µ̂

V̂ t )-F · µ̂, µ̂)-∑
i

ri +∑
K

ZKRK (17)

where ZK is the charge of nucleus K, and Vnuc and V are therefore
given by

Vnuc )-F · (∑
K

ZKRK), Vµν )F · 〈	µ|r|	ν〉 (18)

An oscillating electric field composed of several frequencies
(ωa, ωb, ωc) can be written as

F) a exp(-iωat)+ b exp(-iωbt)+ c exp(-iωct)+

a*exp(iωat)+ b*exp(iωbt)+ c*exp(iωct) (19)

where a, b, and c are complex strength vectors defining the
intensity, phase, and polarization of the corresponding frequency
component, which are all initially zero, thus corresponding to
the unperturbed system. A static field component is obtained
with a zero frequency, in which case the strength must be real-
valued and the conjugated term can be omitted.

We can now obtain an expression for the (negative) electric
dipole gradient by inserting eq 14 into eq 12, setting ωg ) 0,
and differentiating Qg with respect to the field strength a of
frequency ωa ) 0

Qg )
Trt

hnuc
g +Vnuc

g + (hg +Vg)D+ 1
2

Gg(D)D- SgW (20)

Qga ) d
da

Qg )
Trt

Vnuc
ga +VgaD+ hgDa +Gg(D)Da - SgWa

(21)

where we have used that for ωg ) 0, the matrix Tg is zero, and
that only Vnuc and V depend on a, and not hnuc, h, G, or S, and
that Gg(Da)D ) Gg(D)Da when we take the trace of the resulting
matrix products. In Qga we have omitted the contribution VgDa,
since V is zero when a, b, c ) 0. We will, however, include
this contribution when differentiating Qga further below.

The contraction of the one-electron integrals Vga and hg, and
the two-electron integrals Gg with perturbed density matrices
of different orders is straightforwardly achieved, as described
in ref 15. We also refer to this work for the detailed expressions
for the differentiated energy-weighted density matrix W. The
derivation of the linear set of equations that needs to be solved
in order to determine the first-order perturbed density matrix
has been given previously,14,15 and these can be solved using
for instance the linearly scaling response solver of Coriani et
al.,17 as done in the present work.

In a similar manner, using b to denote the second electric
field strength with ωb ) -ωa, we can derive the expression for
the (negative) frequency-dependent polarizability gradient,
which becomes

Qgab )
Trt

VgbDa +VgaDb + hgDab +Gg(Db)Da +

Gg(D)Dab - SgWab (22)

where we now have also utilized that the electric field only
appears linearly in the Hamiltonian (in Vnuc and V).

Further differentiation of the polarizability gradient with
respect to a third electric field strength c, gives us the final

expression for the (negative) gradient of the first hyperpolar-
izability tensor

Qgabc )
Trt

VgaDbc +VgbDac +VgcDab + hgDabc +

Gg(D)Dabc +Gg(Dbc)Da +Gg(Db)Dac +

Gg(Dc)Dab - SgWabc (23)

The response equations are solved only for the external
electric field perturbations, but the above equations then require
that we determine the electric-field perturbed density matrix to
third order, Dabc. However, in this way the computational effort
of the vibrational contribution is of the same order as that of
the electronic contribution. This enables calculations for large
polyatomic systems with many degrees of freedom. For a
nonlinear molecule consisting of N atoms, there are 3N - 6
response equations to be solved if one applies the geometry-
perturbed wave functions (if, for instance, one uses the 2n + 1
rule), whereas there are only three response equations for the
first-order perturbation corrections to the dipole moment, six
for the second-order, and 10 for the third-order perturbation
corrections. We use this fact in order to obtain the �v and γv

static hyperpolarizabilities solving only a limited number (19)
of response equations. If, in contrast, we attempted to take
advantage of the 2n + 1 rule and to utilize only the second-
order perturbation corrections, the calculations for the largest
molecule studied in this work would require solving ap-
proximately 200 response equations. We refer to ref 14 for
details on our iterative scheme for determining higher-order
perturbed density matrices using the linear-scaling response
solver of Coriani et al.17

III. Computational Details

The procedure leading to the vibrational hyperpolarizabilities
can be clearly partitioned into two stepssthe first being the
derivation of the force fields, the second the analysis of the
electric-field perturbation parameters. There is no formal
requirement that both steps of the calculation should be done
at the same level of approximationsin fact, experimental data
have been often used for the force fields in earlier theoretical
work.36 We shall, however, calculate all the necessary quanti-
tites, but we nevertheless take advantage of this degree of
freedom and use different approximations for the force field
compared to the computational methods used to determine the
polarizabilities and their geometrical derivatives.

In the geometry optimization we use the DFT/B3LYP
approach.37-39 This approximation is also used to determine the
final Hessian and thus the force field required to calculate the
vibrational polarizabilities. The superiority of DFT relative to
the Hartree-Fock approximation in determining molecular
geometries, harmonic frequencies, and force constants is well
established.40 Furthermore, there is little computational overhead
involved in the B3LYP approach relative to Hartree-Fock. On
the other hand, in the calculation of the electric properties we
will systematically use the Hartree-Fock approach, since our
implementation of geometrical derivatives of the hyperpolar-
izabilities currently is limited to Hartree-Fock wave functions.
However, we note that theoretical studies have demonstrated
that the differences between the dipole and polarizability
vibrational transition moments computed in the two approaches
are not very significant.41 Furthermore, the B3LYP functional
is known to have deficiences in treating charge-transfer excited
states,42-44 which can be expected to be important for the
nonlinear optical properties of the push-pull systems studied
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in this work, potentially making the Hartree-Fock approach
more qualitatively correct than the B3LYP formalism. Still, the
dependence of the calculated (hyper)polarizability derivatives
on the choice of reference geometry and the level of theory
needs to be studied in more detail, preferably applying state-
of-the-art correlated ab initio methods. However, this is beyond
the scope of the present study.

We use different basis sets at each stage of the calculation.
We analyze the results obtained with the correlation-consistent
basis sets of Dunning and co-workers45,46 (denoted in the
following as XZ, X ) D, T, Q being the cardinal number of
the basis), as well as with the related augmented (aXZ) and
doubly augmented (dXZ) correlation-consistent basis sets.47-49

In addition, we consider the Turbomole-TZV2P50 and Sadlej’s
polarized basis sets, PolX51 and Z3PolX.52

We shall not dicuss the individual tensor components of all
the properties investigated in this paper. The results will be given
only for the isotropic averages, defined by the equations

R) 1
3
Rηη (24)

�Z )
1
5

(�Zηη + �ηZη + �ηηZ) (25)

γ) 1
15

(γ�ηη� + γ�η�η + γ��ηη) (26)

where summation over repeated greek indices is implied and,
for �Z, the Z axis is determined by the direction of the dipole
moment. These definitions are used both for the vibrational and
electronic properties.

IV. Results and Discussion

We begin the discussion with an analysis of the results for
the water molecule. For this molecule, we will consider the
dependence of the computed properties on the choice of
molecular geometry and we will describe in detail their
convergence with respect to the extension of the basis set.

Next, we analyze the electronic and vibrational properties of
three all-trans polyenes: hexatriene, C6H8; octatetraene, C8H10;
and decapentaene, C10H12. The interpretation of the results is
simplified by the high symmetry of these moleculessthe dipole
moment and first hyperpolarizability vanish by symmetry.
Finally, we consider three 4-dimethylaminophenylpolyene al-
dehydes, C11H13NO; C19H23NO and C29H35NO (molecules 1′,
2′, and 4′ in ref 53 later denoted as IIIa, IIIb, and IIIc in ref
18). These aldehydes belong to a class of push-pull molecules
with a donor and an acceptor group, linked by a polyenic chain
which increases along this sequence of three molecules. The
large values of the �Z hyperpolarizability in these compounds
are due to the delocalization of the π electrons in the chain.

In the discussion of the results for the polyenes and push-pull
aldehydes, we shall repeatedly refer to the work by Castiglioni
et al.18 The authors discuss an interpretation of the vibrational
contributions to first and second hyperpolarizabilities and report
estimates of these properties extracted from experimental IR
and Raman spectra. It should be kept in mind, however, that a
series of approximations was needed in order to relate the
experimental data to the �v and γv hyperpolarizabilities.
Furthermore, the experimental results are obtained in a solvent
and for specific frequencies, whereas we will discuss static
properties for isolated molecules.

A. Water. In order to analyze the geometry and basis set
dependence of the results, we have studied the electronic and
vibrational properties of the water molecule. The results reported

in Table 1 were obtained for geometries optimized at the DFT/
B3LYP level with the aug-cc-pVTZ and Turbomole-TZV2P
basis sets, and using the corresponding Hessian determined
within the same computational approach as in the geometry
optimization.

For the Dunning basis sets, we observe that at least one set
of diffuse functions is needed to obtain qualitatively correct
results. Furthermore, the second set of diffuse functions is more
important than an increase in the cardinal number X. Thus, to
obtain at least qualitative accuracy we need the dDZ or the aTZ
basis sets, and in order to obtain quantitative accuracy one
should use the dTZ basis set rather than the aQZ basis set. The
TZV2P basis set can be seen to be unsuitable for the calculation
of the polarizabilities. In contrast, the small basis sets developed
by Sadlej perform well, the results obtained being comparable
to those obtained with the much larger basis sets by Dunning
et al. In particular, the PolX basis set gives reliable results for
both the electronic and vibrational polarizabilities. We also note
that the [R2] contribution to γv appears to be easier to describe,
the strongest basis set dependence to γv coming from the [µ�]
term.

The values obtained for the two different geometries and
associated force fields are very similar, with the results not
differing by more than 2%. The differences are of the same
order of magnitude for the vibrational and the electronic
polarizabilities and do not depend significantly on the basis set
chosen to study the properties. We shall therefore for the larger
molecules report the results obtained for the geometries
optimized with the much smaller Turbomole-TZV2P basis set,
with the exception of the largest molecule for which we use
the geometry and Hessian computed with the even smaller
Turbomole-TZVP basis.

A detailed comparison with results reported in the literature
is beyond the scope of this paper, as there are in general too
many differences between our computational approach (in terms
of choice of basis set, description of electron correlation and
approach for calculating the pure vibrational contributions). We
will therefore only make a qualitative comparison with some
results published in the literature.

The electronic hyperpolarizabilities of H2O have been the
subject of several theoretical studies at different levels of theory.
Maroulis studied the electronic hyperpolarizabilities of water
using large basis sets,54 and our dQZ results are in good
agreement with his basis-set limit Hartree-Fock results.

In a study of the pure vibrational contributions to the
hypermagnetizability of the water molecule, the pure vibrational
contributions to the polarizability was also reported for a
complete active space self-consistent field wave function
(CASSCF),55 using this level of approximation for both the
dipole gradients and the force field. We would expect our force
field to be of higher quality than the CASSCF force field, due
to a better approximation for the dynamic electron correlation
effects, whereas the dipole gradients in ref 55 includes electron
correlation in contrast to our HF results. Our results for the pure
vibrational contribution to the static polarizability are 0.149 au
for Rxx and 0.967 for Rzz using the TZV2P geometry and
Hessian, which are only in fair agreement with the results of
ref 55 Rxx ) 0.115 and Rzz ) 0.761 au.

Luis et al.56 calculated �v at the SCF level, using the polarized
basis set of Sadlej. For a proper comparison of the static �v,
we need to extract the double-harmonic approximation value
from their results. This can be achieved (see, e.g., ref 57) using
as the source number their infinite-frequency approximation
Pockels effect �v(-ω,ω,0), which leads to a static �v ) 7.035
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au. The use of different force fields explains the deviation
between this result and the value we obtained applying the same
Sadlej basis set for the polarizability derivatives, �v ) 9.5 au.

Our results for γv are only in qualitative agreement with the
values obtained in the same approximation by Bishop and
Dalskov,11 129.16 and -21.88 au for the [R2] and [µ�]
contributions, to be compared with approximately 166 and -30
au in our calculations. On the other hand, our results for the
pure vibrational contribution to the mean second hyperpolar-
izability are smaller than the older values by Bishop et al.58

which include also anharmonic correctionss150 au for the full
SCF calculation, or 184 au when an MP2 force field was used.

B. Hexatriene, Octatetraene, and Decapentaene. To con-
firm that we can apply Sadlej’s PolX basis set51 for larger
molecules, we have performed a series of additional test
calculations for hexatriene. As shown in Table 2, the PolX
results do not differ significantly from those obtained using the

much larger Dunning basis sets, and we have therefore chosen
this basis set for all the subsequent calculations on the large
systems. In particular, considering the size of the different basis
sets, it is obvious that for much larger molecules it would be
very difficult to obtain results of similar quality with any of the
other applied basis sets.

TABLE 1: Basis Set and Geometry Dependence of the H2O Resultsa

Electronic Properties

µe Re �e γe

TZV2P 0.80709 0.80803 6.8517 6.8439 -15.898 -15.851 203.28 202.63
DZ 0.80743 0.80828 5.0546 5.0479 -18.377 -18.338 122.58 122.18
TZ 0.79466 0.79561 6.6606 6.6531 -16.765 -16.719 160.87 160.35
QZ 0.78759 0.78856 7.4091 7.4002 -14.953 -14.910 235.72 235.07
aDZ 0.78418 0.78516 8.1952 8.1850 -10.552 -10.517 603.60 602.06
aTZ 0.77787 0.77885 8.4841 8.4732 -11.870 -11.828 740.90 739.09
aQZ 0.77703 0.77802 8.5655 8.5544 -11.388 -11.343 838.38 836.34
dDZ 0.77866 0.77966 8.5793 8.5680 -9.199 -9.157 907.81 905.65
dTZ 0.77762 0.77861 8.6023 8.5910 -11.013 -10.968 998.75 996.23
dQZ 0.77701 0.77800 8.6016 8.5903 -11.324 -11.278 999.60 997.02
PolX 0.77815 0.77913 8.5561 8.5448 -8.737 -8.690 854.94 852.89
Z3PolX 0.75568 0.75672 8.3848 8.3739 -9.345 -9.293 731.43 729.67

Vibrational Properties

Rv �v

TZV2P 0.3444 0.3388 15.300 15.176
DZ 0.3232 0.3180 16.332 16.190
TZ 0.3476 0.3420 14.440 14.318
QZ 0.3642 0.3584 12.875 12.813
aDZ 0.3687 0.3628 11.709 11.696
aTZ 0.3777 0.3716 10.327 10.347
aQZ 0.3777 0.3717 9.698 9.732
dDZ 0.3801 0.3740 9.234 9.279
dTZ 0.3777 0.3716 9.351 9.392
dQZ 0.3778 0.3717 9.392 9.433
PolX 0.3819 0.3758 9.514 9.557
Z3PolX 0.3821 0.3758 8.312 8.353

γv and Its Two Contributions

γv [R2] [µ�]

TZV2P 116.35 115.24 164.89 163.43 -48.54 -48.20
DZ 108.28 107.29 162.42 160.94 -54.14 -53.66
TZ 107.25 106.11 150.96 149.57 -43.71 -43.46
QZ 112.13 111.07 154.76 153.43 -42.62 -42.36
aDZ 126.68 125.58 168.59 167.20 -41.91 -41.63
aTZ 136.80 135.51 168.38 166.95 -31.58 -31.44
aQZ 141.69 140.30 168.37 166.91 -26.68 -26.61
dDZ 142.06 140.61 167.36 165.90 -25.30 -25.28
dTZ 144.60 143.16 168.91 167.43 -24.30 -24.27
dQZ 146.08 144.60 168.81 167.34 -22.73 -22.74
PolX 136.47 135.10 166.37 164.91 -29.90 -29.82
Z3PolX 139.27 137.79 159.24 157.85 -19.97 -20.06

a For each property, the pair of numbers gives the values at aTZ geometry and Hessian (first) and TZV2P geometry and Hessian (second).
The aTZ geometry has a bond distance of 0.962 10 Å and a bond angle of 105.08°, whereas the TZV2P geometry has a bond distance of
0.961 29 Å and a bond angle of 104.89°.

TABLE 2: Basis Set Dependence of the Hexatriene Resultsa

basis CGTO γe γv

6-31G 70 10654 31387
6-31G* 100 9830 31705
Z3PolX 156 29941 43411
PolX 216 35015 44820
TZV2P 216 15294 39086
dDZ 296 35337 44739
aTZ 460 33050 45220

a The same geometry and Hessian (obtained at the DFT/B3LYP
level with the TZV2P basis set) is used in all the calculations.
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The polarizabilities of hexatriene, octatetraene, and decap-
entaene are collected in Table 3. For these all-trans polyenes,
the first hyperpolarizability is zero by symmetry. It has often
been assumed that the second hyperpolarizability of these
molecules is determined by the tensor component along the
chain, γ ≈ γZZZZ/5. Comparing the isotropic value of the
electronic hyperpolarizability with such an estimate, we find
that this becomes a good approximation only for the largest
molecule in the series, C10H12. This approximation gives almost
90% of the isotropic value of γe for C10H12, whereas for C6H8

and C8H10 it only contributes about 60% and 80%, respectively,
of the tensor average of the electronic second hyperpolarizabil-
ity. This approximation is, however, much better for the
vibrational hyperpolarizability, where the γZZZZ component
provides approximately 81%, 91% and 96% of the total γv for
C6H8, C8H10, and C10H12, respectively.

For hexatriene, the longitudinal component of the pure
vibrational contribution to the second hyperpolarizability has
previously been computed using a set of field-induced coordi-
nates (which also includes anharmonic terms in the expansion
of γv).13 The total RHF/6-31G result γZZZZ

v ) 91 400 au, with
the dominant contribution [R2] ) 89 400 au, is smaller than
our 6-31G value γZZZZ

v ) 134 423 au. Although many of the
anharmonic corrections to the pure vibrational contributions
were shown to be large, they largely cancel each other, making
the overall anharmonic correction a modest 4%. The large
differences compared to the results of ref 13 is therefore due to
the different choices of force field and equilibrium geometries.
These effects are seen to be substantial, increasing the vibrational
hyperpolarizability of ref 13 by almost 50%. Although not
numerically significant, we note that our force field leads to a
positive contribution from [µ�], whereas the results in ref 13
for this term are negative. The force field is thus clearly
important in order to determine the pure vibrational contribution.

By symmetry, each vibrational mode leads in these molecules
to either an [R2] or a [µ�] contribution. In the total γv, the [R2]
contribution is dominant, and the role of [µ�] is practically
negligible (for all the polyenes, it contributes less than 5% to
the total γv). As shown by Champagne et al.,59 there are two
dominant modes contributing to γv; we find the [R2] contribution
of the first to be 24 480, 90 684, and 262 490 au for C6H8, C8H10,
and C10H12, and the contribution of the second mode is 8224,
39 541, and 134 049 au, respectively. Their role is increasing
with increasing chain length, and together they contribute 90%
of the total γv for C10H12. For decapentaene, the contribution
of the second mode is 10 times larger than that of the third
contributing mode. The role of the first mode is decreasing,
whereas the role of the second mode is increasing with
increasing chain length.

As discussed by Castiglioni et al.,18 in chain-like molecules
with delocalized π electrons the dominant modes for the
vibrational contribution can be described by analyzing the sum
over all the pairs of adjacent single and double bonds of the
terms RC-C - RCdC.18 These modes represent the oscillating
degree of bond alternation of the chain and dominate the Raman
spectrum. Our results confirm this interpretation. For instance,
the frequencies of the two dominant modes are 1686.88 and
1221.55 cm-1 in C6H8, 1663.87 and 1214.49 cm -1 in C8H10,
and 1642.19 and 1207.65 cm -1 in C10H12, while the experi-
mental frequencies of the two most intense Raman bands, given
by Castiglioni et al.,18 are 1626 and 1191 cm -1 in C6H8 and
1613 and 1179 cm -1 in C8H10. Moreover, for all the dienes,
the atomic displacements in these two modes are indeed related
to changes in the RC-C and RCdC distances (see the discussion
of the modes involving the effective conjugation coordinate and
hydrogen wagging in ref 59).

The electronic and vibrational hyperpolarizabilities estimated
from experimental data and obtained at the RHF/6-31G/ level
in ref 18 are systematically smaller (approximately by a factor
of 2) than our results. Since we use a presumably more reliable
DFT force field and a larger basis set, our ab initio values should
in principle be more accurate for isolated polyene molecules.

C. Push-Pull Aldehydes. The push-pull aldehydes, with
electron donor and acceptor groups at the ends, represent a class
of molecules with large first hyperpolarizabilities. The molecules
studied in this work are shown in Figure 1. For the electronic
contribution, the large values of � can be attributed to the
existence of a low-lying charge-transfer state possessing a large
oscillator strength.53 For the vibrational contribution, the
dominant effect is similar to that discussed for all-trans polyenes,
corresponding to single/double bond alternation in the chain.

The results for IIIa, IIIb, and IIIc are collected in Table 4.
The approximation of the isotropic value as � ) 3�ZZZ/5 is
excellent for the electronic properties and for the vibrational
properties of IIIb and IIIc, the error being less than 1%. On the
other hand, γ differs more noticeably from γZZZZ/5; in this case
the error is closer to 10% for both the electronic and vibrational
hyperpolarizabilities.

The analysis of the individual mode contributions for the
push-pull aldehydes is more complicated than for the polyenes.
There are both positive and negative contributions to �v and
γv, and both the [R2] and [µ�] terms are relevant (similar effects
have been observed in the studies of other π-conjugated
push-pull molecules, see, e.g., ref 60). Moreover, the contribu-
tions of numerous vibrational modes are of similar magnitude.
Although the oscillations of the carbon atoms in the chain are

TABLE 3: Polarizabilities of C6H8, C8H10, and C10H12
a,b

C6H8 C8H10 C10H12

Electronic Polarizabilities
Re 93.8 139.7 194.1
γe 35015 86202 199316
γZZZZ

e /5 20659 68064 172612

Vibrational Polarizabilities
Rv 4.89 8.15 12.76
γv 44820 154479 436232
[R2] 42777 155911 447686
[µ�] 2043 -1432 -11454
γZZZZ

v /5 36171 140487 416868

a Sadlej basis set. b In the dominant component approximation γ
) 3/15 γZZZZ. The Z axis is defined as the axis corresponding to the
largest rotational constant.

Figure 1. Molecular structure of the three push-pull aldehydes studied
in this work, together with their corresponding symbols. See also Figure
1 in ref 18.
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important, the displacements of other heavy atoms also con-
tribute to these modes and the overall picture is not as clearcut
as for the all-trans polyenes.

In the comparison of experimental and theoretical properties
in ref 18, RHF/3-21G values were used. To estimate the role
of the basis set, we have therefore repeated our calculations for
the IIIb molecule using the same DFT force field as above, but
employing the 3-21G basis set in the hyperpolarizability
calculations. We obtain for �ZZZ

v and γZZZZ
v approximately 75%

of the values obtained with the PolX basis, and our 3-21G results
for IIIb are thus qualitatively correct (the agreement is even
somewhat better for the electronic properties). The electronic
contributions to the first hyperpolarizability given by Castiglioni
et al.18 are of the same order of magnitude as ours. On the other
hand, their RHF/3-21G values of �ZZZ

v (which are similar to those
estimated from experimental data) are significantly differents
smaller by a factor of 4sfrom our results shown in Table 4.
Presumably, this difference is due to the use of a RHF/3-21G
force field in ref 18, clearly demonstrating the importance of
the force field in the determination of pure vibrational contribu-
tions to nonlinear optical properties.

V. Conclusions

We have presented an analytic scheme for the efficient
calculation of pure vibrational contributions to the hyperpolar-
izabilities of large molecules. The approach uses the elements
of the density matrix in the atomic orbital basis as the basic
variables, allowing recent advances in linear-scaling response
theory to be utilized. By calculating perturbed densities up to
third order for the applied electric field, only 19 response
equations need to be solved in order to calculate the pure
vibrational contributions to the second hyperpolarizability,
independent of the size of the molecule.

Using the analytic approach presented in this paper, we have
demonstrated that the vibrational contributions to the polariz-
abilities can be calculated efficiently. Indeed, if it is possible to
optimize the molecular geometry and determine the force field,
the calculation of first and second hyperpolarizability tensors
can easily be undertaken, as the computational costs are lower
than the costs connected with the determination of the molecular
force field, at least in terms of the number of response equations
that need to be solved. The use of a perturbation-theory approach
for the calculation of the pure vibrational contributions allows

us to use different approximations for the force field and the
(hyper)polarizability derivatives, and we have taken advantage
of this fact to use different approaches and different basis sets
for determining the different properties entering the expressions
for the pure vibrational contributions. In particular, small basis
sets specifically optimized for the study of molecular electric
properties were applied in the analysis of the polarizabilities.

The results indicate that for molecules that contain conjugated
polyene chains, the role of the pure vibrational contribution to
the hyperpolarizability becomes dominant with increasing chain
length, being in these cases much larger than the electronic
counterpart. It appears that for long polyene chains, simple
calculations, in which only the dominant tensor component is
studied or in which relatively small basis sets are used, may be
quite successful in the sense that these simple approximations
give a qualitatively correct description of the properties, and
the results become more accurate with increasing chain length.
However, there are two factors that may be essential and limit
such a simple approach: the geometry and the force field should
be accurately determined and the basis sets, although small,
should be designed to properly describe the applied perturbations.

We believe that the present scheme for calculating higher-
order molecular properties, using an atomic orbital-based scheme
and requiring only a limited number of response equations to
be solved, in combination with linear-scaling technology, opens
new possibilities for the study of pure vibrational contributions
to nonlinear optical properties. Work is in progress in order to
extend the implementation to also include electron correlation
effects in the form of density-functional theory, as well as the
calculation of geometrical second derivatives of the electronic
hyperpolarizabilities, which will enable us to perform analytic
calculations also of the zero-point vibrational contributions as
well as anharmonic contributions to the pure vibrational
contributions of the nonlinear optical properties.
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