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The theorem of Hohenberg and Kohn, that the electron density is a unique functional of the external potential,
applies to a closed system with a fixed number of electrons. Transferability of the electron density of an atom
between two systems, necessary to account for the fundamental role of a functional group with characteristic
properties in chemistry, however, is a problem in the physics of an open system. Transferability in chemistry
requires a new theorem stated in terms of the density: that the electron density of an atom in a molecule or
crystal determines its additive contribution to all properties of the total system, its transferability being
determined by a paralleling degree of transferability in the atom’s virial field, the virial of the Ehrenfest force
exerted on its electron density. Transferability of the virial field is found in spite of unavoidable changes in
the external potential that occur on transfer. The properties of an atom in a molecule are determined by the
Heisenberg equation of motion for a “proper open system” derived from the principle of stationary action.
The theorem is grounded in the common sense observation that two atoms that “look the same”, i.e., have the
same charge distribution, must possess identical properties. Transferability is discussed in terms of the properties
of the electron density, the one-density and the two-density matrix, the latter demonstrating that both the
Coulombic and exchange contributions to the energy of a group are separately transferable. It is demonstrated
that the exchange indices determined by the two-density matrix provide a readily determinable measure of
the effective range of the exchange energy.

1. Near Sightedness As Seen by Physicists

A paper by Prodan and Kohn (PK)1 was recently published
in which they ascribe important chemical concepts such as
transferability and the possibility of understanding the properties
of large molecules “one neighborhood at a time” to the “near
sightedness of electronic matter”, a phrase they abbreviate to
NEM. They propose that NEM can be attributed to “the fact
that, for fixed chemical potential, local electronic properties,
such as the density n(r), depend significantly on the effective
external potential only at nearby points. Changes of that
potential, no matter how large, beyond a distance R have limited
effects on local electronic properties, which rapidly tend to zero
as a function of R.” These predictions are held to hold only in
the absence of long-range ionic interactions.

Although stated to deal with chemical concepts such as
transferability and Pauling’s concept of the chemical bond, their
discussion specifically treats metals and insulators containing
“many charged or uncharged electrons”. Their discussions refer
to one- and higher-dimension systems of noninteracting fermions
using models such as jellium, concluding with a brief discussion
of interacting fermions, where it is stated that replacement of
an atom or ion by another atom or ion in a metal has short-
ranged electronic consequences, whereas in an insulator, ions
lead to classical long-range electronic effects. It is the purpose
of the present work to point out that as physicists, they are
addressing a problem that resides at the core of chemistry. NEM
in chemistry has been described and its many facets illustrated
with the conditions for transferability quantified in terms of the
forces acting on the electron density of an open quantum
systemson an atom in a molecule.2

2. Near Sightedness As Seen By Chemists

2.1. Role of Functional Groups in Chemistry. To a
chemist, NEM is rooted in the concept of a functional group, a
concept that forms the cornerstone of experimental chemistry.
By the close of the 19th century, it was realized that atoms and
functional groupings of atoms can exhibit characteristic sets of
static, reactive, and spectroscopic properties which, in general,
vary between relatively narrow limits. The knowledge of
chemistry is ordered, classified, and understood by assigning
properties to functional groupings of atoms, properties which
are then used to identify the presence of a given group or to
understand the behavior of some total system. Experimentally,
it is an atom that is responsible for transmitting chemical
information from one system to another, and transferability
requires the definition of an atom in a molecule whose properties
are characteristic, additive, and transferable.

2.2. Definition of an Atom As an Open Quantum System.
Clearly, a discussion of NEM in chemistry requires the definition
of an atom in a molecule or crystal together with its properties.
This is accomplished by the extension of Schwinger’s principle
of stationary action to an open system.3-5 Schwinger extended
the concept of the stationarity of the action integral operator to
include the variation of the time end points of some total system
and of the state vector at these points, that is, to include a
variation of the space-like surfaces and of the state vector on
those surfaces.6 His space-time formulation of the principle
makes it possible to further extend the stationarity of the action
to include a variation of the time-like surfaces, the evolving
boundary of an open system. A concise description of the
procedure is obtained by augmenting the Lagrange-function
operator by the divergence of the gradient of the density
operator. This step leaves the equations of motion unaltered,
leading to a class of generators whose associated infinitesimal* To whom correspondence should be addressed.

J. Phys. Chem. A 2008, 112, 13717–13728 13717

10.1021/jp806282j CCC: $40.75  2008 American Chemical Society
Published on Web 11/26/2008



transformations yield variations of the action-integral operator
for an open system, similar in form and content to those obtained
for the total, isolated system.7 Modifying the generators in this
manner is shown to be equivalent to requiring that the open
system Ω be bounded by a surface S(Ω,r) through which there
is a local zero flux in the gradient vector field of the electron
density F(r)

∇ F(r) · n(r)) 0 ∀ r ∈ S(Ω, r) (1)

Only the observables of such “proper open systems” are
described by the correct equations of motion, and as amply
illustrated in the literature, only proper open systems recover
the measured values of atoms and functional groups in chem-
istry.8 The resulting theory is referred to as the quantum theory
of atoms in molecules (QTAIM).

Schwinger’s principle, by combining the action principle with
Dirac’s transformation theory, yields both the field equations
and Heisenberg’s equation of motion for an observable, the two
fundamental and necessary equations for the prediction of the
properties of a quantum system, open or closed. Thus, Schwing-
er’s principle generalized to a proper open system Ω yields, in
addition to Schrödinger’s equation of motion ipΨ̇ ) ĤΨ, an
expression for the variation of the Lagrange function-operator
expressed in terms of the Heisenberg commutator of Ĥ and the
infinitesimal generator F̂, eq (2)2,5.

δL̂ [Ψ̂, Ω, t]) (1 ⁄ 2){(i ⁄ p) < Ψ̂[Ĥ, F̂]Ψ̂>Ω + cc} (2)

The expectation value of a Hermitian operator is not
necessarily real when evaluated over an open system; hence
the addition of the complex conjugate, cc. The variation
δLˆ[Ψ̂,Ω,t], with the action of the infinitesimal generator
expressed in terms of the observable Ĝ (F̂ ) εĜ), yields the
time rate of change of the generator Ĝ, the flux in its associated
current through the surface of Ω and the contribution from the
time rate-of-change of the surface. When expressed in the
Schrödinger representation, the generalized equation of motion
is as follows:

d∫Ω
FG(r) ⁄ dt) (N ⁄ 2){(i ⁄ p)〈Ψ|[Ĥ, Ĝ]|Ψ〉Ω + cc}-

(1 ⁄ 2){IdS(r, Ω)JG • n + cc}

+ (1 ⁄ 2){IdS(r, Ω)(∂S ⁄ ∂t)FG(r)} (3)

The property and current densities of a property G are given
by the following:

FG(r)) 1/2{N∫ dτ′(Ψ*Ĝ(r)Ψ+ (Ĝ(r)Ψ)*Ψ)} (4)

JG(r)) (Np ⁄ 2mi)∫ dτ′{Ψ*∇ r(Ĝ(r)Ψ)- ∇ rΨ
*(Ĝ(r)Ψ)}

(5)

The change in representation from field theory to the
Schrödinger representation leads to the transformation of every
property into an effective single-particle density and associated
current defined in real space; the symbol ∫dτ′implies a sum-
mation over spins and the integration over all coordinates save
those denoted by r, the coordinates of the electron integrated
over the open system. The symbol <>Ω implies the same mode
of integration, followed by integration of r over Ω. Aside from
the summation over spins, this mode of integration is that
introduced by Schrödinger in his fourth paper to define the
“electric density”, the same paper in which he introduced the
current density and related F to J via the equation of continuity.9

The resulting real space representation of density and current

for every property is a most important result, for it yields,
through the Heisenberg equation, a real-space “dressed” rep-
resentation of all of a system’s definable properties, including
those such as the total energy and Ehrenfest force that involve
two-particle interactions. The real-space representation of
properties is obviously of great importance in discussions of
transferability and in illustrating its occurrence. The basic single-
particle nature of the expectation values follows from the
generator acting only on the coordinates of a single electron in
the field theoretic expressions, Schwinger pointing out that, “the
essence of field theory is to provide a conceptually simpler and
more fundamental description depending on the particle as the
basic entity.”10

The quantum mechanics of an open system may be derived
heuristically11 by deriving the equation of motion, eq (3), directly
from Schrödinger’s equation followed by appeal to experiment
to determine the correct boundary condition. Delimiting the
equations of motion derived for arbitrary fragments of some
total system to the open systems whose predicted properties
yield agreement with the experimentally measured additive
atomic properties is accomplished by applying the “zero-flux”
boundary condition stated in eq (1).

The derivation points to an important property of an open
system: operators representing observables are no longer neces-
sarily Hermitian when the domain of integration is restricted to
a system with finite boundaries. Thus, the proof that the
expectation value of the commutator 〈[Ĥ,Ĝ]〉 vanishes for a
stationary state through the use of the Hermitian property of Ĥ
to obtain the so-called hypervirial theorem 〈[Ĥ,Ĝ]〉 ) 0 is not
obtained for an open system, with the commutator average being
instead given by the flux in the current of the observable
Ĝ through the surface of the open system. Thus, in a stationary
state, eq (3) reduces to eq 62

(1 ⁄ 2){N(i ⁄ p)〈Ψ|[Ĥ, Ĝ]|Ψ〉Ω + cc})

(1 ⁄ 2){IdS(Ω)JG • n + cc} (6)

While there is no flow of current in a stationary state, eq 6
equates the effect of the surroundings on the open system
expectation value of the commutator to the instantaneous flux
in the current through its surface.

An important point to be made concerning the zero-flux
boundary condition is that the kinetic energy of a proper open
system is a well-defined quantity. The Schrödinger expression
K(r) ) -(1/2)Ψ*∇ 2Ψ and the positive definite expression he
employed in his energy functional G(r) ) (1/2)∇ Ψ* · ∇ Ψ, differ
locally by -(1/4)∇ 2F(r), whose integral over an atomic basin
vanishes as a consequence of the zero-flux boundary condition.12

QTAIM, by providing the quantum basis for an atom in a
molecule, necessarily recovers all of the related concepts of
experimental chemistry yielding definitions of molecular struc-
ture in terms of bond pathsslines of maximum density linking
neighboring atomssand of structural stability in terms of the
dynamics of the gradient vector field of F(r).13 The Lewis model
and the associated ideas of electron localization/delocalization
are determined by the atomic expectation value of the exchange
density14 and given physical expression in the topology of the
Laplacian of the electron density, the quantity ∇ 2F(r).15

3. Transferability of Atoms in Molecules

3.1. Observational Basis of an Atom in a Molecule.
Extensive studies of molecular charge distributions16-20 using
near Hartree-Fock wave functions obtained from the Mulliken-
Roothaan laboratory of molecular structure and spectra (LMSS)
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at the university of Chicago in the 1960s led in 1971 to the
observation that the extent to which properties are additiVe (i.e.,
transferable) between different systems is determined by the
extent to which the charge distributions of atomic fragments
are unchanged during transfer between systems.21 This observa-
tion was placed on firm theoretical footings with the observation
in 1972 that the atomic form imposed on the structure of matter
by the dominance of the nuclear-electron force defines an atom
in a molecule as a region of space bounded by a surface of
local zero-flux in the gradient vector field of the electron density,
eq 1.12 The atoms so defined were found to have the property
of maximizing the transferability of their charge distributions
in an exhaustive partitioning of space. The observations made
in this 1972 paper bring to the fore some of the difficulties a
chemist has with the conditions for NEM given by PK.

Consider the charge distributions shown in Figure 1 for the
ground states of LiH, LiO and LiF, the examples used in 1972
to illustrate the all important observation that the transferability
of atom’s density was accompanied by a paralleling transfer-
ability in its kinetic energy density.12 One must concede that
the similarity in the Li atomic densities defined by the
intersections of their zero-flux surfaces with the plane of the
diagram is no less than remarkable considering the change in
its bonded neighbor from H to F resulting in a 9-fold increase
in the contribution of the bonded atom to the external potential.
Integration of the density over the atom and its subtraction from
the nuclear charge of Li yields net charges of +0.91, +0.93,
and +0.94, respectively. This is a simple example of the most
important observation underlying the concept of a functional
group: that atoms or linked groupings of atoms can exhibit
characteristic forms and properties in spite of gross changes
in their immediate neighbors. Thus chemistry requires that
transferability must apply to the atom’s properties as well as to
its density, which brings one to the second important observation
made in the 1972 paper:12 contour displays of the kinetic energy
densities K(r) or G(r) and their integrated values for the Li atom,
T(Li), were found to exhibit a paralleling transferability with
F(r). The average values of T(Li) for the three molecules exhibits
a spread of only 9 kcal/mol, a change of 0.2% in the total energy
of ∼7.37 au. Thus, by observation, both K(r) and G(r) exhibit
the same degree of transferability as that of F(r) for a topological
atom.

This paralleling behavior of F(r) and G(r) was the crucial
obserVation that led to the theory of atoms in molecules, as
deduced from the following chain of reasoning. The virial
theorem for a system governed by Coulombic forces states that
the total energy of a molecule in electrostatic equilibrium (no
Feynman forces acting on the nuclei) equals the negative of
the average kinetic energy of the electrons, E ) -T. If the virial
theorem exists for an atom in a moleculesthat is, for a region
of space bounded by a zero-flux surfacesthen one could use
this theorem to define E(Ω), the energy of an atom in a
molecule, as E(Ω) ) -T(Ω). Since T(Ω) is additive, the same
additivity applies to E(Ω), and the energy of a molecule would
be given by the sum of its atomic contributions, E ) ∑ΩE(Ω).
The existence of the atomic virial theorem, proven a few years
later in 1975,22 accomplishes a unique physical partitioning into
atomic contributions of all of the electrostatic interactions, both
repulsive and attractive, between the nuclei and the electrons.

The identification of E(Ω) with -T(Ω) has a number of
important consequences. A statement of the virial theorem for
the topological atomsa proper open systemspredicts that when
the form of an atom in real space remains unchanged on transfer,
so does its contribution to the total energy. That is, based on

these obserVations, the energy of an atom and thus surely its
other properties, would be transferable to the same extent as is
its charge distribution. The identification E(Ω) ) -T(Ω)

Figure 1. Contour maps of the ground-state electron density distribu-
tions, in descending order, of the molecules LiH, LiO, and LiF, showing
the intersection of the zero-flux interatomic surface, eq (1), with the
plane of each diagram. One is to note the similarity in the density
distribution of the Li atom that is obtained in spite of the very different
nature of its bonded neighbor, the populations of the Li atom equalling
2.09, 2.07, and 2.06 e, respectively. The diagram illustrates one of the
paramount concepts of chemistry: that an atom of a given element can
be recognized in any environment. The outer contour value is 0.001
au and the remaining contours increase in value in the order 2 × 10n,
4 × 10n, 8 × 10n au with n beginning at -3 and increasing in steps of
unity. The same contour values are used in all density maps. The
densities are calculated from near Hartree-Fock wave functions
obtained from LMSS employing large STO basis sets.12
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satisfies in a single stroke the two essential requirements of the
atoms of “conceptual chemistry”sadditiVity and transferability
of properties. It is common sense that two identical pieces of
matter must possess identical properties and consequently, two
atoms possessing identical charge distributions, that is, atoms
indistinguishable in real space, must exhibit identical properties.

The exceptional degree of transferability that the charge
distribution of an atom or a functional grouping of atoms can
exhibit is remarkable. While the initial observations regarding
properties paralleling form were for atoms in diatomic mol-
ecules, they have since been extended to encompass many types
of functional groups, obtained from experiment23-27and
theory.2,28,29 Transferability of form and properties is found to
be particularly evident for atomic groupings corresponding to
the building blocks of biological macromolecules. Recent work,
both experimental30,31 and theoretical,32-34 demonstrates the
remarkable transferability of the charge distributions and
properties of the main-chain and other functional groups
common to the amino acids. While such a finding must come
as no surprise to a chemist used to understanding the properties
of a protein in terms of its amino acid residues, it requires a
theory of atoms in molecules to implement and make quantita-
tive use of this knowledge. The transferability of proper open
systems in biology is so complete that one may construct a
polypeptide for example, by linking the mirror image amidic
interatomic surfaces of amino acid residues determined as the
central members in accurate calculations of tripeptides.33 The
amino acid residues defined by their amidic surfaces exhibit a
zero net charge (or a charge of ( 1 for the residues bearing a
net side-chain charge), a necessary requirement for the use of
the residues as repeating units in the construction of a
polypeptide.

The conditions put forth by PK for NEM and transferability
do not appear to anticipate chemical transferability. PK state
that the density F(r) depends significantly on the external
potential only at nearby points, a condition that fails to account
for the principal observation of chemistry: that the electron
density of an atom can exhibit a characteristic form and
properties in spite of gross changes in its immediate neighbors.
It is not clear how one can apply their condition of constant
chemical potential to finite molecular systems, the Li examples
ranging from four to twelve electrons. The next section presents
the mechanics of an open systemsof an atom in a molecules
and demonstrates that transferability in chemistry is not directly
related to the external potential but to the virial field, the virial
of the Ehrenfest force acting on the electron density, of which
the external potential is but one component.

3.2. Mechanics of Atomic Transferability. The virial
theorem, postulated in 1972 for a topological atom, was derived
in 197522 by a scaling of the energy functional G (ψ,∇ ψ) used
by Schrödinger35 to obtain his stationary state equation Ĥψ )
Eψ. This derivation yields, in addition to Schrödinger’s equation,
the stationary state analogue of Schwinger’s principle of
stationary action for an open system, eq 2.

δG (ψ, ∇ ψ;Ω))-(Nε ⁄ 2){(i ⁄ p)〈ψ, [Ĥ, Ĝ]ψ〉Ω + cc}

(7)

With the realization that one was following the path traced
out by Schwingersthe variation of a boundary and of the state
vector on that boundarysthe stationary state result was quickly
extended to yield Schwinger’s statement of the principle of
stationary action for an open system.4,5

3.3. Atomic Statements of the Ehrenfest Force and Virial
Theorems. The Ehrenfest and virial theorems are obtained from
the Heisenberg equation of motion for an open system, eq 3,
with Ĝ given by the electronic operatorssip∇ and r ·p,
respectively.5 The commutator term for the momentum operator
yields -∇ rV̂ which determines the force exerted on the electron
at r by the remaining electrons and by the nuclei, all in fixed
positions. By taking the expectation value of this force in the
manner denoted by N∫dτ′ one obtains an expression for Ff(r),
the force exerted on an electron at position r by the aVerage
distribution of the remaining electrons and by the rigid nuclear
frameworksa “dressed density”sgiving the force exerted on
the electron density. The physics of an open system defines a
corresponding “dressed” density distribution for every measur-
able property, one whose integration over an atomic basin yields
the atom’s additive contribution to that property. A dressed
density distribution for some particular property accounts for
the corresponding interaction of the density at some point in
space with the remainder of the molecule. The force density is
an example of a physical quantity that clearly involves two-
electron operators, and yet is expressible terms of a real-space
density. In a stationary state, the force exerted on an atom is
given by the surface integral of the momentum flux density
expressed in terms of the stress tensor, eq 8.

Fb (Ω))∫Ω
dr∫ dτ′{ψ*(-∇ rV̂)ψ})∫Ω

drFb (r)

)-IdS(Ω;rs)σ5(r) · n(r) (8)

where the stress tensor is given by

σ5(r)) (p2 ⁄ 4m){(∇ ∇ + ∇ ′∇ ′)- (∇∇ ′+

∇ ′ ∇ )}Γ(1)(r, r′)|r)r′ (9)

The Ehrenfest force is the one measured in an atomic force
microscope.36

The expectation value of the commutator for the virial
operator Ĝ(r) ) r̂ · p̂ yields 2T(Ω) + Vb(Ω), twice the atom’s
electronic kinetic energy plus Vb(Ω), the virial of the Ehrenfest
force exerted over the basin of the atom. In a stationary state,
these contributions are balanced by Vs(Ω), the virial of the
Ehrenfest force acting over the surface of the atom. Expressing
by V (Ω) the total virial for atom Ω, the virial theorem for a
stationary state may be stated as follows:2,5

-2T(Ω))V (Ω))Vb(Ω)+Vs(Ω) (10)

The virials of the Ehrenfest force exerted over the basin and
the surface of the atom with the origin for the coordinate r
placed at the nucleus of atom Ω are given in eqs 11

Vb(Ω))-∫Ω
drrΩ · 3 · σ5(r))∫Ω

drrΩ · F5 (r)

Vs(Ω)) I dS(Ω, rs)rΩ · σ5(r) · n(r) (11)

The definition of pressure requires the mechanics of an open
system, since the pressure is exerted on the system’s surface.37,38

It has been shown that the pressure-volume product pV is
proportional to the viral of the forces exerted on the open system,
that is the virial of the force resulting from the momentum flux
through the system’s surface.39

3.4. The Virial Field. The virial V for a total system is given
in eq 12;40

V )Ven +Vee -∑ R XR · FRe (12)

the sum of the electron-nuclear (e-n) and electron-electron
(e-e) potential energies and the virial of the electronic contribu-
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tion to the Feynman forces exerted on the nuclei, where XR is
the coordinate of nucleus R. This latter term can be equated to
the sum of the virials of the Feynman forces exerted on the
nuclei, ∑RXR ·FR, and the nuclear-nuclear repulsion energy Vnn

) ∑RXR ·FRn. It is in this manner that Vnn enters into the
molecular virial to yield the result that V, the Virial of the
Ehrenfest force acting on the electron density, equals the total
potential energy V and the Virial of the Feynman forces on the
nuclei, eq 13,

V )Ven +Vee +Vnn -∑ R XR · FR)V-∑ R XR · FR

(13)

The same expressions are obtained for an open system and,
thus, one obtains the usual statements of the virial theorem when
applied to an atom in a molecule:

T(Ω))-E(Ω)+W(Ω) and V (Ω)) 2E(Ω)-W(Ω)

(14)

where W(Ω) is the atomic contribution of the virial of the
external (Feynman) forces acting on the nuclei.41 Each theorem
obtained from eq 3 can be stated in a local form, the local form
of the viral theorem being

(p2 ⁄ 4m)∇ 2F(r)) 2G(r)+V (r) (15)

where the virial field ν(r) may be expressed as follows:2

V (r))-r · ∇ · σ5(r)+ ∇ · (r · σ5(r))) Trσ5(r)

(16)

Integration of eq 16 over an atom yields the atomic virial
theorem, eq 10. The virial field V (r) is a dressed density
distribution of particular importance. It describes the energy of
interaction of an electron at some position r with all of the other
particles in the system, averaged over the motions of the
remaining electrons. When integrated over all space, it yields
the total potential energy of the molecule, including the nuclear
energy of repulsion and for a system in electrostatic equilibrium,
with V ) V, it equals twice the molecule’s total energy. The
virial field condenses all of the electron-electron, electron-
nuclear and nuclear-nuclear interactions described by the many-
particle wave function into an energy density that is distributed
in real space. The electronic energy density is defined as2

Ee(r))G(r)+V (r))-K(r) (17)

The electronic energy Ee equals the total energy E in eq 14
in the absence of external forces with W ) 0.

An atomic self-consistent potential contains the long-range
e-n and e-e Coulombic interactions. In describing the interactions
that arise when atoms approach one another to form a molecule,
a new interaction is introduced, the repulsion between the nuclei.
The interatomic repulsions, Vee and Vnn are both approximately
one-half the magnitude of the interatomic e-n attractive interac-
tion Ven, the resulting difference between the repulsive and
attractive interactions yielding the relatively small change in
energy accompanying the approach of the atoms. Thus, because
of the nuclear-nuclear contribution, the energy changes result-
ing from the formation of a molecule or from the relative
vibrational displacements of its nuclei, are governed by a field
that is short-ranged compared to that determined by just the
e-n and e-e interactions. The Virial field V (r), because it includes
all contributions to the potential exerted at a point in space, is
the most short-range possible description of the potential
interactions in a many-electron system. It is the near balance

in these attractive and repulsive contributions making up the
virial field that lead to the transferability of an atom’s charge
distribution and its properties and to the concept of a functional
group as the carrier of chemical information. The statement of
PK that “NEM is not screening of charges, which renders long-
range Coulomb potentials short-range” is to be compared with
the finding that the transferability of an atomic charge distribu-
tion is determined by the documented paralleling transferability
of the virial field.

3.5. Transferability and the Virial Field. An experimentally
based “additivity scheme” requires not only that the atomic
properties be additive to yield the molecular expectation value,
as is always the case for proper open systems, but that the atoms
be transferable between molecules.2 Groups are said to exhibit
“perfect transferablity” (PT) when the changes in their charge
densities exhibit such small spatial perturbations that the values
in their properties fall within the limits of the experimental or
theoretical accuracy, generally accepted to be ( 1 kcal/mol for
the energy and 1 × 10-3 e for an atomic population. More
common is “compensatory transferability” (CT) observed in the
face of unavoidable perturbations induced in the groups by their
transfer between molecules.28 In these instances, the charge
density of the groups exhibit measurable changes but the
molecular properties are found to be conserved. In CT, for which
many examples may be found in the extensive tables of
experimental thermodynamic properties by Benson et al.,42 the
intergroup transfer of electron density that accompanies the for-
mation of a product molecule results not only in the conservation
of charge but also in the conservation or near conservation of
other properties. Thus, energy is conserved if the energy lost
by one group equals the energy gained by another.

The classic case of group additivity is that of the heats of
formation of the linear hydrocarbons CH3(CH2)nCH3 beginning
with ethane n ) 0, measured by Rossini in 1931.43-46 The heats
of formation or energies corrected for group enthalpies from
298 to 0 K and for zero-point energies may be fitted to the
linear energy relationship

E(CH3(CH2)nCH3)) 2E ° (CH3)+ nE ° (CH2) (18)

where the intercept is given by twice the energy of the standard
methyl group, 2Eo(CH3) ) E(C2H6) and the slope, by the energy
of the standard repeating methylene group Eo(CH2).

The hydrocarbons exhibit both PT and CT.28,47 A methyl
group bonded to another methyl in ethane clearly must differ
from one bonded to a methylene group, that is for n g 1,
from which it withdraws a small amount of electronic charge,
0.017e and undergoes a decrease of 9 kcal/mol in its energy.
A methylene bonded to methyl, however, exhibits compensa-
tory changes in its charge and energy such that the sum of
the changes for the methyl and its bonded methylene group
is zero. From n ) 2 onward the methyl and the neighboring
methylene groups exhibit PT, the methylene in propane, n
) 1, necessarily exhibiting twice the changes in energy and
charge as in the molecules with n > 1. The methylene groups
bound only to other methylenes as found for n g 3 exhibit
perfect transferability with energies equal to Eo(CH2), the
standard repeating energy of the group in eq 18, and a zero
net charge. For example, the energies of the four interior
CH2 groups in dodecane differ from the standard value, the
slope Eo(CH2) in eq 18, by 0.2 kcal/mol and possess net
charges of 0.001 e, both values lying within the integration
errors.48 Energies calculated at all levels of theory, including
those that employ self-consistent scaling of the electronic
coordinates to ensure satisfaction of the virial theorem, satisfy
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the linear relationship eq 18 with R2 ) 1.00000. The slope
Eo(CH2) in eq 18 is given by the energy of the methylene
group defined by the integration of its kinetic energy density
up to the two C|C surfaces of zero-flux that separate it from
the remainder of the molecule, a direct demonstration of the
physical significance of the boundary condition, eq 1. The
central methylene group in pentane has the energy Eo(CH2)
and it density distribution, along with that of one of the two
central methylene groups in hexane, are displayed in Figure
2. The densities are obtained from RHF calculations with
self-consistent scaling (SCVS) to satisfy the virial theorem,
employing a large basis set. The electronic density plots are
indistinguishable and are examples of the transferable me-
thylene group of the linear hydrocarbons. This being the case,
their electronic kinetic energy densities and their virial fields
are equally transferable, as further illustrated in Figure 2.
The integrated densities yield group populations that differ
by 0.001 e, average kinetic energies (and hence total energies)
that differ by 0.4 kcal/mol and virials (total potential energies)
that differ by 0.8 kcal/mol.

The strain energy of a cyclic molecule with less than six
carbon atoms is determined by comparing the energy of one of
its methylene groups with that of the standard Eo(CH2), and
the theoretically determined energies of the methylene groups
recover the experimental stain energies to 0.2 kcal/mol or less.47

Linear group additivity relationships exist for magnetic suscep-
tibility49 and electric polarizability50 of hydrocarbons and the
corresponding group additivities are recovered by the methyl
and methylene group contributions determined in the presence
of external magnetic and electric fields. These examples, of
many that include transition probabilities51 along with atomic
charges and dipolar polarizations determined by the atomic polar
tensors obtained from infrared intensity sums,52-54 are given to
demonstrate that QTAIM recovers the experimentally measured
properties of atoms and functional grouping of atoms in
molecules. The recovery of second-order field induced properties
such as magnetic susceptibilities, electric polarizabilities and
transition probabilities demonstrates that the truism that atoms
that look the same exhibit the same properties is maintained in
the presence of external magnetic and electric fields. Thus, the
map of the current induced in a methyl group is as transferable
as is the map of its electron density,49 a comparison made
possible by the development of the method of the continuous
set of gauge transformations (CSGT) that enabled the first
calculations of divergence-free representations of the induced
current.55

4. External Contributions to the Energy of a Functional
Group

In cases of perfect transferability such as that pictured in
Figure 2 for the methylene group, wherein the virial field
necessarily exhibits the same degree of transferability as does
the density in order to ensure transferability of the atom’s
energy, the separate changes in the contributions to the atomic
virialsin the external potential energy and in the repulsive
contributionssdiffer in general, by many thousands of kcal/
mol between members of a homologous series, only the total
potential energy densitysthe virial fieldsremains unchanged
on transfer.12 The contribution of the “external potential” to the
energy of a system is given by the internal contribution Ven

o(Ω),
the energy of interaction of the density in Ω with the nuclei
internal to it, together with the external contribution Ven

e(Ω),
the interaction of the density of Ω with all of the external nuclei.

Table 1 lists the changes in the values of the following
quantities for the indicated groups in pentane and hexane: a

methyl group, a methylene group bonded to methyl and an
interior transferable methylene group labeled CH2

o; N(Ω), the
number of electrons, E(Ω), the energy of the group, and the
internal contributions to the electron-nuclear attractive and
electron-electron repulsive potential energies, Ven

o(Ω) and
Vee

o(Ω), respectively, the latter just for the standard methylene
group. Also given are the changes in the external contributions
to the same two quantities, Ven

e(Ω) and Vee
e(Ω), respectively.

In keeping with the perfect transferability of the methyl and
methylene groups, the changes in N(Ω) are 0.001 e or less and
those in E(Ω) and the internal contributions to the potential
energy are all less than one kcal/mol. These near-zero changes
are found in spite of very large changes in the external
contributions to the potential energy of interaction of each group
with the remainder of the molecule, values in excess of 3500
kcal/mol for Ven and 2500 kcal/mol for Vee.

4.1. Separate Transferability of Coulomb and Exchange
Contributions. The Coulomb and exchange contributions to
Vee are separately conserved on transfer, as illustrated by data
for the standard methylene group in Table 256 which gives the
relevant data for the CH2

o group in pentane and hexane. There
is of course, a large change in the total electron-electron
repulsion energy for a methylene group in pentane compared
to hexane, the values of Vee(CH2

o), but the internal contributions
Vee

o(CH2
o) remain unchanged on transfer to within 0.001 au.

The same is true of the separate internal Coulomb and exchange
contributions and the total change in the repulsion arises from
the increase in the external contribution, but only in the
Coulombic term. Not only is the internal exchange contribution
to the energy of a standard methylene group conserved on
transfer, so is its external contribution. While this may seem
surprising at first, it is a required result. As discussed in a later
section, the integration of the exchange density over an atomic
basin or over a pair of basins determines respectively, the extent
to which the electrons are localized within the atom or
delocalized into the basin of another. Since the localization of
the electron density within an atomic basin and its degree of
delocalization over the remaining atoms of a system are
necessarily separately conserved, the exchange density, weighed
by -1/r12 to give the exchange energy, must be separately
conserved in the case of PT.

4.2. Separate Conservation of the Basin and Surface
Virials. Since the molecules are in equilibrium geometries, the
atomic virial equals twice the atom’s energy and the virial is
conserved to the same extent as is the energy in these examples.
An interesting property of the atomic virial is that it may be
equated to the virial of the forces acting over the basin of the
atom Vb(Ω), and the virial of the forces exerted on its surface,
Vs(Ω), isolating the internal from the external contributions,
eqs 11. The important point is that basin and surface contribu-
tions are separately conserved. For example, the changes in the
two quantities for a methyl carbon atom in pentane and hexane
being ∆Vb(Ω) ) 0.00 kcal/mol (Vb(Ω) ) 75.12 au) and ∆Vs(Ω)
) 0.13 kcal/mol (VVs(Ω) ) 0.237 au), the bracketed values
being the totals for a single carbon atom. The constancy in the
surface Virial is a result of the Virial of the total force exerted
on an atom remaining constant on transfer, in spite of the Very
large changes in the indiVidual contributions to the external
potential acting on the atom.

Perfect transferability of a group requires that the geometry
of the group be equally transferable, since the equilibrium
geometry is determined by the vanishing of the Feynman forces
on the nuclei. This is documented for the hydrocarbons where
equivalent bond lengths differ by less than 0.0001 au and bond
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angles by less than 0.05°.28 On the contrary, the finding that
the geometrical parameters of a groupsbond lengths and bond

anglessare transferable, ensures that the electron density of the
group is also transferable.

Figure 2. Contour maps, in descending order, of the electron density F(r), the positive definite kinetic energy density G(r) and the virial field V (r), eq
16, for the transferable methylene groups in pentane (RHS) and hexane. The plots are in the plane of the C and H nuclei and show the intersections of the
C|H interatomic surfaces with this plane and the bond pathss lines of maximum electron densitysthat link the C nucleus with each of the protons.
Projected positions of out-of-plane nuclei are indicated by open crosses. Each plot is superimposable with that of its neighbor. This pictorial representation
of the paralleling transferability of the electron density and energy densities is made quantitative by the vanishingly small differences in their integrated
values as quoted in the text. The field |V (r)| is topologically homeomorphic with the electron density, while G(r), as is clear from the diagram, is not. The
bond path defined by F(r) is superimposed on the virial path in the field |V (r)|, the line of maximally negative potential energy density linking neighboring
nuclei. The bond critical point, found at the intersection of the bond path and an interatomic surface, is clearly in close proximity to the corresponding
critical point in |V (r)|. The plots and numerical results are obtained from RHF SCVS calculations using the 6-311++G(2d,2p) basis.
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5. Transferability in Solids Ionic and Otherwise

Unit cells in solidssionic, covalent or molecularspresent
countless examples of perfect transferability, the properties of
the total system equalling the sum of the corresponding
contributions from each repeating unit cell. (As discussed below,
surface effects die off rather rapidly and may be quantitatively
accounted for). PK make repeated statements to the effect that
their conditions for and discussion of transferability do not apply
to systems containing ions, stating: “It is generally accepted
that in the absence of long-range ionic interactions, large
molecules or materials systems can be studied and understood
one neighbourhood at a time,” and further, “in a metal
replacement of an atom or ion by another atom or ion has short-
ranged electronic consequences, whereas in an insulator, ions
lead to classical long-range electronic effects.”1 These arguments
do not apply to the chemical transferability of atoms. The virial
field exhibits the same short-range nature in an ionic crystal or
in the presence of an ion as it does in any other system. The
zero-flux boundary condition when applied to a solid is a
generalization of the Wigner-Seitz cell, defining atoms with
characteristic definable properties. 57-60 Even perturbations, gross
in terms of the change in external potential, die off quickly in
an ionic system, as exemplified in the following examples.

Macroscopic Polarization. The macroscopic polarization
P(r) is the induced dipole moment per unit volume placing the
determination of P(r) within the domain of the physics of an
open system. The same applies to magnetization M(r) of
extended systems and the physics of an open system enables
one to express the electron densities or currents associated with
the individual unit cells within a crystal whether they be ionic,
covalent, or molecular.61,62 It is however necessary to correct
the usual textbook description of polarization in an infinite
periodic crystal that equates P solely to the polarization of the
density in a unit cell.63,64 Martin, using general arguments, has
shown that one must include a surface term that accounts for
the charge transferred across the boundary of the cell in addition
to the polarization within the cell, no matter how the cell is
defined.65 This is precisely the result obtained when the dipole
moment of any system, finite or extended, is expressed in terms
of contributions from the open systems of which it is comprised.
The contribution of an atom to the dipole moment of a finite or

extended system, is given by the average of -rF(r) over the
atom’s volume with r referenced to the nucleus together with
a position weighted term that describes the contribution from
the charge lost or gained by the atom through the interatomic
surfaces it shares with its bonded neighbors. For an atom in a
crystal, this term is replaced with the dipole resulting from the
flux in the electric field through each of the atom’s interatomic
surfaces, measured relative to its nuclear position.41

Simple model systems consisting of repeating units of a
polyether capped by hydrogen atoms, H|CH2O|nH or the ionic
couple F|NaF|nNa were used to illustrate the applicability of
transferability obtained from the physics of an open system and
demonstrate the rapid falloff in surface effects on the electron
densities and properties of the unit cells.61 Figure 3 illustrates
the superimposable nature of the electron and kinetic energy
densities and of the virial field for the groups in the central
portion of H|CH2O|8H. Each interior cell has a zero net charge
to within the integration error of 0.003e, as required for the
termination of surface effects on the density. In the cases where
n g 6, a single outer cell serves to ensure electric neutrality of
the interior cells. Similarly, the interior cells have energies that
agree to within 0.003 ev or less and the magnitudes of their
polarizations differing by less than 0.002 au.

F-Center Defect. As a further example, consider the removal
of the central F atom from the cubic cluster Li14F13

+ leaving an
electron which becomes bound as a non-nuclear attractor in its
place thus creating an F-center defect.66 The individual contribu-
tions to the potential energies of the ions forming the faces of
the cube change by large amounts when the fluoride ion is
replaced by a single negative charge, the change in the external
potential for example, corresponding to the removal of a F
nucleus. The nuclear-electron attractive potential energy in-
creases by 480 eV for F and by 135 eV for a Li following the
removal of F. These changes are however, closely matched by
decreases in the repulsive contributions. Thus, the virials of the
total forces exerted on the ions change by relatively modest
amounts of ∼0.2 eV, their densities and other atomic properties
exhibiting correspondingly small changes; the charge on F
changing by -0.017e and its energy by 0.1 eV. Thus, even a
gross perturbation, removal of a fluorine atom, results in
relatively small changes in the density distributions and proper-
ties of the surrounding ions. The charge on the F-center non-
nuclear attractor is -0.64e compared to -0.94e for the central
F atom it replaces and is a further example of a group responding
only to the total change in the potential exerted on it as given
by the virial field, rather than to changes in its individual
contributions, such as the external potential.

Localized Perturbations. Creating charge within a neutral
system in general has only local effects as illustrated by the
transfer of a hydrogen from the carboxyl group to the amino
group in an amino acid to form its zwitter-ion.67 Only the
properties of the atoms directly involved in the tautomerization
are significantly affected, the carbon and remaining atoms of
the residue bonded to CR for example exhibiting a change in
population less than 0.00e. The constancy in the atomic
properties of the atoms forming the backbone of a polypeptide,
found in spite of the very different attached residues including
those bearing net charges, has led to the construction of
aspherical scattering models to replace the independent atom
model in the determination of the electron density from high
resolution crystallographic work.68,69 This important and emerg-
ing field of crystallography is a result of the experimental
verification of the transferability of atoms and groupings of
atoms defined as proper open systems. The creation of a vacancy

TABLE 1: Changes in Properties for Transferable Methyl
and Methylene Groupsa,b,c

Ω ∆N(Ω) ∆E (Ω) ∆Ven
o(Ω) ∆Ven

e(Ω) ∆Vee
o(Ω) ∆Vee

e(Ω)

CH3 0.000 -0.1 +0.6 3543
CH2 0.000 -0.3 -0.5 4006
CH2

o 0.001 -0.4 -0.5 5037 0.6 -2523

a N in number of electrons; E in kcal/mol. b Group energies in au
1 au ) 627.5 kcal/mol ) 27.212 ev. c Eo(CH3) ) -39.629; Eo(CH2)
) -39.046; Ven

o(CH2
o) ) -93.031; Vee

o(CH2
o) ) +19.781.

TABLE 2: Coulombic and Exchange Contributions to
Vee(CH2

o) in Pentane and Hexane in au

Vee(CH2
o) Vee

o(CH2
o) Vee

e(CH2
o)

total
pentane 52.036 14.767 37.269

hexane 56.057 14.768 41.289
Coulomb

pentane 57.963 19.781 38.182
hexane 61.985 19.782 42.201

exchange
pentane -5.928 -5.0140 -0.9140
hexane -5.928 -5.0140 -0.9140
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in a solid does not lead to any difficulties in applying QTAIM,
as to the crystal face of MoS2 in a study of its catalytic
properties.70

6. The Nearsightedness of the One-Electron Density
Matrix

The density distribution of an atom in a molecule clearly does
not obey the theorem of Hohenberg and Kohn, that the electron
density be a unique functional of the external potential.71

QTAIM provides a new theorem, one based on observation;
the electron density of an atomsa proper open systems
determines the atom’s contribution to all measurable properties
of the total system. Whether the atom’s density distribution
changes by a little or a lot, its properties change by correspond-
ing amounts.

Should one regard the virial field V (r) as playing the
corresponding fundamental role in determining the electron
density for a proper open system as does the external potential
in the HK theorem for a total system? Not only does V (r)
parallel the transferability of F(r), the field |V (r)| is found to
be structurally homeomorphic with the electron density and,
thus, every structure and change in structure exhibited by the
topology of F(r) as revealed in its gradient vector field is
recovered by the corresponding topology of |V (r)|.72 Thus, the
electron density F(r) appears as a locally scaled function of
|V (r)|, the magnitude of the electronic potential energy density.

Or does the relationship between the density and atomic
properties lie deeper? The electron and kinetic energy densities
together with the virial field are all determined by the one-
electron density matrix Γ(1)(r,r′). Thus in a 1995 paper entitled
“Chemistry and the Nearsighted Nature of the One-Electron
Density matrix” it was argued that chemistry is a consequence
of the near-sightedness of Γ(1)(r,r′), since this matrix determines
the electron density and all of the mechanical properties of an
atom in a molecule.73 There is an additional important observa-
tion bolstering this statement: all of the necessary physical
information is contained in the expansion of Γ(1)(r,r′) up to
second-order with regard to both the diagonal and off-diagonal
terms.2 The expansion up to second-order about the diagonal
elements Γ(1)(X, x ) 0) with X ) (r + r)/2 and x ) (r - r)/2
yields

Γ(1)(X + δX, δx))F(X)+ ∇ F(X)δX +
(1 ⁄ 2)δX · ∇ ∇ F(X) · δX +

(2m ⁄ ip)J(X) · δx + (2m ⁄ p2)δx · σ5(X) · δx +
(2m ⁄ ip)δX · ∇ J(X) · δx (19)

The diagonal terms yield the density, the gradient vector field
of the density that determines structure and structural stability
and the dyadic that determines the critical points in the density.
The trace of the dyadic yields the Laplacian of the density, the
bridge that provides a homeomorphic mapping of the informa-
tion determining the spatial pairing of electrons contained
in the second-order density matrix. The off-diagonal terms yield
the current density J(r), the stress tensor σ5(r) that determines
the Ehrenfest force and energy densities and the divergence
of the current ∇ J(r), the field that determines the critical points
in J(r). The gauge origin problem in calculating a divergence-
free representation of the induced current density and related
second-order response properties determined byr × J(r), was
first accomplished using the method of continuous set of gauge
transformations derived from the theory of atoms in molecules.55,74

In a 1996 paper Kohn drew attention to the fact that his
‘nearsightedness’ principle applies to Γ(1)(r,r′).75 The paper

Figure 3. (a) Contour maps of the electron density for the central
portion of H|CH2O|8H in the plane of the C and O nuclei, overlaid
with interatomic surfaces and bond paths. (a) the electron density F(r).
(b) The associated gradient vector field defining the atomic boundaries
and bond paths. (c) Contour maps of G(r), the positive definite kinetic
energy density and (d), the virial field. The virial field for atom Ω
integrates to twice the total energy E(Ω), the kinetic energy density to
the negative of E(Ω). Both the kinetic energy density and virial field
mirror the essentially perfect transferability of the electron density for
each atom in the system. Atoms that look the same, i.e., that have the
same electron density distribution, possess the same properties, whether
free or bound.

Nearsightedness Of Electronic Matter J. Phys. Chem. A, Vol. 112, No. 51, 2008 13725



proposed an approach to finding a computational method that
scales linearly with the number of electrons based on a
variational principle for Γ(1)(r,r′). Kohn proposed to replace the
effective one-body potential υ(r) in the Kohn-Sham self-
consistent equation for determining �i(r) and εi by a scheme
wherein υ(r) is determined directly in terms of Γ(1)(r,r′) rather
than by the set {�i(r), εi} as in the K-S equations, to yield the
density F(r) and the total energy E. Another proposal for making
use of the nearsightedness of Γ(1)(r,r′) is to incorporate the virial
field into the self-consistent equations to obtain a precise
description of the short-range average field experienced by a
single electron in a many-electron system wherein the potential
energy is expressed in terms of the virial sharing operator for
a single electron defined as r1 · F̂1 ) -r1 · ∇ 1V̂.76

6.1. Transferability of the Pair Density. The question arises
as to whether properties determined directly by the pair density
Γ(2)(r1,r2)exhibit the same degree and pattern of transferable
behavior as do group properties determined by the electron
density and one-electron density matrix. The finding that
properties such as the energy that involve two-electron interac-
tions are transferable in terms of their expression in terms of
Γ(1)(r,r′) via the stress tensor, does not necessarily imply a
separate transferability of properties expressed directly in terms
of Γ(2)(r1,r2).

One of the most important uses of the pair density in
chemistry is its utilization in providing a precise determination
of the extent to which electrons are localized to the basin of a
given atom or delocalized over a pair of atoms.77 Briefly, the
localization of an electron is determined by the corresponding
localization of the density of the Fermi hole, the physical
manifestation of the exclusion principle. The Fermi hole
describes how the density of an electron of given spin is spread
out from a preassigned point into the space of another same-
spin electron, thereby excluding the presence of an identical
amount of same-spin density. It is a negative quantity and when
integrated over the space of the second electron it yields -1,
corresponding to the removal of one same-spin electron. If the
density of the Fermi hole is maximally localized in the vicinity
of the reference point, then all other same-spin electrons are
excluded from its vicinity and the reference electron is localized
and in a closed-shell system, the result is a localized pair of
electrons. Contra-wise, the electron can go wherever its Fermi
hole goes and if the Fermi hole of an electron referenced to a
given atom is delocalized into the basin of a second atom, then
the electron is shared between the atoms and is delocalized.

These ideas are made quantitative through the appropriate
integration of the pair density.14 The localization of the Fermi
correlation contained within an atom is given by the double
integration of the exchange density over the atomic basin, the
quantity F(A,A), and its delocalization over a pair of atoms A
and B is obtained by integrating the exchange density over the
basins of both atoms, the quantity F(A,B). Delocalization is
determined by the extent to which electrons on one atom are
exchanged with those on another. For simplicity, from this point
on we assume a closed-shell system and the total Fermi
correlation integrates to -N, the total number of electrons.

The maximum possible value of |F(A,A)| ) λ(A), is N(A),
meaning that the electrons in A are totally localized within its
basin, something that is possible only for a closed, isolated
system. Still, the degree of localization, given by λ(A)/N(A),
can be remarkably close to 100% in ionic systems, equalling
98.5 and 99.95% for centrally bonded F and Na atoms
respectively, in an extended |FNa| chain.61 The localization index

λ(A) together with the delocalization indices |F(A,B)| sum to
the average number of electrons on atom A, N(A) and one has

N(A)) λ(A)+∑ B*A
|F(A, B)| (25)

and thus the exchange indices provide one with an atomic record
of how the electrons not localized on atom A, are delocalized
over the molecule. The exchange indices for the linear hydro-
carbons exhibit the same pattern of transferability as found for
the energy.28 As in the case of the additivity schemes for the
magnetic susceptibility and electronic polarizability, the ex-
change indices do not distinguish between the three different
methylene groups as found for the additivity of the energy. The
electrons of a methyl group are delocalized over other groups
to the extent of 7.5% and those of a methylene group by
approximately twice that mount. The delocalization decays
monotonically with distance, decreasing to essentially zero with
four intervening methylene groups.

There is added interest in the exchange indices, since the
exchange density weighted by -1/r12 determine the exchange
energy and one may use the exchange indices to track the atomic
behavior of the exchange energy. As noted in Table 2, not only
is the internal contribution to the exchange energy conserved
on transfer of a methylene group, but the external contribution
is conserved as well. This result is made understandable in terms
of the transferability of the exchange indices. Since N(A) and
the localization index λ(A) are conserved on PT of a group, the
sum of the delocalization indices |ΣB(FA,B)| must be conserved
as well, eq (25). However, the sum must not only be conserved,
but in addition, it must be partitioned among the remaining
groups in a manner required to maintain their transferable values.
The result is a conserved value for the external contribution to
the exchange energy for a transferable group. Consider the
behavior of the exchange indices λ(A) and |(FA,B)| for the
transferable methylene group |CH2

o| in pentane and hexane as
outlined below:28

CH3| |CH2| |CH2
o| |CH2| |CH3

0.051 0.581 6.734 0.581 0.051 Σ) 7.997)N(CH2
o)

CH3| |CH2| |CH2
o| |CH2| |CH3 |CH3

0.051 0.581 6.734 0.581 0.051 0.007 Σ ) 7.997)

The value of λ |CH2
o|, the number of electrons localized on

|CH2
o|, is 6.734 and the delocalization of the remaining 1.26

electrons onto neighboring groups decays evenly on each side,
save for the final two groups in hexane which sum to the same
value of 0.051 for a terminal group in pentane. The exchange
density exhibits similar delocalized behavior with respect to the
|CH2

o| group in the two molecules and the external contribution
to the exchange energy is conserved.

Conservation of the external contribution to an atomic
property is also observed in the external contributions to
isotropic NMR nuclear shielding constants σN for nucleus N78

and to the external contribution to the source function.79 The
source function S(r;Ω), when integrated over the basin of atom
Ω, determines the contribution of that atom to the density F(r)
at a point in space. The external contributions to σN and F(r)
are determined by integration of the shielding density78 and the
source function respectively, over atomic basins other than the
atom in question. Thus one finds that the external contribution
to σN for a carbon nucleus in a normal hydrocarbon is
independent of chain length and position of the carbon nucleus
within the chain, the methyl group in ethane contributing the
same shielding to a methyl carbon as does the butyl group in
pentane. The source function is of use in determining individual
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croup contributions to the density in the study of transferability.79

Gatti et al.80 for example, have shown that while the integrated
properties of the Li atom in LiH and LiF, as discussed in the
1972 defining paper,12 are very similar, the source function for
the Li atom demonstrates that local variations do occur within
the basin of Li upon replacement of H with F. That the integrated
properties of the Li atom are little changed is another demon-
stration of the operation of the compensatory effect, the density
changing so as to minimize the unavoidable changes ac-
companying the change in a bonded neighbor.

Clearly the delocalization indices referenced to a given atom
or group, independent of any degree of transferability, provide
an important measure of the fall-of in the exchange energy. The
exchange indices are readily and simply calculated at all levels
of theory by the suite of programs supplied for the implementa-
tion of QTAIM. The delocalization indices are a property
characteristic of a given group and their prior knowledge enables
one to make an informed guess of the distance required for the
exchange density to be safely ignored. For example, a central
carbon atom in a polyether |CH2O|n, has a percentage localization
index, λ(C)/N(C) × 100%, equal to 64.3% compared to a value
of 64.7% for the carbon of the |CH2

o| group and 99% of the
carbon atom’s exchange density is found within the |CH2O|
group. The possibility of determining the atomic contributions
to the exchange energy plays a role in helping to obviate the
need for assigning separate ‘ionic’ and ‘covalent’ bonding
mechanisms,81 from the vanishingly small interatomic exchange
found in ionic systems to the major role it plays in covalent
interactions where its presence quantifies the role assigned to
‘R
 T 
R spin-exchange resonance’.82

8. Conclusions

The quantum theory of atoms in molecules provides an
alternative approach to that of Prodan and Kohn, toward the
understanding of transferability of the electron density and its
properties. PK present their approach in terms of the concepts
of density functional theory; the chemical potential and the
dominant role of the external potential. The present approach
focuses on the experimental basis of transferability, determined
by the known chemistry of functional groups that when coupled
with the observed properties of the electron density, results in
the formulation of the physics of an open system - the quantum
theory of atoms in molecules, QTAIM. The examples from
experimental chemistry demonstrate that chemical transferability
extends from the observation of properties characteristic of a
given group up to and including perfect transferability. It is the
latter limit that enables one to demonstrate the agreement of
theory with experiment providing the basis for the new theorem
regarding the density: that the electron density of an atom in a
molecule or crystal determines its additiVe contribution to all
properties of the total system. The agreement includes properties
of groups perturbed by external electric, magnetic or electro-
magnetic fields.

The electron density is the principal carrier of information
in both density functional theory and QTAIM; the HK theorem
proves that the density determines the energy of a closed system,
and observation demonstrates that the density determines the
energy of an open system. The electron density should serve to
bridge the two approaches. It is hoped that the present article,
with its admittedly empirical grounding in experimental chem-
istry, will point the way to posing problems that should be
addressed in obtaining a deeper and predictive understanding
of NEM. Two examples are: a) To search for the functional
relating the energy of a proper open system to its density, a

problem that in the DFT formalism, requires its extension to a
system with a noninteger number of electrons as treated by
Perdew et al.83 and adopted by Cohen et al. in the development
of Partition Theory.84,85 b) To formulate an extremization
principle that minimizes the sum of the energy changes of two
open systems when brought into contact, as exemplified by the
many examples of compensatory transferability to be found in
the tables of thermodynamic properties of Benson et al.42 These
are new questions whose formulation is made possible by
QTAIM transcribing the chemistry of functional groups into
the language of quantum mechanics.
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