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Kohn-Sham density functional theory has become a standard method for modeling energetic, spectroscopic,
and chemical reactivity properties of large molecules and solids. Density functional theory provides a rigorous
theoretical framework for modeling the many-body exchange-correlation effects that dominate the computational
cost of traditional wave function approaches. The advent of hybrid exchange-correlation functionals which
incorporate a fraction of nonlocal exact exchange has solidified the prominence of density functional theory
within computational chemistry. Hybrids provide accurate treatments of properties such as thermochemistry
and molecular geometry. But they also exhibit some rather spectacular failures, and often contain multiple
empirical parameters. This article reviews our work on developing novel exchange-correlation functionals
that build upon the successes of global hybrids. We focus on more flexible functional forms, including local
and range-separated hybrid functionals, constructed to obey known exact constraints and (ideally) to incorporate
a minimum of empirical parametrization. The article places our work within the context of some other new
approximate density functionals and discusses prospects for future work.

1. Introduction

During the past few decades, Kohn-Sham (KS) density
functional theory1,2 (DFT) has changed the way computational
chemists work.3 By describing complicated many-body effects
within a relatively simple single-particle picture, KS-DFT
provides a very attractive combination of reasonable accuracy
and low computational cost. Modern functionals can be used
to predict accurate ground-state structures and electronic proper-
ties in a wide variety of systems, from small organic molecules
to large biological complexes to polymers and solids.

While KS-DFT has had a great many successes, it also has
some spectacular failures, to the point that it is common practice
to simply not use certain functionals for certain classes of
problems. For example, one does not use conventional semilocal
functionals (see below) to describe charge transfer excitations.4-6

These failures can be attributed to the approximate exchange-
correlation functionals currently in use. Ideally, we seek
functionals that provide accuracy competitive with popular
existing functionals while failing less often or at least less
severely. A functional with broad or even universal applicability
and a high degree of reliability would be a significant advance
even if its accuracy were no better than what can be achieved
already. To the best of our knowledge, such a functional does
not yet exist, but progress is being made.

It is not clear in KS-DFT how to construct affordable
functionals that give the right answers for the right reasons.
We suggest that the best guide toward doing so is consideration
of the underlying physics of the problem, with an eye toward
satisfaction of as many relevant exact constraints as practicable.
We also advocate a minimal degree of empirical parametrization;
though parametrization can improve accuracy, it too often comes
at the expense of obscuring the essential physics. Such
guidelines have long been emphasized by our friend and
collaborator, John Perdew.7

In this paper, we discuss our own efforts toward the
construction of next-generation exchange-correlation functionals.
We focus especially on two specific routes: range separated
hybrid functionals and local hybrid functionals. Before we
discuss them, however, we wish to begin with a brief overview
of KS-DFT in section 2, and a discussion of self-interaction in
section 3. In section 4 we present our work and touch on other
recent developments in exchange-correlation functionals, before
making concluding remarks in section 5.

2. Brief Overview of DFT

We begin with an overview of density functional theory,
emphasizing a few key points that will inform our discussion
of new density functional approximations. These include
methods for benchmarking the performance of new functionals,
the “Jacob’s ladder” of approximate density functionals,8 the
role of exact exchange, and the role of self-interaction error.

The foundations of density functional theory lie in the
Hohenberg-Kohn (HK) theorems,9 which establish that, given
a ground-state electron density, it is possible in principle to
extract the external potential (i.e., the potential due to the nuclei
and applied electric fields) to which that density corresponds.
Since the density also yields the number of electrons, we can
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determine the entire Hamiltonian given only the density F(rb).
This implies that the density in principle determines all
properties of a given system, and in particular that the density
determines the energy.

A second result of the HK theorems is that given an external
potential Vext(rb), we can obtain the ground-state energy E0 and
the ground-state density F(rb) by minimizing a functional of the
density alone. That is, the exact ground-state energy is obtained
by

E0 )min
F

(F[F]+∫ d rb F( rb) Vext( rb)) (1)

and the exact ground-state density is that density which
minimizes this energy expression. The functional F[F] contains
the kinetic energy of the electrons and the electron-electron
interaction energy. Unfortunately, while the HK theorems
establish the existence of an energy functional, they do not tell
us how to construct it. The main (but not only) difficulty lies in
determining the kinetic energy, and for this purpose we turn to
the Kohn-Sham scheme.

In the Kohn-Sham construction, the bulk of F[F] is taken
from a model system of noninteracting electrons which has the
same ground-state density as does the real system. The kinetic
energy of the real system is then approximated by the kinetic
energy of the noninteracting system, and the (hopefully small)
corrections are accounted for in the exchange-correlation
functional. The density is written in terms of the molecular
orbitals of the noninteracting system as F(rb) ) Σiφi(rb)φi(rb), while
the total energy is obtained from

EKS[F]) TS[F]+U[F]+Exc[F]+∫ d rb F( rb) Vext( rb) (2)

Here, TS[F] is the kinetic energy of the noninteracting system
and is given by

TS[F])-1
2∑i

〈�i|∇
2|�i〉 (3)

while U[F] is the classical Coulomb energy of the charge
distribution F

U[F]) 1
2∫ d rb1 d rb2

F( rb1)F( rb2)

r12
(4)

with r12 ) |rb12| and rb12 ) rb1 - rb2. The remaining terms not
captured elsewhere are included in the exchange-correlation
energy Exc[F]. The molecular orbitals used to build the density
and the kinetic energy are obtained by solving the Kohn-Sham
equations

(- 1
2

∇ 2 +Vext( rb)+ J( rb;F)+Vxc( rb;F))�i ) εi�i (5)

with

J( rb;F)) δU[F]
δF( rb)

(6a)

Vxc( rb;F))
δExc[F]

δF( rb)
(6b)

These simple, effective single-particle equations are similar
to those of Hartree-Fock theory, and result from minimizing
the energy with respect to the density (or spin-densities for
functionals of the spin-densities).

Summarizing the KS procedure then, we take a trial density,
construct the potentials J and Vxc, solve for the molecular
orbitals, and last obtain the total energy from eq 2. From the
molecular orbitals, we build a new density and repeat the above
procedure until the density is determined self-consistently. At
that point, given the exact exchange-correlation functional, the
density is the exact ground-state density of the real system, and
the energy obtained by eq 2 is the exact ground-state energy.

Unfortunately, the exact exchange-correlation functional in
principle requires one to solve the Schrödinger equation and
obtain the exact wave function. Systematic wave function-based
approximations to this functional have effort comparable to the
corresponding wave function treatment.10-15 However, one of
the main attractions of DFT is that simple approximate
exchange-correlation functionals can provide accurate (albeit
unsystematic) results within what is in practice a mean-field
framework. Over the past several decades, an enormous body
of work on such approximations has been developed. More
details can be found in the extensive review of Scuseria and
Staroverov.3

Before discussing approximate exchange-correlation func-
tionals, we must introduce the criteria by which we will evaluate
them. One particularly important design principle has been that
approximate functionals should satisfy known constraints on
the exact density functional. Another important criterion is the
accuracy of a functional’s predictions for properties such as
molecular thermochemistry, reaction barriers, geometries, and
spectroscopic properties. The performance of new approximate
functionals is usually benchmarked against accurate values
obtained from experiment or high-level wave function theory.
For example, a functional’s performance for molecular ther-
mochemistry is often evaluated using the GN sets of Curtiss,
Raghavachari, Pople, and co-workers.16-21 These contain the
experimental gas-phase heats of formation of several small and
medium-sized molecules, along with principal ionization po-
tentials, electron affinities, and proton affinities. We generally
benchmark our functionals against the 223 heats of formation
in the G3/99 set.20 A functional’s performance for kinetics can
be tested against databases of classical reaction barrier heights,
such as the HTBH38/04 hydrogen transfer22 and NHTBH38/
04 non-hydrogen-transfer23 databases of Truhlar and co-workers.
A functional’s predictions for total energies can be compared
against accurate ab initio energies of first- and second-row
atoms.24 The small, representative AE6 atomization energy and
BH6 reaction barrier height test sets of Lynch and Truhlar25

are invaluable for initial tests of new density functionals. Table
1 presents the results of calculations on these data sets for several
representative functionals, which we describe in more detail
below. Errors are defined throughout this work as theory minus
experiment. Except where indicated otherwise, all results are
generated using the 6-311++G(3df,3pd) basis set.
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The foundation of most approximate exchange-correlation
functionals is the local spin-density approximation (LSDA),
which assumes that the exchange-correlation energy density exc

at a point rb is equal to that of a homogeneous electron gas (HEG)
whose spin-densities are equal to the spin-densities at rb. Thus,
we have

Exc
LSDA )∫ d rb exc

HEG(Fv( rb), FV( rb)) (7)

The exchange energy density for the homogeneous electron gas
can be calculated exactly, and is

ex
HEG(Fv, FV))-3

4( 6
π)1⁄3

(Fv
4/3, FV

4/3) (8)

The correlation energy density is usually obtained from fits
to Monte Carlo simulations of the homogeneous electron
gas26-28 with attention paid to the known high-density limit.29

The LSDA is exact for constant densities and it is expected to
be reasonably accurate for slowly varying densities as well.

While the LSDA is particularly simple, it is not adequate for
atomic and molecular systems. As clearly indicated by Table
1, total energies are poor, and the functional is unable to describe
thermochemistry or reaction barriers. The LSDA also tends to
underestimate bond lengths.30,31 In extended systems, band gaps
are strongly underestimated.32 While in finite systems the low-
lying states in the electronic excitation spectrum are reasonably
described,33 charge transfer and Rydberg excitations are not.
Thus, we must seek more sophisticated functionals.

To move beyond the LSDA, one might wish to expand the
interaction in terms of fluctuations in the density. This can be
done via the gradient expansion approximation, but unfortu-
nately it is for many systems less accurate than is the LSDA34-36

and in finite systems yields an exchange-correlation potential
which diverges.37 However, the idea of including information
about the local gradient of the density is sound, and leads to
generalized gradient approximations (GGAs). In a GGA, the
LSDA energy density is multiplied by an enhancement factor
Fxc which corrects for inhomogeneities of the system, so that

Exc
GGA )∫ d rb ex

HEG(Fv, FV)Fxc(Fv, FV, ∇ Fv, ∇ FV) (9)

Examples of popular GGAs include the B88 exchange
functional,38 the LYP correlation functional,39 and the PBE40

and PW9141 exchange-correlation functionals. [While LYP also
includes the Laplacian of the density, Miehlich, Savin, Stoll,
and Preuss showed that it can be recast in a form which uses
only the gradient of the density by means of a partial integration
(ref 42).] These generally improve on the failures of LSDA,
yielding better total energies, atomization energies, and reaction
barriers, and correcting (but sometimes overcorrecting) the
underestimation of bond lengths.43-45 Table 1 shows that the
PBE exchange-correlation functional and the BLYP combination
of B88 exchange and LYP correlation significantly improve
upon the LSDA for thermochemistry, reaction barriers, and
atomic total energies. However, their performance is still not
adequate for most purposes.

Continuing up the Jacob’s ladder of functional design, we
arrive at meta-GGAs, which incorporate the kinetic energy
density and/or the Laplacian of the density. Examples include
the functionals known as VSXC,46 PKZB,47 TPSS,48 and
M06L.49 Accuracy is again improved over GGAs for energetics,
and begins to be fairly reasonable. However, meta-GGAs suffer
from many of the same failings as do GGAs, albeit to a lesser
extent. Table 1 shows that the TPSS meta-GGA provides a
moderate improvement upon the GGAs.

The LSDA, GGAs, and meta-GGAs are examples of what
are termed semilocal functionals, in which the exchange-
correlation energy density at a point depends only on the density,
its derivatives, and possibly the orbitals and their derivatives at
that point. Semilocal functionals are fairly simple and efficient,
but as we have seen are not sufficiently accurate. To reach
acceptable accuracy, hybrid functionals, which incorporate some
fraction of the exact nonlocal Hartree-Fock-type exchange, are
introduced.50,51 In a conventional “global” hybrid functional,
the exchange-correlation energy is written as

Exc )Exc
DFA + c(Ex

HF -Ex
DFA) (10)

where c is some constant parameter, Ex
DFA is the exchange energy

from a semilocal density functional approximation (DFA), and
Ex

HF is the nonlocal exact exchange energy, given in terms of
the molecular spinorbitals of eq 5 by

Ex
HF )-1

2∑i,j
occ ∫ drb1drb2�i( rb1)�j( rb1)

1
| rb1 - rb2|

�i( rb2)�j( rb2)

(11)

While it is possible to obtain the exact exchange potential by
taking the functional derivative of the exact exchange energy
with respect to the density,10,11,52,53 it is not straightforward.
Hybrid functionals are thus usually implemented in what is
known as the generalized Kohn-Sham framework,54,55 in which
the nonlocal Hartree-Fock-type exchange potential is used in
solving for the Kohn-Sham molecular orbitals of eq 5. Unless
mentioned otherwise, this procedure is followed for all hybrids
discussed in this work.

Global hybrids can be rationalized by an adiabatic connection
between the real system and the noninteracting Kohn-Sham
reference system50,51 (section 4.4) or as a balance between self-
interaction error and the simulation of nondynamical correlation
effects (section 3.3). Table 1 presents results from four global
hybrids: the popular B3LYP56 functional (which uses 20% exact
exchange), the nonempirical PBEh hybrid57,105 (25% exact
exchange), the TPSSh meta-GGA hybrid58 (10% exact ex-
change), and the MPW1K hybrid,59 which was optimized for
kinetics and uses 42.8% exact exchange. The table illustrates
that global hybrids are in general significantly more accurate
than GGAs or meta-GGAs for molecular thermochemistry, with
accuracy that is in many cases competitive with ab initio wave
function methods.

The results in Table 1 illustrate some of the successes and
some of the limitations of global hybrid functionals. In general,

TABLE 1: Mean Errors (ME) and Mean Absolute Errors
(MAE) in the G3/99 Set of Heats of Formation (kcal/mol), in
the HTBH38/04 and NHTBH38/04 Sets of Reaction Barrier
Heights (kcal/mol), and in the Total Atomic Energies Per
Electron for H-Ar (mEH) from a Variety of Functionalsa

G3 HTBH38 NHTBH38 atoms

functional ME MAE ME MAE ME MAE ME MAE

LSDA -121.5 121.5 -18.1 18.1 -12.5 12.7 67.8 67.8
PBE -21.7 22.2 -9.7 9.7 -8.5 8.6 8.6 8.6
BLYP 3.8 9.5 -7.8 7.8 -8.7 8.7 -0.6 1.2
TPSS -5.2 5.8 -8.0 8.0 -9.0 -9.1 -2.2 2.2
B3LYP 3.5 4.9 -4.5 4.6 -4.6 4.7 -2.4 2.4
PBEh -4.7 6.7 -4.6 4.6 -3.1 3.6 7.0 7.1
TPSSh -0.9 5.2 -6.2 6.2 -6.9 7.6 -1.7 1.7
MPW1K 11.5 11.6 -1.0 1.5 0.4 2.0 -0.7 1.2

a We have included the LSDA, two GGAs(PBE and BLYP), a
meta-GGA (TPSS), and four global hybrids (B3LYP, PBEh, TPSSh,
and MPW1K).
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these functionals can accurately describe either thermochemistry
or reaction barriers, but not both at once (c.f. the performances
of B3LYP and MWP1K in Table 1). Note, however, that some
recently developed hybrids, such as those found in the M06
family of functionals,5,60 achieve good compromises between
accuracy for thermochemistry and for reaction barriers.

Global hybrids also fail for other important properties.
Nonlinear optical properties, while improved over LSDA and
GGAs, are still poor.61 Dissociation of odd-electron systems,
as with the LSDA and GGAs, is poorly described (see section
3.2). In extended systems, the inclusion of exact HF-type
exchange is both computationally and formally problematic.62-64

All that being said, the successes of global hybrids are still
remarkable, especially given their computational simplicity. In
our view, new functionals should provide molecular thermo-
chemistry that is at least competitive with B3LYP, while obeying
additional exact constraints and/or providing an improved
treatment of kinetics or other properties. The remainder of this
article focuses on our ongoing research into functionals that
repair these remaining deficiencies. Many of these deficiencies
can be traced to the problem of self-interaction error (SIE)
intrinsic to semilocal functionals and inherited by global hybrids.
As our new functionals revolve around accounting for SIE, a
brief discussion is merited.

3. Self-Interaction Error

Simply put, the problem of self-interaction in DFT is that
most exchange-correlation functionals allow an electron to
interact with itself. Traditionally, the self-interaction error has
been viewed from a one-electron perspective,65 through recently
the importance of many-electron SIE has been emphasized.66-70

We will briefly discuss them both, since considering the SIE
can help guide us toward new and better functionals.

3.1. One-Electron SIE. A working definition of one-electron
SIE is inexactness for one-electron systems. In systems with
only one electron, the total electron-electron interaction must
vanish. More precisely, in terms of the quantities defined of eq
2, we have

Ex[F]+U[F]) 0 (12a)

Ec[F]) 0 (12b)

That is, the electron’s self-exchange cancels exactly with its
self-Coulomb repulsion, and there is no correlation. Both
conditions are satisfied by Hartree-Fock or other wave function
approaches. However, most semilocal exchange-correlation
functionals are not sufficiently flexible to ensure that these
conditions are satisfied for all one-electron systems.

Unfortunately, this one-electron SIE causes problems even
in many-electron systems. Because the SIE usually increases
the energy and decreases as the electronic structure becomes
less local, the presence of SIE tends to cause artificial stabiliza-
tion of delocalized electronic states. (Though note that, as we
discuss below, this delocalization can also be rationalized by
considering many-electron SIE.) This delocalization leads to,
for example, the well-known underestimation of reaction
barriers, since the transition state is more readily delocalizable
than are the reactants or products.71-74 The presence of SIE
causes the Kohn-Sham potential VS ) Vext + J + Vxc to have
the wrong asymptotic behavior, which leads to errors in
describing charge transfer processes, Rydberg excitations, and
polarizabilities and hyperpolarizabilities of long molecules.75-78

3.2. Many-Electron SIE. In addition to the conventional
one-electron SIE, much recent attention has been paid to many-

electron SIE, which can be defined in terms of errors for
fractionally charged subsystems. In the exact theory, the energy
as a function of particle number is a piecewise linear function.79

That is

E(N+ δN)) (1- δN)E(N)+ δNE(N+ 1) (13a)

) E(N)+ δNA(N) (13b)

)E(N+ 1)- (1- δN)I(N+ 1) (13c)

where 0 e δN e 1 and where E(M), I(M), and A(M) are
respectively the ground-state energy, the principal ionization
potential, and the principal electron affinity of the M-electron
system. Many-electron SIE is defined as inexactness for
fractional charges (that is, many-electron SIE is present when
the curve E(N) is not piecewise linear and when, even if it is
linear, the ionization potentials or electron affinities are incor-
rect).

While in the exact theory the curve of E(N) vs N is piecewise
linear, for semilocal functionals, it is found to be convex.68,69

That is, for a semilocal functional, we have

EDFA(N+ δN) < (1- δN)EDFA(N)+ δNEDFA(N+ 1)

(14)

Semilocal functionals thus artificially favor fractionally charged
fragments, by an amount defined by Yang and co-workers as
the delocalization error.70 For Hartree-Fock theory, the curve
of E(N) vs N is instead found to be concave,68,69 and

EHF(N+ δN) > (1- δN)EHF(N)+ δNEHF(N+ 1) (15)

Figure 1 schematically illustrates this behavior. Note that the
piecewise linear behavior of the exact functional means that
there is a discontinuity in the derivative dE(N)/dN at integer
particlenumbers,whichgenerallyisoverestimatedinHartree-Fock
theory but underestimated for semilocal functionals.68,69

The effects of many-electron SIE can be seen readily in the
dissociation of homonuclear diatomic cations, X2

+. Physically,
as we increase the internuclear separation the positive charge
should localize onto one nucleus or the other, and the proper
dissociation limit is dissociation to X and X+. However, since
we have two degenerate states (one with the positive charge
localized on the left nucleus, and one with it localized on the

Figure 1. Schematic representation of the energy in a fixed external
potential as a function of total electron number. The solid line represents
the exact piecewise linear behavior. The dashed line represents the
piecewise concave behavior of Hartree-Fock (HF), and the dotted line
represents the behavior of semilocal density functional approximations
(DFA). Shown in dotted lines are the straight-line approximations with
the initial slope for the DFA, illustrating that there is a (small) derivative
discontinuity.
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right nucleus), we can take any linear combination and get the
same total energy. This is just a restatement of eq 13: for all
fractional charges δ on one nucleus and 1-δ on the other, the
total energy should be the same.

In a single reference method, the two relevant dissociation
limits are the symmetric dissociation to 2 X+1/2 and the
symmetry-broken dissociation to X and X+. With Hartree-Fock
theory, the symmetric dissociation is higher in energy, but by
relaxing the constraint on spatial symmetry, we can recover the
lower energy symmetry-broken dissociation limit. The reverse
is true for semilocal functionals; however, the symmetric
dissociation limit is lower in energy than the symmetry-broken
limit, which we cannot recover. Thus, semilocal functionals
always give qualitatively incorrect depictions of these potential
energy curves.

The artificial stabilization of partially charged subsystems
inherent in semilocal DFT explains many common errors aside
from the illustrative but not particularly relevant example of
X2

+ dissociation curves. For example, NaCl dissociates im-
properly with semilocal functionals since for large internuclear
separations such functionals favor partially charged species
rather than neutral atoms (to which all A-B diatomics properly
dissociate). The problem is exacerbated when we realize that,
because the Coulomb interaction is treated exactly, the partially
charged sodium and chlorine experience a Coulomb attraction.
The dissociation curve thus not only has the wrong limit but
also the wrong shape.

To the extent that subsystems with integer charge can be
associated with localized electronic states, the artificial stabiliza-
tion of fractionally charged subsystems suggests artificial
stabilization of delocalized electronic structures, which we have
already seen explains many failings of conventional functionals.

3.3. Nondynamical Correlation and SIE. Given the errors
introduced by SIE, it may appear unreasonable to use semilocal
approximations for the exchange-correlation functional. Semilo-
cal exchange functionals seem particularly unreasonable, given
that exact exchange is computationally inexpensive (in mol-
ecules), free of one-electron SIE, and properly dissociates
homonuclear diatomic cations X2

+. It turns out that semilocal
exchange functionals can mimic important nondynamical cor-
relation effects that would otherwise require computationally
expensive correlated calculations. From this point of view, the
success of hybrid functionals is a consequence of their ability
to balance the undesirable effects of SIE with the desirable
simulation of nondynamical correlation that is intrinsic to
semilocal exchange functionals.

We illustrate this with the exchange and correlation holes80

of a simple covalent bond, the H2 molecule. The exchange-
correlation hole formalism is discussed in Appendix A. Briefly,
in an N-electron system, a reference electron at point rb interacts
with the other N - 1 electrons. This interaction can be
partitioned into the reference electron’s classical Coulomb
interaction with all N electrons (eq 4), and its interaction with
an exchange-correlation “hole” about rbcontaining -1 electrons.
The exchange-correlation hole thus corrects for one-electron SIE
(i.e., the difference between a reference electron’s interaction
with all N electrons, contained in U[F], and its interaction only
with the other N - 1 electrons.).

Figure 2 presents the exact exchange, exact exchange-
correlation, and LSDA exchange holes about the point rb in
symmetric singlet H2. [Results are evaluated in the limit of
infinite internuclear separation.] The exact exchange hole is
delocalized across both atoms. However, the exact exchange-
correlation hole is localized to the atom containing the reference

electron.81 This corresponds to nondynamical “left-right” cor-
relation: when the reference electron is at a point rb on the left
atom, the other electron localizes to the right atom, and vice-
versa. The LSDA exchange hole is localized about rb by
construction, and thus mimics the effects of left-right correlation.
On the other hand, in the H2

+ homonuclear diatomic cation,
the exact exchange hole becomes the exact exchange-correlation
hole, such that the LSDA hole is qualitatively incorrect.

We note that one can recover a localized exchange hole within
Hartree-Fock theory by allowing a symmetry-broken wave
function with, e.g., the v electron localized to the left atom and
the V electron localized to the right atom. Breaking symmetry,
in other words, allows the exact exchange hole to mimic exact
exchange plus nondynamical correlation. However, while break-
ing symmetry yields a localized exact exchange hole in this
case, it is not a panacea and cannot properly describe all
nondynamical correlation effects. This gives a different perspec-
tive on the many-electron SIE discussed above.

4. Next-Generation Functionals

It is fair to say that the advent of hybrid functionals is
responsible for the current popularity of DFT in the chemistry
community. While B3LYP is still the most popular functional
in computational chemistry, there has been a great deal of
progress in the last 15 years in developing more flexible hybrid
functional approximations. We will discuss some of these new
approximations here, focusing on our own work. Below we
present detailed discussions of our range-separated, local, and
local-range-separated hybrid functionals. We also touch on some
other developments (nondynamical correlation functionals,
adiabatic connection functionals, and exploring the limits of
empiricism) that provide particularly interesting complements
to our work. [Much of the work done on hybrid functionals by
other groups is omitted here due to space limitations.] Note that
we will henceforth be suppressing explicit spin dependence for
brevity of notation.

Our recent work in functional development has focused on
two generalizations of hybrid functionals: range-separated
hybrids63,75,76,78,82-88 as pioneered by Savin and co-workers82-84

and local hybrids,89-93 with recent attention paid to their
combination. The exchange-correlation hole of a global hybrid
functional (c.f. eq 10) can be written as

Figure 2. Exchange-correlation holes in stretched singlet H2, evaluated
for a v-spin reference electron at point rb. The electron density Fv is
included for comparison. Spatial symmetry of the wave function is
enforced (i.e., we use the restricted Hartree-Fock determinant to define
the exchange hole). Note that the wave function is evaluated in the
limit of infinite H-H separation, with a finite H-H separation shown
for convenience.
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hxc( rb1; rb12)) hxc
DFA( rb1; rb12)+ c(hx

HF( rb1; rb12)- hx
DFA( rb1; rb12))

(16)

where hx
HF, hx

DFA, and hxc
DFA are respectively the exact exchange

hole, a semilocal exchange hole, and a semilocal exchange-
correlation hole. This follows from the linearity of the exchange-
correlation energy in the exchange-correlation hole, as expressed
in eq A-7. While exchange-correlation holes for many semilocal
functionals have not been provided, prescriptions for their
construction at the GGA94-96 and meta-GGA97 level are
available.

The basic idea of range-separated and local hybrids is that
there is no formal requirement that c be a constant. Rather,
range-separated hybrids write

hxc
RSH( rb1; rb12)) hxc

DFA( rb1; rb12)+

c(r12)(hx
HF( rb1; rb12)- hx

DFA( rb1; rb12)) (17)

while local hybrids employ

hxc
LH( rb1; rb12)) hxc

DFA( rb1; rb12)+

c( rb1)(hx
HF( rb1; rb12)- hx

DFA( rb1; rb12)) (18)

Extensions to c(rb1, r12) are also possible. These more flexible
forms can more precisely tune the balance between self-
interaction error and inclusion of nondynamical correlation
effects. We discuss particular range-separated and local hybrid
functionals below.

4.1. Range-Separated Hybrids. We have introduced range-
separated hybrids in terms of exchange-correlation hole models
above. An alternative way of thinking about the same form is
in terms of separating the electron-electron interaction into
different components and then treating the components sepa-
rately. Historically, this is how range-separated hybrids have
usually been presented. Most often, the electron-electron
repulsion operator is separated into short-range (SR) and long-
range (LR) pieces, as

Here, erf is the standard error function, erfc is its complement,
and ω is a parameter which controls the range of the separation.
As ω approaches zero (infinity) the long-range (short-range)
interaction vanishes. While there is no requirement that the error
function be used to define short-range and long-range interac-
tions, it is a convenient choice as the integrals required can be
evaluated analytically in both Gaussian and plane-wave basis
sets.

Once these two interactions are defined, different methods
are used for each range. Since both wave function theory and
density functional theory treat U[F] in the same way, this term
is unaffected. The exchange and correlation interactions,
however, differ. Our discussion will focus on exchange, but note
thatrange-separatedcorrelationfunctionalsarealsoinuse,82,84,99-104

primarily as a route toward combining the precise wave function
description of the long-range and the efficient and accurate DFT
treatment of the short-range.

Given a short-range and a long-range interaction, the range-
separated hybrid form for Exc becomes

Exc
RSH )Exc

DFA + cSR(Ex
SR-HF -Ex

SR-DFA)+

cLR(Ex
LR-HF -Ex

LR-DFA) (20)

Here, Ex
SR-HF and Ex

LR-HF are the short-range and long-range
Hartree-Fock-type exchange energies, while Ex

SR-DFA and
Ex

LR-DFA are the short- and long-range semilocal exchange
energies. The exact exchange components are obtained from
two-electron integrals in the usual way, while the semilocal
pieces are obtained from exchange hole models. For the short-
range pieces, we thus have

Ex
SR-HF ) - 1

2∑i,j
occ ∫ d rb1 d rb2 �i( rb1)�j( rb1) ×

erfc(ωr12)

r12
�i( rb2)�j( rb2) (21a)

Ex
SR-DFA ) 1

2∫ drb1 drb12 F( rb1)hx
DFA( rb1; rb12)

erfc(ωr12)

r12

(21b)

with analogous expressions for the long-range terms.
Many semilocal functionals do not provide a model for the

exchange hole hx
DFA( rb1; rb12), in which case one needs to be

developed. Commonly used models for the exchange hole
include the GGA exchange hole model of Ernzerhof and
Perdew,94 the meta-GGA exchange hole model of Constantin,
Perdew, and Tao,97 and the general-purpose LSDA-based model
of Iikura and co-workers.75 We have recently introduced a GGA
exchange hole model intended specifically for use in range-
separated hybrids,95 and many other exchange hole models have
also been proposed, including a recent model suggested by
Bahmann and Ernzerhof.96

Typically, range-separated hybrids fall into one of two
categories: screened hybrids and long-range-corrected hybrids.
Screened hybrids use exact exchange only for small r12, while
long-range-corrected hybrids use exact exchange for large r12.
Our research group has introduced functionals of both types,
based on the Ernzerhof-Perdew model for the PBE exchange
hole,94 along with a recently proposed compromise functional
which uses exact exchange for intermediate r12 instead.

4.1.1. HSE Screened Hybrid. The nonempirical PBEh57,105

global hybrid, though somewhat inferior to B3LYP in
molecules, is generally superior for solids, possibly because
unlike B3LYP, it is exact for uniform densities. Unfortu-
nately, the computational demands of PBEh can become
prohibitive for extended systems or for macromolecules
because the exact exchange interaction decays rather slowly
as a function of r12, particularly as the band gap (HOMO-
LUMO gap in molecules) becomes small. This long-range
nature of exact exchange causes significant computational
burden over conventional semilocal functionals in large
systems. Moreover, in metallic systems, the long-range exact
exchange is actually unphysical, or, more precisely, is
approximately canceled by the long-range RPA cor-
relations.29,62,106,107 For both of these reasons, Heyd,
Scuseria, and Ernzerhof introduced the HSE screened
hybrid.63,86,108-110

The HSE functional writes the exchange-correlation energy
as

Exc
HSE )Exc

PBE + 1
4

(Ex
SR-HF -Ex

SR-PBE) (22)

where Ex
SR-PBE is the short-range PBE exchange energy. In terms

of our exchange-hole expression of eq 17, we therefore have
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c(r12))
1
4

erfc(ωr12) (23)

At ω ) 0, the HSE functional becomes identical to PBEh,
whereas at ω ) ∞, it becomes identical to PBE. Larger values
of ω provide greater computational efficiency, but if ω is too
large, the error becomes unacceptable. The latest (HSE06)86

version of the functional uses ω ) 0.11a0
-1 as an acceptable

compromise, with a0 the Bohr radius.
Table 2 shows some benchmark results for thermochemistry,

reaction barriers, and total energies, for comparison with the
corresponding numbers in Table 1. For molecular systems, HSE
gives results of the same caliber as the PBEh hybrid. This is as
we would expect, since the range r0 over which HSE uses a
significant fraction of exact exchange is r0 ∼ 1/ω ∼ 9a0, which
is on the order of three or four chemical bonds. The differences
between HSE and PBEh (see Table 1) are due to the fact that
the exchange hole model upon which HSE is constructed does
not exactly reduce to PBE. For the G3 set, HSE and the global
hybrid of the PBE hole functional give essentially identical
predictions (data not shown).

More interesting is the performance of HSE for solids.
Semilocal functionals are well-known to consistently underes-
timate band gaps,32 whereas the inclusion of exact exchange
raises the band gap.111,112 The screened exact exchange in HSE
is apparently the right amount to give band energy differences
in excellent agreement with optical band gaps in semiconductors.
An extensive study of forty systems110 shows that while the
LSDA and PBE band energy differences underestimate the
optical band gap by more than 1 eV, HSE is in error by only
0.25 eV, though it still tends to underestimate the gap.

In addition to band gaps, HSE also improves upon semilocal
functionals for the prediction of lattice constants,110 formation
of point defects in silicon,113 and for the description of rare earth
oxides.114-117 Paier and co-workers have recently shown that
in solids, HSE gives lattice constants, bulk moduli, and cohesive
energies similar to those from the PBEh hybrid and dramatically
superior to those predicted by B3LYP.64,118

While HSE gives predictions comparable to global hybrids
in molecules, and is as good as or better than global hybrids in
solids, the screened exchange interaction has another significant
advantage. By reducing the range over which the exact exchange
must be computed, HSE becomes significantly more computa-
tionally efficient in solids and large molecules than are
conventional global hybrids, both for energetics and for proper-
ties.109

4.1.2. LC-ω PBE Long-Range-Corrected Hybrid. While the
HSE functional is computationally much more efficient in large
systems than are conventional hybrids, it suffers from the
weaknesses of semilocal functionals for quantities sensitive to
the long-range exchange potential and the self-interaction error
in density tails. In order to correct this, an entirely opposite
approach can be taken, and this was the choice made by Vydrov

and Scuseria in their LC-ωPBE functional.78 Here, the exchange-
correlation energy is written as

Exc
LC-ωPBE )Ex

SR-PBE +Ex
LR-HF +Ec

PBE (24)

where Ex
LR-HF is the long-range exact exchange energy. We thus

have

c(r12)) erf(ωr12) (25)

in terms of the exchange hole expression of eq 17. The single
empirical parameter is set to ω ) 0.4a0

-1, which is thermo-
chemically optimum. Note that as ω approaches 0, the functional
approaches PBE, while as ω approaches infinity, the functional
becomes exact exchange with PBE correlation.

As Table 2 reveals, LC-ωPBE gives excellent performance
both for thermochemistry and for reaction barriers, in contrast
to simple global hybrids. Other functionals can make this claim
as well, but they generally rely on extensive empirical param-
etrization to do so, while LC-ωPBE uses only one parameter.
Apparently, exact exchange at large interelectronic separations
is quite important, but not so relevant at shorter distances. We
note that in the absence of significant long-range correlation
effects, the exact exchange hole is equal to the exact exchange-
correlation hole at large interelectronic separations. We also note
that the exchange potential given by LC-ωPBE is the exact long-
range exchange-correlation potential in atoms and molecules.
These two observations may help explain the success of LC-
ωPBE for finite systems.

Aside from accuracy for thermochemistry and reaction
barriers, LC-ωPBE has many other desirable properties related
to its correct long-range exchange potential. Because LC-ωPBE
gives an exchange potential with the correct asymptotic
behavior, it is much more accurate for such quantities as
molecular polarizabilities and other nonlinear optical properties
than are semilocal functionals or global hybrids.78

Interestingly, LC-ωPBE seems to have low many-electron
SIE. Although it does not properly dissociate homonuclear
diatomic cations X2

+, predicting the symmetric dissociation into
2 X+1/2 to be favored over dissociation to X + X+,68 it pre-
dicts the two limits to be much closer together than do semilo-
cal functionals or global hybrids.78 Unlike such functionals,
LC-ωPBE predicts that NaCl dissociates to neutral atoms, and
it correctly predicts the distance at which the intramolecular
charge transfer occurs.78

Given its simplicity, reliability, and accuracy for atomic and
molecular systems, we strongly recommend LC-ωPBE for those
applications. In extended systems, however, its inclusion of
100% long-range exact exchange is problematic. In such cases,

TABLE 2: Mean Errors and Mean Absolute Errors in the
G3/99 Set of Heats of Formation (kcal/mol), in the HTBH38/
04 and NHTBH38/04 Sets of Reaction Barrier Heights
(kcal/mol), and in the Total Atomic Energies Per Electron
for H-Ar (mEH) from a Variety of Range-Separated GGAs

G3 HTBH38 NHTBH38 atoms

functional ME MAE ME MAE ME MAE ME MAE

HISS 2.5 4.3 -1.3 1.7 -0.2 1.8 4.5 4.8
HSE -2.1 4.9 -4.6 4.6 -3.5 3.9 6.1 6.2
LC-ωPBE -0.9 4.2 -0.5 1.3 1.4 2.4 4.4 5.0

Figure 3. Fraction of exact exchange as a function of interelectronic
separation r12 for three range-separated hybrid functionals.
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another approach is necessary, and one possibility is to use a
multirange hybrid, as described next.

4.1.3. HISS Three-Range Functional. The HSE and LC-
ωPBE functionals have very different physical content, and are
in some sense complementary: HSE is best suited to large
systems, whereas LC-ωPBE is better suited to molecules.
Ideally, we would like to combine the advantages of the two
functionals, and this is the motivation behind the three-range
functional of Henderson, Izmaylov, Scuseria, and Savin
(HISS).119,120 Since both HSE and LC-ωPBE give good mo-
lecular thermochemistry, the HISS functional writes the exchange-
correlation energy as

Exc
HISS )Exc

PBE + cMR(Ex
MR-HF -Ex

MR-PBE) (26)

with Ex
MR-HF and Ex

MR-PBE respectively the middle-range exact
exchange and middle-range PBE exchange energies. These are
defined in terms of a three-range partitioning of the Coulomb
operator, as

so that the fraction of exact exchange becomes

c(r12)) cMR(1- erfc(ωSRr12)- erf(ωLRr12)) (28)

The parameters ωSR, ωLR, and cMR are determined by fits to
small test sets of atomization energies and barrier heights,
subject to the constraints that band gaps in a small set of solids
are reproduced with acceptable accuracy. This results in ωSR

) 0.84a0
-1, ωLR ) 0.20a0

-1, and cMR ) 0.6. In Figure 3 we show
the functions c(r12) defining the amount of exact exchange
included as a function of range for HISS, HSE, and LC-ωPBE.

The HISS functional apparently combines many of the
advantages of HSE and of LC-ωPBE. As can be seen from Table
2, HISS performs as well as does LC-ωPBE for thermochem-
istry, reaction barriers, and atomic total energies. In particular,
like LC-ωPBE, HISS is substantially more accurate for reaction
barrier heights than is HSE. On the other hand, while HSE
predicts semiconductor band gaps in excellent agreement with
experiment, LC-ωPBE overestimates them by about 4 eV, as
is to be expected due to its inclusion of long-range exact
exchange.120 Though not as accurate for band gaps as is HSE,
HISS overestimates them and is comparable to, but slightly
better than, PBEh. That HISS delivers accurate reaction barriers
while also giving qualitatively correct electronic structures for
extended systems suggests that it may be an ideal functional
for use in studying quantities such as reactions at metal surfaces,
in which both extended systems and finite subsystems play a
role.

4.2. Local Hybrids. Position-dependent admixture of exact
exchange provides another approach to tuning the amount of
exact exchange in a hybrid functional, and the corresponding
balance between SIE and nondynamical correlation. The total
exchange-correlation energy in this local hybrid formalism is
obtained from eq 18 as

Exc
LH )Exc

DFA +∫ d rb c( rb)(ex
HF( rb)- ex

DFA( rb)) (29)

Here, ex
HF(rb) and ex

DFA(rb) are the exact exchange energy density
and a semilocal exchange energy density, respectively. The

mixing function c(rb) tunes the fraction of exact exchange
incorporated at the point rb. The exact exchange energy density
is defined by

Ex
HF )∫ d rb ex

HF( rb) (30)

and can be evaluated explicitly (in the conventional gauge, see
below) following eq 11 as

ex
HF( rb)) - 1

2∑i,j
occ

�i( rb)�j( rb)∫ d rb′
�i( rb′)�j( rb′)

| rb- rb′| (31a)

)- 1
2∫ d rb′

|F1( rb; rb′)|2

| rb- rb′| (31b)

Here

F1( rb; rb′))∑
i

occ

�i( rb)�i( rb′) (32)

is the one-particle density matrix of the Kohn-Sham reference
system. (The density matrix introduced in eq 32 is central to
much of our recent work on local hybrids, as discussed below.)
The semilocal exchange energy density is evaluated as in eq 9.
Equation 30 implies a “gauge freedom” in the exchange energy
density, as any energy density

ẽx
HF( rb)) ex

HF( rb)+∆( rb) (33)

is valid as long as ∆(rb) integrates to zero.121 The effect of this
gauge freedom on the performance of local hybrids has not been
extensively investigated.

The general local hybrid form of eq 29 was suggested by
Burke and co-workers89 as early as 1998, but specific forms of
the mixing function c(rb) were not proposed or implemented until
later.8,90 Jaramillo, Scuseria, and Ernzerhof90 proposed and
implemented a local hybrid with

c( rb))
τW( rb)

τ( rb)
(34)

τW( rb)) | ∇ F( rb)|2

8F( rb)
(35)

This mixing function incorporates no exact exchange in regions
of constant density (e.g.the homogeneous electron gas) where
semilocal exchange is exact, and 100% exact exchange in one-
electron regions where exact exchange provides the exact
exchange-correlation functional. Unfortunately its thermochemi-
calperformanceisratherpoor.90Later,Kauppandco-workers92,122,123

showed that empirically parametrized mixing functions including

c( rb))R
τW( rb)

τ( rb)
(36)

and

c( rb)) erf(�s) (37)

where s is the reduced density gradient (s ) |∇ F|/2kFF, with
the Fermi wave vector kF ) (3π2F)1/3), provide accurate
thermochemistry and reaction barriers in local hybrids of LSDA
exchange (see Table 3). The empirical parameters R ) 0.48
and � ) 0.22 are optimized for thermochemistry. Unfortunately,
comparable accuracy has not been reached in local hybrids of
GGA and meta-GGA exchange. Local hybrids have been
implemented self-consistently within the LHF/CEDA124,125

approximation to the optimized effective potential,10-12,53,54,126

by Kaupp and co-workers.127,128 These authors have also recently
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investigated the adiabatic connection as a route to more
physically motivated local hybrids.129

Much of our recent work on local hybrids exploits the one-
particle density matrix introduced in eq 32. In an effort to build
more physically motivated local hybrid mixing functions, we
compare the Kohn-Sham density matrix used to construct the
exact exchange energy density of eq 31b, with the model density
matrices that are implicit in semilocal exchange functionals. The
simplest such semilocal model density matrix occurs in the
LSDA. It is the exact one-particle density matrix of a homo-
geneous electron gas with electron density F(rb)

F1
HEG(F, u) ) 1

(2π)3∫kF dkb e-ikb · ub

) 1

2π2(sin(kFu)

u3
-

kFcos(kFu)

u2 ) (38)

Substituting F1
HEG(F, u) into eq 31 returns the LSDA exchange

energy density of eq 7. (Recall that spin-dependence has been
suppressed throughout this work.)

We have proposed a “density matrix similarity metric” that
compares the density matrices used to construct exact and
semilocal exchange at points rb.91 For LSDA, the metric is
defined as

ΠLSDA( rb)) 1
F( rb)

|∫ d rb12 F1( rb; rb+ rb12)F1
HEG(F( rb), r12)|

(39)

The metric has a number of useful properties. It is bound
between zero and one by the Cauchy-Schwarz inequality. It is
one in the homogeneous electron gas where F1 ) F1

HEG, and
zero in molecular density tails where LSDA is a poor ap-
proximation. Reference 91 shows that it can be evaluated
analytically from the Kohn-Sham orbitals in a Gaussian basis
set. It can be extended to any semilocal exchange functional
that is constructed from a model density matrix, allowing us to
“customize” the local hybrid mixing function of particular
semilocal functionals. In ref 93, we used the LSDA-based
exchange hole model of Hirao and co-workers75 to construct a
model density matrix and similarity metric for PBE exchange.

We have used this metric to construct local hybrid mixing
functions c(rb) (eq 29). Our initial work focuses on local hybrids
that use a large fraction of exact exchange in regions where the
semilocal model density matrix has a low similarity to the exact
Kohn-Sham density matrix. Figure 4 illustrates the parameter-
free 1-ΠLSDA(rb) mixing function and the one-parameter mixing
function of eq 35 evaluated along the bond axis of N2. Table 3
presents representative results for five local hybrid functionals:
an LSDA local hybrid with the mixing function of eq 34, the
accurate one-parameter LSDA local hybrid of eq 36, a local
hybrid of LSDA exchange using the density matrix similarity
based mixing function 1-ΠLSDA(rb), a local hybrid of PBE
exchange using a one-parameter mixing function (1-ΠPBE(rb))2,

and a more complicated two-parameter mixing function that
combines our similarity metric with eq 34. [Results in Table 3
are calculated post-LSDA, with details as in refs 91 and 93.]
The parameter-free 1-ΠLSDA mixing function significantly
improves on the parameter-free τW/τ mixing function, though
it is still inadequate for thermochemistry. However, its succes-
sors give rather reasonable results, suggesting that this line of
investigation is worth pursuing.

Table 3 also demonstrates that the LSDA local hybrids give
poor total atomic energies. While the results are better than
LSDA (Table 1), they are worse than any other functional tested
here. Interestingly, the total atomic energies are significantly
improved for both the PBE local hybrid and the τW/τ LSDA
local hybrid incorporating 100% HF exchange in atomic cores.
We suggest that these total energy errors may result from
deficiencies in the LSDA description of atomic cores.

One of the most notable properties of our density matrix
similarity metrics is their sensitivity to fractional occupancy.
The exact exchange hole of a system containing 0 < δ < 1
electrons is normalized to -δ, while semilocal model exchange
holes are always normalized to -1. Given this, we expect that
the similarity of eq 39 should be relatively small for fractionally
occupied regions. Figure 5 illustrates this for a Li atom with 0,
1/2, or 1 valence electrons. [The fractionally occupied system
in Figure 5 is obtained from symmetric Li2 with a very long
Li-Li bond.] The similarity metric of eq 38 is unaffected in
the core region, but changes dramatically in the valence region.
As expected, the similarity is relatively small (1-ΠLSDA(rb) is

TABLE 3: Mean and Mean Absolute Errors in the G3/99 Set of Heats of Formation (kcal/mol), the HTBH38/04 and
NHTBH38/04 Sets of Reaction Barrier Heights (kcal/mol), and the Total Energies Per Electron of the Atoms H-Ar (mEH), for
Some Local Hybrid Functionals

G3 HTBH38 NHTBH38 atoms

functional ME MAE ME MAE ME MAE ME MAE

Lh-LSDA, τW/τ (ref 90) 129.0 129.1 16.2 16.2 10.8 11.0 -8.8 12.8
Lh-LSDA, 0.48 τW/τ (ref 122) 0.0 3.8 -1.6 2.1 -1.5 2.4 30.8 30.8
Lh-LSDA, 1-ΠLSDA (ref 91) -1.4 14.8 0.5 2.8 2.0 4.2 29.0 29.0
Lh-PBE, (1-ΠPBE)2 (ref 93) 5.6 7.1 -4.5 4.5 -3.8 4.1 6.8 7.0
Lh-LSDA, (1-Π)�(τW/τ)γ (ref 93) -1.4 4.9 -3.4 3.7 -2.7 3.9 51.4 51.4

Figure 4. Local hybrid mixing functions 1-ΠLSDA(rb) and 0.48τW(rb)/
τ(rb) evaluated along the N-N bond axis of N2. Nuclear positions are
labeled.

Figure 5. 1-ΠvLSDA(rb) in Li atom containing 0, 1/2, or 1 valence
electrons. Results are plotted vs the distance R from the nucleus.
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relatively large) when the valence region is fractionally oc-
cupied. This property may makes these similarity metrics useful
for more sophisticated treatments of many-electron self-interac-
tion error.

4.3. Local Range Separation. We have seen that both local
and range-separated hybridization can extend on global hybrids.
While neither approach significantly improves upon the ther-
mochemical performance of global hybrids, both approaches
can simultaneously provide accurate thermochemistry and
accurate reaction barriers. Additionally, local and range-
separated hybrids can be designed to satisfy more known exact
constraints than do conventional global hybrids. An interesting
new direction is to combine the two approaches to build local
range separated hybrids. There are at least two ways to proceed:
local admixture of range-separated exact exchange with a fixed
range-separation parameter, and range-separated hybrids in
which the range-separation parameter ω is chosen to be spatially
dependent. We will briefly consider both approaches. In either
case, we must define the short-range and long-range exact-
exchange and semilocal exchange energy densities. In the exact
exchange case, we have formally

ex
SR-HF( rb, ω))-1

2∑i,j �i( rb)�j( rb)∫ d rb ′ �i( rb′)�j( rb′) ×

erfc(ω| rb- rb′|)
| rb- rb′| (40)

while for semilocal functionals we have instead

ex
SR-DFA( rb, ω)) 1

2∫ dub F( rb)hx
DFA( rb;ub)

erfc(ωu)
u

(41)

with corresponding results for long-range. Again, attention must
be paid to issues of gauge.

4.3.1. Local Admixture of Range-Separated Exact Ex-
change. This implementation of local range separation combines
a global range-separation parameter ω with a position-dependent
admixture of exact exchange. We have thus far explored two
limiting cases: long-range-corrected local hybrids incorporating
100% long-range exact exchange and screened local hybrids
incorporating no long-range exact exchange.131 Respectively,
these give us

Exc
LC-LH )Ex

SR-DFA +Ex
LR-HF +Ec

DFA +

∫ d rb c( rb)(ex
SR-HF( rb)- ex

SR-DFA( rb)) (42)

and

Exc
SC-LH )Exc

DFA +∫ d rb c( rb)(ex
SR-HF( rb)- ex

SR-DFA( rb))

(43)

These functionals are a straightforward generalization of the
local hybrids of eq 29, requiring only that the exchange energy
densities be evaluated with the screened interaction. Table 4

presents preliminary thermochemical results. The table shows
screened and long-range-corrected local hybrids of LSDA
exchange, using the one-parameter mixing function of Eqn. 36.
The screened local hybrid uses R ) 0.55, ω ) 0.11a0

-1, and
the long-range-corrected hybrid uses R ) 0.44, ω ) 0.18a0

-1.
The results in Table 4 indicate that both screened and long-
range-corrected local hybrids of LSDA exchange can give
thermochemistry and kinetics comparable to the corresponding
local hybrid of full-range LSDA exchange (row 2 of Table 3),
though both also suffer from the poor description of total
energies. [Results in Table 4 are calculated self-consistently,
with details as in ref 131.]

4.3.2. Range Separated Hybrids with Local ω. This approach
is somewhat more complicated operationally, though not
formally. Here, we write the exchange-correlation energy as

Exc )Exc
DFA + cSR∫ d rb [ex

SR-HF( rb, ω( rb))-

ex
SR-DFA( rb, ω( rb))]+ cLR∫ d rb [ex

LR-HF( rb, ω( rb))-

ex
LR-DFA( rb, ω( rb))] (44)

If ω(rb) is chosen to be a constant, this reduces to a conventional
range-separated hybrid. Though there is no real reason to think
it would be formally superior to the previous approach, we note
that range-separated hybrids have been more thoroughly inves-
tigated than have local hybrids -- in other words, we have
somewhat greater insight into what we should pick for ω(rb)
than we do for choosing c(rb).

The chief difficulty lies in evaluating ex
SR-HF(rb, ω(rb)) and

ex
LR-HF(rb, ω(rb)). These quantities require, in principle, O(NAO

2)
integrations at each point rb, where NAO is the size of the atomic
orbital basis set used to expand the Kohn-Sham molecular
orbitals. The cost of evaluating the total exchange energy is
thus O(NgridNAO

2), where Ngrid is the size of the numerical
integration grid used to integrate with respect to rb. This cost is
unacceptably high for most applications.

In conventional local hybrids, one can reduce the computa-
tional scaling considerably by writing

ex
HF( rb, ω))-1

2∑i,j �i( rb)∫ d rb′ d rb′′�j( rb′′ ) ×

�i( rb′)�j( rb′)
| rb″ - rb′| δ( rb- rb″) (45)

and replacing the δ function with a completeness insertion, as
proposed by Della Sala and Görling.124 If the states in the
completeness insertion are chosen to be the atomic orbitals, this
yields

ex
HF( rb)) 1

2∑µ,ν
�µ( rb)Qµν�ν( rb) (46)

Here, �µ(rb) and �ν(rb) are basis functions and 2Q ) S-1KP +
PKS-1, where S is the basis function overlap matrix, K is the
conventional Hartree-Fock exchange operator matrix, and P
is the density matrix for the system of interest. This trick makes
evaluating ex

HF(rb) no more expensive than evaluating F(rb), except
for the minor additional overhead of computing Q once per SCF
iteration. We point out that, as the Della Sala-Görling form of
the exact exchange energy density correctly integrates to the
total exchange energy, it merely corresponds to a particular
choice of gauge.

This completeness insertion can also be used for range-
separated local hybrids with constant ω by simply replacing
the standard two-electron integrals in the matrix K by the

TABLE 4: Mean and Mean Absolute Errors in the G3/99
Set of Heats of Formation (kcal/mol), the HTBH38/04 and
NHTBH38/04 Sets of Reaction Barrier Heights (kcal/mol),
and the Total Energies Per Electron of the Atoms H-Ar
(mEH) for Screened (SC) and Long-Range-Corrected (LC)
Local Hybrids of LSDA Exchange

G3 HTBH38 NHTBH38 atoms

functional ME MAE ME MAE ME MAE ME MAE

SC-Lh-LSDA 2.9 5.0 -1.3 2.1 -0.9 2.2 26.3 26.4
LC-Lh-LSDA -0.5 3.9 -1.6 2.2 -0.5 2.3 29.4 29.9
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corresponding range-separated integrals. However, if ω is a
function of space, this is no longer practical. It requires a
different matrix Q at every point in space, and the completeness
insertion saves us no time at all.

To resolve this problem, Krukau, Scuseria, Savin, and Perdew
proposed that a semilocal exchange hole model be used in place
of the exact exchange hole, but that it be parametrized to
reproduce the full-range exact exchange energy.98 This model
is then used to build an approximate range-separated exact
exchange energy density, and is exact for ω ) 0 and ω ) ∞.
Preliminary results are encouraging - a range-separated hybrid
of short-range LSDA and long-range exact exchange with a
position-dependent ω gives results roughly comparable to LC-
ωPBE for small thermochemical test sets. More investigation
is necessary before any general conclusions can be drawn.

4.4. Other Advances. In this final section, we discuss a few
hybrid functionals developed by other groups that provide
interesting perspectives on our own work. One such area is the
explicit nonlocal treatment of nondynamical correlation. As
discussed in section 3.3, semilocal density functionals for
exchange can mimic nondynamical correlation in covalent
bonds. However, these functionals are also plagued by self-
interaction error, and their incorporation of nondynamical
correlation effects is quite approximate. As functionals continue
to advance, it becomes desirable to eliminate SIE and use full
nonlocal exact exchange. This, however, requires us to explicitly
account for nondynamical correlation. Nonlocal functionals
which do so, and thus complement nonlocal exact exchange,
now exist.132-135

A second area of progress is in hybrid functionals constructed
frommoresophisticatedtreatmentsof theadiabaticconnection136,137

between the real system of interest and the noninteracting
Kohn-Sham system. The adiabatic connection allows us to
write

Exc[F])∫0

1
dλ Wλ[F] (47)

where

Wλ[F]) 〈ΨF,λ|Vee|ΨF,λ 〉 -U[F] (48)

and where |ΨF, λ〉 is that wave function which yields density F
and minimizes 〈T̂ + λV̂ee〉 . The wave function at λ ) 0 is the
Kohn-Sham determinant, and W0[F] is thus the exact exchange
energy functional. If we approximate W1[F] with a semilocal
exchange-correlation functional, then a global hybrid can be
derived from the coupling-constant integral of eq 46 by
approximating Wλ[F] in terms of W0[F] and W1[F].

One such approximation137 is

Wλ[F] ≈ W0[F]+ λp(W1[F]-W0[F]) (49)

Under this assumption, we have

Exc[F])W0[F]+ 1
1+ p

(W1[F]-W0[F]) (50)

Simplifying, and using W0[F] ) Ex
HF and W1[F] ) Exc

DFA, we
obtain the conventional global hybrid formulation of Eqn. 10,
with c ) p/(1 + p).

Notice, however, that nothing forces us to make such a simple
ansatz for the dependence on λ. By considering more compli-
cated forms for Wλ[F], as proposed by Ernzerhof138 and
collaborators,139 more general hybrid functionals can be devel-
oped, including those which eliminate one-electron SIE. This
is the route taken by the MCY family of functionals of Mori-
Sánchez, Cohen, and Yang.130,140,141

The ultimate possible accuracy of hybrids, whether hybrids
of exact exchange and GGAs or of exact exchange and meta-
GGAs, is an important question. To answer it, Zhao and Truhlar
have developed the M06 family of functionals, which combine
carefully chosen functional forms and extensive empirical
parametrization to achieve broad-ranging accuracy for thermo-
chemistry, reaction barriers, noncovalent interactions, electronic
spectroscopy, and transition metal binding.5,49,60

5. Conclusions and Future Perspectives

Kohn-Sham DFT has made remarkable progress from its
initial local density realization to the present day. That progress
is due largely to advances in exchange-correlation functionals,
and particularly to the advent of hybrid functionals. We have
long since reached the point that KS-DFT is sufficiently accurate
to supplant ab initio wave function techniques as the method
of choice for most purposes. Challenges remain, and universally
affordable and accurate functionals still elude us.

However, significant progress in the development of more
robust, general-purpose functionals has been made in the past
decade. We continue to advance up the Jacob’s ladder of
exchange-correlation functionals. Functionals now exist to
describe nondynamical correlation. We have begun to under-
stand how to limit self-interaction error, both one-electron and
many-electron. Continuing that progress in functional develop-
ment is of crucial importance.

Range-separated hybrids are an important and growing area
of investigation, while local hybrids are beginning to come into
their own. These and other carefully tailored hybrid functionals
show significant promise for ongoing development. By including
the right amount of nonlocal exchange in the right places,
functionals can be constructed with the right physics, and this,
ultimately, is what we need.
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Appendix: The Exchange-Correlation Hole

The exchange-correlation hole is an important concept in DFT.
It helps explain the physics of nondynamical correlation, and it
can be used as a guide to constructing functionals. We do not
wish to discuss it here in any great detail, but a brief review
may be in order.

We begin by considering the pair density F2(rb1, rb2), which,
omitting normalization, yields the probability of simultaneously
finding one electron at rb1 and another at rb2. In terms of the wave
function Ψ(rb1, rb2,...) it is given as

F2( rb1, rb2))
N(N- 1)

2 ∫ d rb3 ... d rbN Ψ( rb1, rb2, rb3, ... , rbN) ×

Ψ( rb1, rb2, rb3, ... , rbN) (A-1)
It can be decomposed into a part which is exact for statistically
independent identical particles and a part which accounts for
the correlations, via

F2( rb1, rb2))
1
2
F( rb1)F( rb2)(1+ gxc( rb1, rb2)) (A-2)

This defines the pair correlation function gxc(rb1, rb2). The
electron-electron interaction energy can be evaluated simply
as
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Eee )∫ d rb1 d rb2

F2( rb1, rb2)

r12

) 1
2∫ dr1 d rb2 F( rb1)F( rb2)

1+ gxc( rb1, rb2)

r12
(A-3)

That part independent of the pair-correlation function yields the
usual Coulomb interaction term U[F].

To define the exchange-correlation hole, we write

hxc( rb1; rb12))F( rb2)gxc( rb1, rb2) (A-4)

Physically, it represents a charge distribution with which a test
electron located at rb1 interacts Coulombically; a “hole” in the
N-electron density F(rb2) which adds self-interaction and exchange-
correlation effects to the classical Coulomb interaction between
the test electron and F(rb2). Since the Coulomb term U[F] allows
each electron to interact with all N electrons when physically
each electron interacts only with the N - 1 other electrons, the
exchange-correlation represents a one-electron hole in F(rb2).

We can separate the exact exchange hole from the correlation
hole by using the one-particle density matrix F1(rb1; rb2) defined
in terms of the occupied molecular orbitals {φi(rb)} of eq 5 as

F1( rb1; rb2))∑
i

occ

�i( rb1)�i( rb2) (A-5)

The exact exchange hole is then defined by

F( rb1)hx( rb1; rb12))-F1( rb1; rb2)F1( rb2; rb1) (A-6)

and integrates to the exact exchange energy.
There are many known constraints on the exchange and

correlation holes, but most important are the following
integrations:

• The exchange-correlation energy can be extracted from the
exchange-correlation hole by

Exc )
1
2∫ d rb1 d rb2

F( rb1)hxc( rb1; rb12)

r12
(A-7)

with analogous expressions holding individually for the ex-
change and correlation components.

• The exchange-correlation hole is normalized at each point
in space, so that

∫ d rb2 hxc( rb2; rb12))-1 (A-8)

Except in fractionally charged systems, there are separate
normalization conditions on the exchange and correlation holes,
namely

∫ d rb1 hx( rb1; rb12)) - 1 (A-9a)

∫ d rb2 hc( rb1; rb12)) 0 (A-9b)

Physically, this tells us that the correlation hole about rb1

represents a reorganization of the density F(rb2) to account for
correlation effects, while the exchange hole about rb1 not only
adds reorganization effects due to exchange but also removes
the artificial self-interaction in the Coulomb term.
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