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The moving boundary truncation (MBT) method is a time-dependent adaptive method that can significantly
reduce the number of grid points needed to perform accurate wave packet propagation while maintaining
stability. This work presents a more robust variation of the method. Significant improvements have been
made that allow the MBT method to be applied to any potential energy surface and used with any propagation
method. The new variation of MBT is applied to the collinear H + H2 reaction (using a LEPS potential) to
demonstrate the stability and accuracy. Reaction probabilities are calculated for the three-dimensional
nonrotating O(3P) + H2 and O(3P) + HD reactions to demonstrate that the MBT can be used with a variety
of numerical propagation techniques.

1. Introduction

A very active area of research in chemical dynamics is the
accurate and efficient calculation of quantum effects. There are
many methods available to calculate quantum dynamics such
as finite differencing,1,2fast Fourier transforms (FFTs),3,4 basis
set expansions,5-10 the quantum trajectory method (QTM),11-14

and trajectories with an approximate quantum force (AQF).15-19

Methods based on finite differencing and basis set expansion
were among the first applied to numerical integration of the
time-dependent Schrödinger equation. The methods can be
accurate, but they are usually inefficient due to conditions such
as grid spacing or number of basis functions required for
stability. Perhaps one of the most popular methods currently in
use is the split operator method based on the FFTs.3,4 FFT
methods are accurate and can be quite efficient, but generally
are limited to time-independent Hamiltonians and often require
the use of unnecessary grid points. FFT based methods are also
best when the kinetic energy transform from coordinate to
momentum space is straightforward. In cases where the
transform is not simple, such as the angular coordinate in
cylindrical or spherical coordinates, FFT methods are coupled
with basis set expansions. This can dramatically reduce the
efficiency. Trajectory methods such as QTM11-14 and AQF15-19

can rival the efficiency of FFT based methods. The main reason
trajectory methods can be so efficient is that only the points of
interest are used in the calculation. In quantum trajectory
methods, however, difficulties can arise in calculating certain
quantum effects such as nodes and interferences in the wave
function. Resolving exact quantum effects such as resonances
and nodes using techniques like hybrid methods,20,21 arbitrary
Lagrangian-Eulerian (ALE) grids,22-25 covering functions,26,27

and approximate quantum forces15-19 has been the subject of a
great deal of research.

Recently, a new adaptive method28,29 for integrating the time-
dependent Schrödinger equation was introduced that combines
the advantages of quantum trajectory methods while maintaining
the accuracy of fixed grid methods. The moving boundary
truncation (MBT) method utilizes quantum trajectories at the
edge of a fixed grid to determine the boundaries within which
a wave packet is propagated. As the wave packet moves or

spreads, the trajectories move also, altering the boundaries in
such a way that the dynamics are correctly represented. It is
important to note that the trajectories do not directly influence
the wave function; they simply determine which fixed grid points
are most important to the dynamics at that particular time. Also,
unlike other adaptive grid strategies, only the boundaries are
changed. This greatly reduces the computational time. The
approach is similar to methods independently developed by
McCormack30 and Hartke.31 In these methods, localized basis
sets are added or eliminated based on fixed density parameters30,31

or time-dependent density parameters relative to the current
maximum density.30 In MBT, quantum trajectories determine
what grid points are added to or eliminated from the calculation.
Since density is not conserved along a trajectory path and
trajectory paths do not cross, the quantum trajectories create
an adaptive density criterion in the selection of grid points while
always remaining at the boundary of the wave packet. The MBT
has been proven to be as stable and accurate as traditional grid
based methods while remaining as efficient as quantum trajec-
tory methods.28,29 The MBT method has been successfully
applied to scattering problems in up to three dimensions, such
as an Eckart barrier coupled to one or two harmonic oscillators.

This paper is intended to introduce a new variation of the
MBT and extend the method to reactive scattering potential
energy surfaces. The collinear H + H2 reaction is the first
reaction to which the new variation is applied. This reaction is
a classic test of new methods for calculating quantum dynamics
in chemical systems. In order to demonstrate only the new
variation of the MBT, similar numerical methods are used as
in previous studies.28,29 The MBT method is then applied to the
three-dimensional nonrotating O(3P) + H2 and O(3P) + HD
reactions. These reactions are important to the combustion
process32 and have been the subject of a great deal of
experimental32-37 and theoretical research.18,19,37-39 Calculating
the dynamics of these systems will demonstrate how the method
is extended to more complex potential energy surfaces and how
any numerical method can be used in conjunction with the MBT
method. The next section will formally introduce some of the
trajectory principles and how they are applied in the MBT.
Section 3 introduces the new variation of MBT used in this
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work. Section 4 shows the results of the MBT method and
compares them to traditional fixed grid methods for accuracy
and efficiency. The paper concludes by summarizing the work
and generalizing the MBT for future applications.

2. Background

Quantum trajectory methods are generally based on the
quantum hydrodynamic equations of motion (QHEM). These
equations are formulated by substituting the polar form of the
wave function, ψ(r, t) ) R(r, t) exp(iS(r, t)/p), into the time-
dependent Schrödinger equation, and the real and imaginary
parts are separated. Often for trajectories, the equations are set
up in the Lagrangian frame where the grid points move
according to their Lagrangian velocity, ṙ ) ∇ S(r, t)/m. In this
frame the equations of motion become

dR(r, t)
dt

)- 1
m

R(r, t)∇ 2S(r, t) (1)

dS(r, t)
dt

) 1
2m

(∇ S(r, t))2 -V(r, t)+ p
2

2m
1

R(r, t)
∇ 2R(r, t) (2)

The first equation (eq 1) is the quantum continuity equation,
so-called because it resembles the continuity equation from
classical fluid dynamics. The second equation (eq 2) is the
quantum Hamilton-Jacobi equation. This is exactly like the
classical Hamilton-Jacobi equation except for the third term.
This term is called the “quantum potential” since it is the only
term that explicitly involves p and encompasses all quantum
effects. It should be noted that the quantum potential varies with
1/R. As a result, the quantum potential may become infinite at
nodes in the wave function. Quantum trajectories ultimately
never cross nodes, but as they approach a node, or near an area
where the amplitude becomes small, the quantum hydrodynamic
equations may become unstable.

The “node problem” is not an issue in MBT because the
trajectories are only applied at the boundaries of the wave packet
where the function is smooth. The real and imaginary parts of
the wave function, A and B, are propagated using conventional
grid methods. In order to apply MBT, an N-dimensional fixed
grid is generated. For the purpose of this study, grid spacing is
constant, but there is no evidence to suggest that an adaptive
grid would be unstable. A minimum threshold for probability
density is established, usually between 10-4 and 10-6. Trajec-
tories are placed at the points where the density is equal to the
threshold. Since most numerical methods have some instability
near the boundaries, a buffer of fixed grid points past the
trajectories is included in the calculation. In the first example
presented below, the buffer is 3 grid points, and it is 10 grid
points in the second example. Appropriate boundary conditions
are applied as if the grid terminated after the buffer points. The
wave function is propagated one time step by any numerical
method of choice. The trajectories are then propagated for one
time step. The boundaries of the fixed grid are then adapted
according to the new positions of the trajectories. New grid
points are added or subtracted in order to maintain the
appropriate buffer points based on the new positions for the
trajectories. The process of continually adapting the boundaries
of the fixed grid according to the motion of the trajectories is
repeated until the desired number of time steps have been
propagated.

In the original formulation of MBT,28,29 the derivative
propagation method (DPM) was used to move the trajectories
at the boundaries and the wave function was propagated through
finite differencing. A full explanation of DPM can be found in

the literature such as the original paper by Trahan et al.40 or
Wyatt′s book.11 To summarize DPM, the spatial derivative
operator is applied to both sides of eqs 1 and 2. The order of
differentiation is then changed on the left-hand side of both
equations. This generates a set of equations for propagating the
first spatial derivative. The equations for propagating the first
derivative are “upcoupled” to second and higher spatial deriva-
tives. This “upcoupling” creates an infinite hierarchy of equa-
tions of motion. The hierarchy is terminated at a given order of
derivative by assuming that the solution fits a polynomial
expansion and derivatives of higher order than the polynomial
are zero. The advantage of DPM is that each of the trajectories
can be propagated independently while still carrying nonlocal
information in the higher order derivatives that follow along
with the trajectories.

Unfortunately, DPM is not applicable to all potential energy
surfaces. For example, an attempt was made to propagate
boundary trajectories on the collinear H + H2 LEPS surface by
Sato.41 The trajectories are initially placed at the points where
the density of a wave packet centered at [6.2, 1.4] has decayed
to a value of 10-4. In less than 1 fs of propagation time, the
DPM trajectories begin to cross and do not follow the contours
of the potential surface or the motion of the wave packet being
propagated on the fixed grid. Exactly why these trajectories fail
is the subject of current research. A new method for propagating
the boundary trajectories has been developed in this work so
that the MBT can be applied to an arbitrary potential energy
surface.

3. Moving Boundary Truncation on Arbitrary Boundary
Surfaces

In order to apply the MBT to arbitrary boundary surfaces, a
propagation scheme similar to the QTM11-14 is introduced for
the trajectories. In QTM, a moving weighted least-squares
(MWLS) fitting procedure is used to determine∇ S and as such
the Lagrangian velocity for the trajectories. In MBT, the
trajectories may be too far apart to apply a MWLS fit using
only the information carried by the trajectories. They are,
however, always near underlying fixed grid points that carry
the necessary information. Indeed, in MBT, the trajectories do
not need to carry any information other than their position at
each time step as all of the information needed to propagate
both the wave packet and the trajectories is embedded on the
fixed grid. The new method presented below exploits this
advantage.

In order to calculate the velocity for a trajectory, the nearest
fixed grid point is determined. Then all of the grid points within
a predetermined distance are included in a least-squares fit of S
in a similar fashion to QTM. The main difference is that the
fixed grid points carry the wave function in the Cartesian form,
A + iB, rather than the polar form, R exp(iS), as is the case in
QTM. The S function is calculated by taking tan-1(B/A) at the
fixed grid points that will be used in the moving weighted least-
squares (MWLS) fitting. This leads to the relative S, which may
contain “saw tooth” features, due to the periodic nature of the
tan-1(B/A) function. Since only the gradient,∇ S, is needed for
the trajectory velocity, a constant can arbitrarily be added to
pieces of S without affecting the derivative. Specifically, each
time the S function “jumps”, π/2 is added or subtracted so that
continuity is preserved. Detecting the jumps is straightforward
at the edges of the wave packet since S is generally smooth.
The smooth S that is generated differs from the absolute S only
by a constant; the slope of S is preserved, which is the only
quantity of interest for calculating the gradient,∇ S. The MWLS
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fitting procedure is applied to the new smooth S as outlined in
the QTM. The∇ S determined by MWLS is used to generate
the Lagrangian velocity of the trajectories, and the trajectories
can then be propagated in time.

One issue that can occur using this scheme is spreading or
compression of the trajectories. When spreading occurs, the
edges of the grid may not be correctly chosen. When compres-
sion occurs, more trajectories than are necessary to determine
the edges of the fixed grid are being propagated. As a solution,
the trajectories are periodically checked to ensure they are within
a minimum and maximum distance of each other. Trajectories
can be discarded and created as desired because all the
information needed for propagation is being carried by the fixed
grid.

4. Results and Discussion

A. Collinear H + H2. The first application of the generalized
MBT is the collinear HA + HBHC reaction on the LEPS
surface.41 The wave function dynamics are solved in the Jacobi
coordinate system where R is the distance between the incoming
HA atom and the center of mass of the reactant diatomic and r
is the internuclear separation of the diatomic. The initial wave
packet is the product of a Gaussian wave packet in R and the
ground state of a Morse oscillator in r:

ψ(R, r, t) 0))

�R
π

exp[-R
2

(R-R0)
2 - ip(R-R0)] φ0(r) (3)

The initial parameters for the wave packet in atomic units
are R ) 8.0, R0 ) 4.5, and p ) [-4.875, -0.375], and φ0

represents the ground state of the H2 Morse oscillator centered
at r ) 1.400 83 au. The wave function is propagated on a fixed
grid with spacing ∆R ) ∆r ) 0.05 au, and the trajectories are
started at points where the density of the initial wave packet
has decayed to 10-4. The numerical methods used to propagate
the wave function are similar to those of previous work:28,29

fourth-order finite differencing is used to calculate the kinetic
energy operator, and a second-order leapfrog method is used
to advance the wave function in time with a time step of ∆t )
0.25 au. The transmission region for this example is all points
[R, r] where the distance from HA to HB is less than the distance
from HB to HC. The transmission probability is calculated from
the following integral: Ptrans ) ∫∫HAHB<HBHC

ψ/ ψ dR dr.
Wave packets with various initial kinetic energies were

propagated for 90.75 fs, and the results are summarized in Figure
1. The transmission probabilities of the MBT propagation are

compared to those using a fixed grid whose boundaries are fixed
at the minimum and maximum values achieved in each degree
of freedom, [R, r], by the MBT solution. The two methods are
in excellent agreement. The MBT produces transmission prob-
abilities that differ by only 1.13% for the highest three initial
kinetic energies. The MBT results for the lowest kinetic energy
(0.0019 eV) differ by 32%. If the trajectories are started at
density values of 10-6 rather than 10-4, the error is reduced to
10.21%, and if the initial trajectories are moved to density values
of 10-8, the error is reduced even further to 1.59%. Not only is
the MBT extremely accurate in the converged transmission
probability, but it captures the resonance patterns in transmission
probabilities as seen in the 0.3233 and 0.1550 eV calculations.

While maintaining accuracy, the MBT is much more efficient
than the full grid calculations. The full grid averaged 121 min
and uses 1 074 316 grid points at each time step. The MBT
calculations averaged only 15 min on the same computer, an
87.6% reduction in computational time. The reason for the MBT
efficiency is shown in Figure 2. Although extra resources are
necessary to propagate the trajectories, only 60 trajectories are
needed initially as HA approaches the diatomic (Figure 2a)
moving toward R ) 0 while the wave packet remains essentially
a Gaussian in r. The 60 trajectories determine the boundaries
of a fixed grid containing only 1514 grid points. A more detailed
view of the initial wave packet is displayed in Figure 2b. This
figure shows how the trajectories are initially started at equally
spaced points corresponding to fixed grid points. Some of the
trajectories are close together while others, particularly at the
edges of r, are farther apart. Immediately after propagation
begins, the algorithm will adaptively eliminate trajectories that
are too close (<0.07 au) or add trajectories if the distance
between existing trajectories is too large (>0.5 au). As the wave
packet spreads into the product channel, more trajectories are
added (Figure 2c), increasing the number to 234. The boundaries
of the fixed grid are adapted according to the motion of the
trajectories, increasing the grid size to 34 906 points halfway
through the propagation. Once the transmission probability is
converged (Figure 2d) and the propagation is complete, the wave
packet has nearly bifurcated. The calculation finishes with 512
trajectories and 76 382 fixed grid points. The increase in the
number of trajectories and grid points is nearly linear throughout
the propagation of the wave packet. The trajectories define the
reactant and product channel with no adVance information
about the potential energy surface. This means that no unneces-
sary grid points in the dissociative region are added into the
calculations. Also, by calculating the wave function in the Jacobi
frame, interference effects are resolved without numerical
difficulties. If further propagation were desired, the trajectories
could be used to create two separate wave packets as described
in previous work.28,29

B. Three-Dimensional O + H2 Reaction. The second
example extends the MBT method to other numerical methods
besides finite differencing. Specifically, a nonrotating atom +
diatomic reactive system in three Jacobi coordinates {R, r, θ}
is solved, where once again R is the distance between the
incoming atom and the center of mass of the reactant diatomic,
r is the reactant diatomic bond length, and θ is the angle between
R and r. The total angular momentum is set to zero and the
motion of the center of mass is eliminated so that the
Hamiltonian becomes

H
∧
)- 1

2M
∂

2

∂R2
- 1

2m
∂

2

∂r2
- 1

2µ( ∂
2

∂θ2
+ cot θ ∂

∂θ)+V
∧

(4a)

or

Figure 1. Transmission probabilities for the collinear H + H2 reactions
for various initial kinetic energies. The markers indicate the MBT
calculation, while solid lines indicate the full fixed grid solutions. The
difference in results can be reduced by moving the initial trajectory
positions further from the center of the initial wave packet.
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where the radial and angular kinetic energy operators are given
by
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∧
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2M

∂
2

∂R2
- 1

2m
∂

2

∂r2

J
∧
(θ) )- 1

2µ( ∂
2

∂θ2
+ cot θ ∂

∂θ) (4b)

with the moment of inertia

1
µ
) 1

MR2
+ 1

mr2
(4c)

The specific reactive system is O(3P) + H2(ν ) 0, j ) 0) f
OH + H on the 3A′ potential energy surface originally developed
by Rogers et al.42 The potential surface was developed by first
calculating the energy of 951 different geometries using a
complete-active-space-self-consistent-field (CASSCF) internally
contracted configuration interaction (ICCI) method. The energy
for these geometries was then fitted to a surface using the
generalized London-Eyring-Polanyi-Sato double polynomial
(GLDP) method. This method creates a surface that is extremely
accurate. The rms error is only 0.0117 eV with a maximum
error of 0.0169 eV. The error is calculated by comparing
CASSCF-CCI calculations to GLDP values for geometries not

included in the original fitting. The surface that is generated,
as shown in Figures 3a and 3b, contains three arrangement
channels: one reactant O + H2 channel and two product channels
OH + H. The isotope effect is also examined by calculating
the reaction O(3P) + HD(ν ) 0, j ) 0). The product region of
the potential surface is defined as the region where the OH (or
OD) bond length is less than 3.5a0 and transmission probability
is given by the integration Ptrans ) ∫∫∫ψ* ψ sin θ dθ dR dr
over this region. There are two minimum energy paths (MEPs)
corresponding to the collinear configurations (θ ) 0 and θ )
π) shown in Figures 3c and 3d. Moving along these MEPs, the
maximum barrier height is 0.565 eV. The overall reaction is
slightly endothermic, as the product channel of the MEPs is
0.11 eV higher in energy than the reactant channel. The
dynamics on this potential energy surface have been studied
using a variety of numerical methods including hyperspherical
coordinates,38 trajectory surface hopping,39 and AQP.18,19 In the
work by Balakrishnan using hyperspherical coordinates,38 the
results were extended using a J shifting approximation to
generate thermal rate constants in good agreement with experi-
mental results. In the AQP studies,18,19 classical trajectories were
also examined to show the tunneling effects. The classical
trajectories underestimated transmission probabilities for initial
energies less than 1.4 eV, indicating that tunneling was
significant.18

Figure 2. Wave packet propagation of the H + H2 collinear reaction on the LEPS potential energy surface using the MBT method. The wave
packet has an initial kinetic energy of 0.3233 eV. Filled contours represent the wave packet density ranging from 0.0001 in dark blue to 0.1 in red.
Green points represent trajectory locations. Solid black contours represent the LEPS potential energy surface. Solid red lines indicate the boundary
of the fixed grid used to propagate the wave packet. (a) Initial wave packet with 60 trajectories set at the edges of the 0.0001 contour. (b) Close-up
of the initial wave packet and trajectories. (c) Wave packet after 45 fs of propagation. The trajectories have spread and their number has increased
to 234 in order to correctly cover the fixed grid points needed to advance the calculation. (d) Final wave packet after transmission probability has
converged. The number of trajectories has increased to 512.
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The initial wave packet used for all calculations in this work
is a product of Gaussians in {R, r}

ψ(R, r, t) 0)) √N exp[-R(R-R0)
2 -

�(r- r0)
2 - ip(R-R0)](5)

with initial values of R ) 4.0, � ) 9.06, R0 ) 6.0, r0 ) 1.444,
and p ) [-18, -6] (all values are given in atomic units). In
order to efficiently propagate the wave packet, the split operator
method3,4 is applied to the Hamiltonian as follows:

ψt+∆t ) exp(-i∆t
2

J
∧) × exp(-i∆t

2
V
∧) ×

exp(-i∆tT
∧

) × exp(-i∆t
2

V
∧) × exp(-i∆t

2
J
∧)ψt (6)

A fast Fourier transform (FFT) is used to calculate the kinetic
energy operator Tˆ(R, r), and the discrete variable representation
(DVR)5 is used for the rotational operator Ĵ(θ). The grid for
the FFT calculations is 256 × 256 with grid spacing ∆R ) ∆r
) 0.08. Sixty divisions of θ were used in the DVR calculations.
Complete explanations of these two methods are widely
available in literature, but summaries are provided here to
emphasize how MBT can enhance their performance. The FFT
transforms position space, [R, r], to momentum space, [P, p],
thus simplifying the derivative operator to a multiplication. The
transform is accomplished numerically by changing the integral
to a discrete sum:

ψj,k(P, p)) ∑
l)0

NR-1

∑
m)0

Nr-1

ψl,m(R, r) exp(-2πi
NRNr

lm) (7)

In eq 7, ψj,k(P, p)is the representation of the wave function
in momentum space at point [Pj, pk]. It is the weighted sum of
the representation of the wave function in position space, ψl,m(R,
r), l ) 1,..., NR, m ) 1,..., Nr, where NR and Nr are the total
number of points used in position space. At first glance, this
would seem to be an ideal candidate for MBT, as the sum could
be limited to only points within the boundary defined by the
trajectories. As numerical algorithms for Fourier transforms have
been developed over the years, however, symmetry properties
of the transform have been exploited to reduce the overall
number of terms that are actually calculated. For all of the
available algorithms for FFT, the vector lengths in position space
and momentum space must remain equal. This means that when
MBT is applied to a FFT, either the number of points in
momentum space is reduced to match the number of points in
the truncated grid or the truncated grid can be padded with
zeroes in order to maintain the appropriate number of momen-
tum points required for a stable propagation. In the former case,
the propagation quickly becomes unstable and inaccurate
because the spacing in momentum is either too large or the
minimum and maximum of the momentum space is limited. In
the latter case, there is no efficiency gained by placing zeroes
around the truncated grid. If a FFT algorithm was developed
that could maintain the speed of symmetry based methods while

Figure 3. Isosurfaces of the O(3P) + H2(ν ) 0, j ) 0) f OH + H 3A′ potential energy surface. (a) Reactant and product channels of the 0.5 eV
potential surface. (b) Top view of (a), showing that the channels are not connected at this energy level. (c) Isosurfaces of the 0.5 eV (blue) and 0.75
eV (red) potential energy surfaces. At the angles near θ ) 0 and θ ) π, the reactant and product channels are connected through two barrier
regions. (d) Top down view of (c).
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allowing vectors of different lengths in position and momentum
spaces, then MBT may be applicable to a FFT propagation.

The ideal application of MBT is for the rotational operator.
The discrete variable representation (DVR) takes the wave
function represented by a point basis and transforms it to a
function basis.5 The reason that the DVR is preferred over a
FFT for the rotational operator is the cot θ ∂/∂θ term. Unlike
the second derivative term in the kinetic energy operator, this
term does not translate to a simple multiplication in momentum
space. In DVR, a unique transformation matrix, Y, is used to
transform the wave function from a number of points in θ to a
basis set, usually that of a harmonic oscillator. In addition to
being able to transform the wave function, any operator can
also be transformed, Â DVR ) Y Â HO Y+. In this application of
DVR, only points along θ are required and the transform is
independent of {R, r}.

When MBT is applied to the mixed FFT-VR calculation,
trajectories move along {R, r} in discrete divisions of theta that
will be used as DVR points. The minimum and maximum
locations of the trajectories define a box in {R, r}. Only the
points inside the box are used as DVR points in the transforma-
tion, and thus only these points have the rotational operator
applied to them. Initially, there are 2760 trajectories divided
evenly among the 60 θ divisions and placed in {R, r} where
the density of the wave packet has decayed to 10-4 (Figure 4a).
This creates a box of 73 800 grid points in which the rotational

operator is applied. As the trajectories move, the box of grid
points moves with them, selectively applying the rotational
operator only to the points where the density of the wave packet
is significant. The number of trajectories and grid points used
in the DVR stays relatively constant until the wave packet enters
the transition state region at approximately 21 fs (Figure 4b).
At this time, the trajectories have properly adapted the bound-
aries of the grid used in the DVR calculation so that the
rotational operator is applied to produce the correct dynamics.
After the wave packet has begun to enter the two product tubes,
both the number of trajectories and the number of grid points
in the DVR calculation increase linearly up to their final values,
6544 and 697 080, respectively, at the end of the propagation.

The advantages of MBT can be visualized in Figures 3 and
4. In these figures, the axes are cylindrical in that R lies along
the x axis, r is the absolute distance from the x axis, and positive
θ is counterclockwise rotation around the x axis. Examination
of the potential isosurface for V ) 0.75 eV, best seen in Figure
3c, shows that the rotational operator is not critical at early times
as the potential energy is essentially independent of θ for the
O + H2 reactant channel. In the transition region at ap-
proximately R ) 3 au, rotation is critical as the potential surface
pinches and develops minima near θ ) 0 and θ ) π. The
product channels then quickly form, and the potential surface
expands to the entire range of θ. If rotation is neglected in the
Hamiltonian, this important feature of the potential energy

Figure 4. Wave packet propagation of the O(3P) + H2(ν ) 0, j ) 0) f OH +H reaction on the 3A′ potential energy surface. The wave packet has
an initial kinetic energy of 0.817 eV. Red isosurfaces indicate the potential energy surface at V ) 0.75 eV. Isosurfaces of the wave packet at a
density of 0.0001 are colored blue. (a) Initial wave packet. The points used in the rotational operator are only contained within the blue wave packet
isosurface. The potential surface breaks into two tubes along θ ) 0 and θ ) π at approximately R ) 2.5 au.(b) Wave packet after 21.78 fs. The
MBT has guided the wave packet correctly into the two product tubes. (c) Wave packet after transmission probability has converged (60.5 fs). The
wave packet has fractured into three distinct parts, and MBT restricts the rotational operator to only these areas. The leading edge of the transmitted
packets shows some numerical artifacts not present in the full grid. (d) Full grid wave packet after 60.5 fs.
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surface is lost and calculated values for the transmission
probability are significantly lower than the correct values. With
MBT, the rotational effects are preserved but limited to the
points inside the boundaries defined by the trajectories. As the
packet enters the transition state region (Figure 4b), the effect
of the rotational operator allows the packet to correctly spread
through the θ ) 0 and θ ) π regions. The trajectories continue
to guide the MBT grid down the two product tubes until the
transmission probability is fully converged, as shown in Figure
4c. Figure 4d shows the converged wave packet using the full
grid. Comparing Figures 4c and 4d reveals that the wave packet

on the MBT grid has a small number of artifacts on the leading
edges of the transmitted portions that are not present in the full
grid wave packet. This difference in the wave packets is only
evident after the transmission probability has converged and
does not appear to affect the stability or accuracy of the MBT
calculation. The reason for the formation of these artifacts and
their effect on detailed transmitted wave packet information will
be explored in future research.

The performance of MBT is displayed in Figure 5. The
transmission probability of both the MBT and the full fixed grid
are nearly in exact agreement for the O(3P) + H2(ν ) 0, j ) 0)
reaction (Figure 5a). The results are also in good agreement
with those from other studies.18,36 The error ranges from 0.15%
to 2.03% with the largest error being at the lowest kinetic energy.
Figures 5b and 5c show the two transmission probabilities for
the O(3P) + HD(ν ) 0, j ) 0) reaction. The dramatic influence
of the rotational operator is demonstrated here by the large
difference in transmission probability between the OH + D and
OD + H products. The transmitted wave packet in the OH +
D channel has twice the density of the OD + H wave packet in
the 0.150 eV calculation. The difference in transmitted densities
increases with initial kinetic energy as the 1.35 eV calculation
results in an OH + D transmitted wave packet with more than
five times the density of the OD + H transmitted wave packet.
Once again the MBT is just as accurate as the full grid
calculation with a maximum difference in OH + D transmission
probability of 0.49% and OD + H transmission probability of
8.99% and capturing resonance patterns as transmission prob-
ability develops over time. The maximum errors are at the lowest
energies. The OD + H transmission probability at the lowest
initial energy is only 0.0128. The error at higher energies drops
to 1% or less. The reason for the increased error at the lowest
kinetic energy is that the trajectories have eliminated the low
density edges (<10-4) of the wave packet. These low density
edges are responsible for tunneling effects. In a similar fashion
to the collinear H + H2, the initial trajectories could be extended
outward to capture more of the initial wave packet and thus
capture more of the tunneling. These excellent results are
obtained much more efficiently than the full grid calculations.
A full grid calculation takes an average of 212 min. The MBT
only takes 75 min, a reduction of 65%.

5. Conclusion

In this work, a generalized method for applying the moving
boundary truncation to arbitrary potential energy surfaces was
presented. This time-dependent adaptive grid method relies on
reconstructing a relative quantum action function S from the
Cartesian wave function through tan -1(B/A) and smoothing the
periodic nature of the inverse tangent function. After smoothing,
a moving weighted least-squares (MWLS) fit is applied to
determine ∇ S and move the trajectories along the boundary of
the wave packet. This new variation was first successfully
applied to the H + H2 collinear reaction (using a LEPS potential
surface) with finite differencing used to determine spatial
derivatives. The MBT was then extended to more complex
surfaces and numerical methods by calculating the O(3P) + H2(ν
) 0, j ) 0) f OH + H reaction on the 3A′ potential energy
surface. This example showed that MBT can be selectively
applied to certain degrees of freedom in a multidimensional
calculation using any grid based numerical method. This could
prove useful in problems with a large number of degrees of
freedom where certain degrees of freedom are calculated in total
and others are truncated. The MBT method is not only efficient,
but also calculates transmission probability very accurately. The

Figure 5. (a) Transmission probabilities for the O(3P) + H2(ν ) 0, j
) 0) reaction for various initial kinetic energies. The markers indicate
the MBT calculation, while solid lines indicate the full grid solutions.
Transmission probability (y axis) is on a logarithmic scale for clarity.
Values on the right-hand side indicate the converged value of the full
grid calculation. (b) The OH transmission probabilities of the O(3P) +
HD(ν ) 0, j ) 0). (c) The OD transmission probabilities of the O(3P)
+HD(ν ) 0, j ) 0).
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highest errors are always in low energy calculations. To increase
accuracy for these situations, the initial trajectories can be set
further from the center of the wave packet. Future research will
focus on determining if there are subtle differences, such as
phase information, between the full grid and MBT calculations
as well as applying the MBT method to problems with more
degrees of freedom and time-dependent potentials. FFT algo-
rithms that can operate on unequal length vectors in position
and momentum space will be explored to further exploit the
efficiency of the method.
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