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In 1959 Charles Coulson popularized the idea of computing a molecule’s ground-state energy as a functional
of the two-electron reduced density matrix (2-RDM) without the many-electron wave function. For 50 years,
however, a practical, direct calculation of the 2-RDM was not achieved because the 2-RDM must be constrained
by N-representability conditions to represent an N-electron system. Recently, two general approaches to the
direct calculation of the 2-RDM have emerged including the solution of the anti-Hermitian contracted
Schrödinger equation (ACSE) [Mazziotti, Phys. ReV. Lett., 2006, 97, 143002]. In this article, after further
extending the theoretical development of the ACSE method for multireference correlation, we apply the ACSE
to studying an unresolved question regarding the opening of bicyclobutane to gauche-1,3-butadiene by
conrotatory and disrotatory pathways. Previous theoretical values for the disrotatory energy barrier reveal a
disagreement between correlation methods on the order of 10 kcal/mol. By capturing significantly more
correlation energy than traditional multireference methods, the ACSE provides new insight into this discrepancy.
The ACSE energy for the conrotatory energy barrier agrees with the 40.6 ( 2.5 kcal/mol experimental value.

I. Introduction
Within organic chemistry, electrocyclic reactions, which are

an important class of pericyclic reactions, involve the conversion
of a conjugated molecule to a cyclic (ringlike) structure.1 A
classic example of electrocyclic reactions is the formation of
cyclobutene from cis-1,3-butadiene. Two possible pathways
arise from whether the ring closing of the two end carbons of
cis-1,3-butadiene occurs by rotation in the same direction,
known as the conrotatory pathway, or by rotation in opposite
directions, known as the disrotatory pathway. Qualitative rules
developed by Woodward and Hoffmann2 recognize that the
energetically favorable pathway will depend on the relative
quantum phases of the pz orbitals on the end carbons. Because
forming the bond with the orbital lobes in phase stabilizes
the transition state, if the two pz orbitals have the same phase,
the disrotatory pathway will be favored, while if the two pz

orbitals have opposite phases, the conrotatory pathway will be
favored. Woodward and Hoffmann summarized these ideas in
their well-known rule for thermally activated reactions: for a
conjugated chain with an even number of carbon atoms the
reaction will occur by the conrotatory pathway while for a
conjugated chain with an odd number of carbon atoms the
reaction will occur by the disrotatory pathway.1-3

In this paper we study the electrocyclic conversion of bi-
cyclo[1.1.0]butane to gauche-1,3-butadiene via Woodward-
Hoffmann pathways by solving the anti-Hermitian contracted
Schrödinger equation (ACSE).4-11 This electrocyclic reaction
has been studied both experimentally12-16 and theoretically.17-20

The Woodward-Hoffmann rules qualitatively predict that the
conrotatory pathway is more favorable energetically than the
disrotatory pathway. Computationally, solution of the ACSE
in the 6-311G** basis set indicates that the conrotatory transition
state is 41.2 kcal/mol higher in energy than bicyclobutane
whereas the disrotatory transition state is 55.7 kcal/mol higher
in energy than bicyclobutane. The conrotatory barrier from the

ACSE closely agrees with the 40.6 ( 2.5 kcal/mol barrier
obtained from experiment.12 Because the disrotatory pathway
involves two pz lobes with different phases (+ and -), the
disrotatory transition state is a biradical with two molecular
orbitals ([+ and -] or [- and +]) that are approximately half-
filled. Consequently, the underlying wave function has more
than one important Slater determinant at zeroth order, and we
say that the wave function is multireferenced. Furthermore,
because the disrotatory pathway is not preferred energetically
to the conrotatory pathway, the energy of the disrotatory
transition state is difficult to measure experimentally. While
previous studies have examined the disrotatory pathway of this
reaction with the multireference self-consistent-field (MCSCF)
method,18 the complete active-space second-order perturbation
theory (CASPT2) method,18 and, more recently, renormalized
coupled cluster methods,19,20 the energy barriers predicted by
these methods are in disagreement. The renormalized coupled
cluster methods predict an energy barrier for the disrotatory
pathway that is significantly higher than the barrier determined
earlier from CASPT2. The ACSE energy of the disrotatory
transition state closely agrees with the 56.4 kcal/mol barrier from
the CASPT2 calculations. After formation, the gauche-1,3-
butadiene undergoes an additional rearrangement to a lower-
in-energy trans-1,3-butadiene, but since this second reaction is
well understood and not multireferenced, it will not be examined
further.

In 1959, several years before the Hohenberg-Kohn theorem21

provided the foundation for the development of density func-
tional theory,22 Charles Coulson popularized the challenge of
computing the ground-state energy as a functional of the two-
electron reduced density matrix (2-RDM) without the many-
electron wave function.23 Unlike density functional theory, the
energy functional of the 2-RDM is known and linear in the
2-RDM. However, a direct calculation of the 2-RDM cannot
be performed without placing constraints on the 2-RDM, known
as N-representability conditions,24-26 to ensure that it corre-
sponds to a realistic N-electron system. The search for N-* E-mail: damazz@uchicago.edu.
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representability constraints without the N-electron wave function
became known as the N-representability problem.27,28 For 50
years this problem prevented the development of practical
2-RDM methods. If the wave function is known, the 2-RDM
can be obtained by integrating over the coordinates for all
electrons save two:

2D1,¯ 2̄
1,2 )∫Ψ(1, 2, ... , N)Ψ(1̄, 2̄, ... , N)* d3 ... dN (1)

where each number represents three spatial and one spin
coordinate for an electron.

Recently, based on theoretical and computational advances,
two general types of 2-RDM methods have emerged: (i) the
variational calculation of the 2-RDM subject to approximate
N-representability conditions29-32 and (ii) the nonvariational
calculation of the 2-RDM from the solution of the contracted
Schrödinger equation33-38 or, more recently, the anti-Hermitian

contracted Schrödinger equation (ACSE).4-11 Integration of the
Schrödinger equation over all electrons save two produces the
contracted Schrödinger equation,33-36,39,40 which depends on
only the 2-, 3-, and 4-RDMs. The ACSE, which depends on
only the 2- and 3-RDMs, was first derived by Harriman in 1979
who obtained it by selecting the anti-Hermitian part of the
contracted Schrödinger equation.41 Later that year Kutzelnigg
also obtained the ACSE, which he called the two-particle
Brillouin condition.42,43 As early as 1963 Percus presented a
time-dependent version of the ACSE.44 The ACSE can also be
viewed as a special subset of the hypervirial relations, which
were derived for wave functions by Hirschfelder in 1960.45

Neither the contracted Schrödinger equation nor the ACSE,
however, can be solved for the 2-RDM without additional
N-representability conditions on the 3-RDM and/or 4-RDM.41

In 1993 Colmenero, Perez del Valle, and Valdemoro suggested

Figure 1. Ground-state molecular geometries, computed by MCSCF in the 6-311G** basis set, are given for (a) bicyclobutane (BIBUT), (b) the
conrotatory transition state (TSC), (c) the disrotatory transition state (TSD), and (d) gauche-1,3-butadiene (GBUT). Point-group symmetries of C2V
and C2 are employed for bicyclobutane and gauche-1,3-butadiene, respectively. Specific bond lengths and angles from an MCSCF calculation in
the 6-31G basis set are reported in ref 18. The geometries do not substantially change from the 6-31G basis set to the 6-311G** basis set.
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reconstructing the higher-particle RDMs as functionals of the
2-RDM.46 Using 3-RDM reconstruction,33-35,47-50 the author
recently realized the first direct solution of the ACSE for the
ground-state 2-RDM and its energy.4-11

Because the ACSE does not depend upon a single reference
wave function, it can be initialized with a mean-field 2-RDM
from a Hartree-Fock calculation or a correlated 2-RDM such
as a 2-RDM from an MCSCF calculation. Using initial 2-RDMs
from MCSCF calculations, we have recently extended the
solution of the ACSE for the treatment of multireference
correlation.10 This multireference formulation of the ACSE has
some connections to the work by Yanai and Chan51 in which
an operator form of the 3-RDM reconstruction33-35,47-50 is
applied within canonical diagonalization to compute multiref-
erence correlation energies. The method of Yanai and Chan,
however, also differs from the ACSE method in that (i) it is
limited to using an initial MCSCF 2-RDM even in the absence
of multireference correlation and (ii) it does not produce a
2-RDM, which is important for computing properties and
monitoring the N-representability of the solution. In this paper
we increase the efficiency of the multireference ACSE formula-
tion by further reducing the computational scaling in floating-
point operations. Application of the ACSE is made to computing
both the energies and the 2-RDMs of bicyclobutane, the
conrotatory and disrotatory transition states, and the gauche-
1,3-butadiene. Unlike traditional second-order multireference
perturbation theory whose accuracy for single-reference cor-
relation is less than coupled cluster methods with single and
double excitations (CCSD), the ACSE yields energies and
properties that lie between CCSD and coupled cluster with
triples. Computational examples, furthermore, show that the
ACSE treats single-reference and multireference correlation with
similar accuracy. As a result of its balanced treatment of single-
reference and multireference correlation effects, the ACSE
method provides a useful approach to reevaluating the energy
barriers for disrotatory pathway that were proposed in earlier
studies. From the computed 2-RDMs we also extract the
occupation numbers of the natural orbitals, which are particularly
useful for identifying and analyzing multireference correlation
effects.

II. Theory and Methods

A. Anti-Hermitian Contracted Schrödinger Equation.
Integration (or contraction) of the N-electron Schrödinger
equation onto the space of two electrons yields the contracted
Schrödinger equation,33-36,39,40 which depends on the 2-, 3-, and
4-RDMs. Selecting the anti-Hermitian part of the contracted
Schrödinger equation produces the ACSE,4-11,41 which only
depends on the 2- and 3-RDMs. In a finite spin-orbital basis
set the ACSE can be formally written as

〈Ψ|[ai
†aj

†alak, Ĥ]|Ψ 〉 ) 0 (2)

where Ĥ is the Hamiltonian, Ψ is the N-electron wave function,
each index denotes a spin orbital which is a product of a spatial
orbital and a spin function, and ai

† and ai are second-quantized
operators that create and destroy an electron in the spin orbital
i, respectively. The explicit expression of the ACSE in terms
of the 2- and 3-RDMs is given in refs 5-7, 33, and 43.

Solution of the ACSE for the ground-state energy and 2-RDM
cannot be achieved without additional information about the
3-RDM. Fortunately, the 3-RDM can be reconstructed ap-
proximately from the 2-RDM by its cumulant expansion34,46-50

3Dq,s,t
i,j,k ≈ 1Dq

i ∧ 1Ds
j ∧ 1Dt

k + 3 2∆q,s
i,j ∧ 1Dt

k (3)

where

2∆k,l
i,j ) 2Dk,l

i,j - 1Dk
i ∧ 1Dl

j (4)

and the operator ∧ denotes the antisymmetric tensor product
known as the Grassmann wedge product.35 Substitution of the
reconstructed 3-RDM into the ACSE produces an approximate
ACSE that depends only upon the 2-RDM and yet includes all
second-order and many higher-order correlation terms of many-
body perturbation theory. A further correction to the 3-RDM
in terms of the 2-RDM, which was developed by Nakatsuji and
Yasuda,34 Mazziotti,52 as well as Valdemoro, Tel, and Perez-
Romero,8 is essential for highly accurate results in the single-
reference formulation of the ACSE.50 This correction is not
needed in the multireference formulation of the ACSE10 because
of its correlated initial 2-RDM guess.

B. System of Differential Equations. Practical solution of
the ACSE for the ground-state energy and 2-RDM can be
achieved by solving a system of differential equations4-10 that,
implicitly through the 2-RDM, applies a sequence of differential
unitary transformations to a reference wave function Ψ(0) where
the unitary transformations are ordered by a continuous timelike
variable λ. Although the differential equations can be interpreted
as minimizing the energy through the application of differential
unitary transformations upon a reference wave function Ψ(0),
the final equations with cumulant 3-RDM reconstruction only
depend upon the 2-RDM where the initial 2-RDM at λ ) 0
arises from the integration (contraction) of the N-particle density
matrix Ψ(0)Ψ(0)*. Since neither the ACSE nor the reconstruc-
tion of the 3-RDM depends on a mean-field reference, the
reference state Ψ(0) for the differential equations can be selected
to be the Hartree-Fock wave function or any correlated wave
function such as the multiconfiguration self-consistent field
(MCSCF) wave function.

The differential equations for solving the ACSE for the
ground-state energy and 2-RDM are4-10

dE
dλ

) 〈Ψ(λ)|[Ĥ, Ŝ(λ)]|Ψ(λ)〉 (5)

and

d2Dk,l
i,j

dλ
) 〈Ψ(λ)|[ai

†aj
†alak, Ŝ(λ)]|Ψ(λ) 〉 (6)

where the operator Ŝ(λ) depends on the two-electron reduced
matrix 2Sk, l

i, j (λ)

Ŝ(λ)) ∑
i,j,k,l

2Sk,l
i,j (λ)ai

†aj
†alak (7)

which at each λ is chosen to minimize the energy along its
gradient

2Sk,l
i,j (λ)) 〈Ψ(λ)|[ai

†aj
†alak, Ĥ]|Ψ(λ)〉 (8)

The right side of eq 8 is the residual of the ACSE and the right
side of eq 6 is the residual of the ACSE with Ĥ in eq 2 replaced
by the anti-Hermitian Ŝ(λ). Because the ACSE can be expressed
in terms of only the 2- and 3-RDMs, by the cumulant
reconstruction of the 3-RDM, eqs 5-8 can be evaluated at each
λ from only a knowledge of the 2-RDM. These equations are
integrated in λ to an accuracy of 10-7 by an extrapolated Euler
method. While the energy and 2-RDM would be evolved in λ
until the residual of the ACSE in eq 8 vanishes if the 3-RDM
could be reconstructed exactly from the 2-RDM, in practice the
equations are evolved to a critical value of λ at which either (i)
the energy or (ii) the least-squares error of the ACSE increases.

C. Multireference Solution. The solution of the ACSE has
recently been generalized to treat multireference correlation by
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setting the initial 2-RDM in the differential equations of section
2.2 equal to the ground-state 2-RDM from a multiconfiguration
self-consistent-field (MCSCF) calculation.10 Critical correlation
between the active space and the core and virtual spaces is
incorporated into the MCSCF 2-RDM by the ACSE through
the unitary transformations Ŝ(λ) in eqs 5 and 6. Selecting these
unitary transformations is as critical to the multireference
solution of the ACSE as choosing the initial 2-RDM from an
MCSCF calculation. We set to zero the elements of 2Sk, l

i, j (λ) in
eq 8 with four active-orbital indices to prevent 3-RDM elements
with significant reconstruction errors from appearing in the
ACSE.10 Eliminating these unitary transformations is not
problematic because they arise as a secondary perturbation in
response to the mixing of the active and the external (core plus
virtual) spaces. In this paper, we also set to zero any element
of the two-electron reduced matrix 2Sk, l

i, j (λ) with more than two

indices corresponding to virtual orbitals. This second exclusion,
performed for computational efficiency, has a negligible effect
on the accuracy of the method while reducing the computational
scaling of the multireference ACSE from r6 to (rc + ra)2rv

4

floating-point operations, which can be significant since in
general r . rc + ra. (The variables rc, ra, and rv denote the
number of core, active, and virtual orbitals, respectively, where
their sum equals the total number (or rank) r of orbitals.)

III. Results

The electrocyclic reaction of bicyclobutane to form gauche-
1,3-butadiene via Woodward-Hoffmann pathways is examined
with the multireference solution of the ACSE. Energies of
bicyclobutane, the conrotatory transition state, the disrotatory
transition state, and gauche-1,3-butadiene are compared with
those from the following methods: multireference self-consistent-
field (MCSCF), second-order multireference perturbation theory
(MRPT2),53 second-order complete-active-space perturbation
theory (CASPT2),54 coupled cluster with single and double
excitations (CCSD), coupled cluster with single and double
excitations plus perturbative triple excitations (CCSD(T)), a
completely renormalized coupled cluster method with pertur-
bative triple excitations (CR-CC),55 and experimental measure-
ment (EXPT).12 Results from two polarized basis sets, 6-31G*
and 6-311G**,56 are presented where core orbitals are fully
occupied (or frozen). The ACSE calculations were performed
with a code developed by the author while all other calculations,
excluding the CASPT2 results that are from ref 18, were
obtained from the package GAMESS (USA).56

In the MCSCF method orbitals are divided into three classes:
(i) core orbitals that are fully occupied, (ii) active orbitals that
are partially occupied (correlated), and (iii) virtual orbitals that
are completely unoccupied. The division of the orbitals is
performed self-consistently to lower the ground-state energy.

TABLE 1: Total Energies (H) and Relative Energies (kcal/mol) Are Reported for Bicyclobutane (BIBUT), the Conrotatory
Transition State (TSC), the Disrotatory Transition State (TSD), and gauche-1,3-Butadiene (GBUT) in the 6-31G* Basis Seta

total energies (H)b relative energies (kcal/mol)

molecule MCSCF MRPT2 CASPT2 ACSE MCSCF MRPT2 CASPT2 ACSE EXPT

BIBUT -154.8757 -155.2935 -155.3208 -155.3634 0.0 0.0 0.0 0.0 0.0
TSC -154.8354 -155.2330 -155.2553 -155.2969 25.3 38.0 41.5 41.8 40.6
TSD -154.8149 -155.2074 -155.2314 -155.2735 38.2 54.0 56.3 56.4
GBUT -154.9600 -155.3358 -155.3579 -155.4020 -52.9 -26.6 -23.2 -24.2

a Relative energies are defined with the energy of BIBUT as the reference. We compare the energies from the anti-Hermitian contracted
Schrödinger equation (ACSE) with those from multiconfiguration self-consistent field (MCSCF), second-order multireference perturbation
theory (MRPT2), second-order complete-active-space perturbation theory (CASPT2), and experimental measurement (EXPT). Molecular
geometries are obtained from optimization in the 6-31G* basis set with the MCSCF method. The ACSE captures a significantly larger
percentage of the correlation energy than either MRPT2 or CASPT2 while it yields reaction barriers (relative to BIBUT) that agree with those
from CASPT2 and, where available, experiment. b The total energies include the vibrational zero-point energies for BIBUT, TSC, TSD, and
GBUT, 0.0911, 0.0862, 0.0844, and 0.0885 H, respectively, computed from a harmonic analysis within the MCSCF method.

TABLE 2: Total Energies (H) and Relative Energies (kcal/mol) Are Reported for Bicyclobutane (BIBUT), the Conrotatory
Transition State (TSC), the Disrotatory Transition State (TSD), and gauche-1,3-Butadiene (GBUT) in the 6-311G** Basis Seta

total energies (H)b relative energies (kcal/mol)

molecule MCSCF MRPT2 ACSE MCSCF MRPT2 ACSE EXPT

BIBUT -154.9151 -155.3986 -155.5322 0.0 0.0 0.0 0.0
TSC -154.8759 -155.3416 -155.4666 24.6 35.7 41.2 40.6
TSD -154.8546 -155.3154 -155.4435 38.0 52.2 55.7
GBUT -155.0011 -155.4415 -155.5702 -54.0 -27.0 -23.8

a Molecular geometries are obtained from optimization in the 6-311G** basis set with the MCSCF method. Increasing the basis set from
6-31G* to 6-311G** causes the total energies from the MCSCF, MRPT2, and ACSE methods to decrease by about 0.040, 0.105, and 0.170 H,
respectively. In comparison to the change in the total energies, the relative energies remain essentially the same (they slightly decrease by a
fraction of a kcal/mol) with the increase in basis-set size. b The total energies include the vibrational zero-point energies for BIBUT, TSC,
TSD, and GBUT, 0.0898, 0.0850, 0.0830, and 0.0874 H, respectively, computed from a harmonic analysis within the MCSCF method.

Figure 2. Ground-state energies from the solution of the ACSE in the
6-311G** basis set are shown for the conrotatory (TSC) and the
disrotatory (TSD) transition states and gauche-1,3-butadiene (GBUT)
relative to the ground-state energy of bicyclobutane (BIBUT). The
ACSE predicts that the conrotatory and disrotatory transition states are
41.2 and 55.7 kcal/mol higher in energy than bicyclobutane. The energy
of the conrotatory transition state agrees with the 40.6 ( 2.5 kcal/mol
energy barrier from experiment.12
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All MCSCF calculations, including those used to seed the ACSE
method, employed a (10,10)-active space,18,19 which means 10
electrons in 10 active orbitals. As in previous studies of this
reaction,18-20 molecular geometries, obtained with the MCSCF
method, were used with all other correlation methods. Geom-
etries were separately optimized with MCSCF for the 6-31G*
and 6-311G** basis sets. Figure 1 shows the geometries for
the (a) reactant, the (b) conrotatory, and the (c) disrotatory
transition states, and the (d) product in the 6-311G** basis set.
All energies presented for each method include zero-point
energy corrections from a normal-modes analysis at the MCSCF
level of theory. Total energies are reported in hartrees (H) or
millihartrees (mH) while relative energies are given in kilo-
calories per mole (kcal/mol) where 1 H ) 627.5 kcal/mol.

Total energies (H) and relative energies (kcal/mol) are
reported for bicyclobutane, the conrotatory transition state, the
disrotatory transition state, and gauche-1,3-butadiene in 6-31G*
(Table 1) and 6-311G** (Table 2) basis sets where relative
energies are defined in reference to the energy of bicyclobutane.
Like the Woodward-Hoffmann rules, the ACSE predicts that
the biradical disrotatory transition state is significantly higher
in energy than the conrotatory transition state. In the 6-311G**
basis set the ACSE yields conrotatory and disrotatory transition
states that are 41.2 and 55.7 kcal/mol higher in energy than
bicyclobutane, respectively. Figure 2 displays these results
schematically. The energies of the conrotatory and disrotatory
transition states agree with the 41.5 and 56.4 kcal/mol barriers
predicted by CASPT2 in the 6-31G* basis set and the 40.6 (
2.5 kcal/mol conrotatory barrier determined by experiment.

Because nature heavily favors the conrotatory pathway, the
energy of the disrotatory transition state cannot be easily
measured experimentally, which makes its theoretical prediction
of even further importance. While the reaction barriers from
MRPT2, CASPT2, and the ACSE are similar in Table 1 and
the barriers from MRPT2 and the ACSE are similar in Table 2,
in a given basis set the ACSE captures a significantly larger
amount of the correlation energy than either MRPT2 or
CASPT2. For example, in a 6-31G* basis set the total energies
of bicyclobutane from the MRPT2, CASPT2, and ACSE
methods differ from the CCSD(T) energy, which should be close
to the energy from full configuration interaction in the absence
of multireference correlation, by 0.079, 0.052, and 0.009 mH.
Increasing the basis set from 6-31G* to 6-311G** causes the
total energies from the MCSCF, MRPT2, and ACSE methods
to change by about -0.040, -0.105, and -0.170 H, respec-
tively, while relative energies change very little, decreasing by
a fraction of a kcal/mol.

Recently, renormalized coupled-cluster calculations have
suggested a higher barrier for the disrotatory pathway than that
predicted previously by CASPT2. Table 3 gives the total and
relative energies from three coupled cluster methods, CCSD,
CCSD(T), and CR-CC, for bicyclobutane, the conrotatory
transition state, the disrotatory transition state, and gauche-1,3-
butadiene in the 6-311G** basis set. For all molecules excluding
TSD, the total CCSD energies are above those from the ACSE
in Table 2 by about 16 mH while the total CCSD(T) and CR-
CC energies are below those from the ACSE by about 16 mH.
Despite a computational cost like CCSD, the multireference
ACSE yields energies between those from CCSD and CCSD(T)
in the absence of significant multireference correlation. Relative
energies, except for TSD, are close to those predicted by the
ACSE. In contrast, the biradical disrotatory transition state,
fraught with multireference correlation, is not well treated by
the CCSD and CCSD(T) methods whose energies are too high
and low, respectively. In fact, the CCSD(T) predicts a disrotatory
pathway that is energetically more favorable than the conrotatory
pathway by more than 20 kcal/mol. As discussed in ref 19, the
completely renormalized coupled cluster method (CR-CC)
improves significantly upon the energies of CCSD and CCS-
D(T), and in Table 3 it predicts a 63.6 kcal/mol barrier for the
disrotatory pathway in the 6-311G** basis set, which is higher
than that previously computed by CASPT2.18 A similar barrier
for the pathway was obtained in ref 19 even though a different
polarized triple-� basis set was employed. Comparison of the
CR-CC energies with those from the ACSE provides some

TABLE 3: Total Energies in Hartrees (H) and Relative Energies (kcal/mol) from Coupled-Cluster Methods Are Reported for
Bicyclobutane (BIBUT), the Conrotatory Transition State (TSC), the Disrotatory Transition State (TSD), and
gauche-1,3-Butadiene (GBUT) in the 6-311G** Basis Seta

total energies (H)b relative energies (kcal/mol)

molecule CCSD CCSD(T) CR-CC CCSD CCSD(T) CC-CR EXPT

BIBUT -155.5198 -155.5461 -155.5462 0.0 0.0 0.0 0.0
TSC -155.4461 -155.4811 -155.4803 46.3 40.8 41.3 40.6
TSD -155.3966 -155.5167 -155.4449 77.3 18.4 63.6
GBUT -155.5582 -155.5853 -155.5852 -24.1 -24.6 -24.5

a Molecular geometries are obtained from optimization in the 6-311G** basis set with the MCSCF method. Correlation techniques include
coupled cluster with single-double excitations (CCSD), coupled cluster with single-double excitations plus perturbative triple excitations
(CCSD(T)), and a completely renormalized coupled cluster method (CR-CC) with perturbative triples. For all molecules excluding TSD, the
total CCSD energies are above those from the ACSE in Table 2 by about 16 mH while the total CCSD(T) and CR-CC energies are below
those from the ACSE by about 16 mH. In contrast, the biradical molecule TSD is not well treated by the single-reference CCSD and CCSD(T)
methods with energies too high and too low, respectively. Relative energies, except for TSD, are close to those predicted by the ACSE. b The
total energies include the vibrational zero-point energies for BIBUT, TSC, TSD, and GBUT, 0.0898, 0.0850, 0.0830, and 0.0874 H,
respectively, computed from a harmonic analysis within the MCSCF method.

TABLE 4: Lowest Eigenvalues of the 2D, 2Q, and 2G
Matrices from the ACSE Are Reported for Bicyclobutane
(BIBUT), the Conrotatory Transition State (TSC), the
Disrotatory Transition State (TSD), and
gauche-1,3-Butadiene (GBUT) in the 6-31G* Basis Seta

lowest eigenvalues

molecule 2D 2Q 2G

BIBUT -5.2[-4] -6.7[-5] -5.1[-4]
TSC -2.0[-3] -8.2[-5] -2.3[-3]
TSD -2.4[-3] -7.2[-5] -1.3[-3]
GBUT -5.9[-4] -6.7[-5] -5.5[-4]

a For each molecule the most negative eigenvalues are 3 to 4
orders of magnitude smaller in absolute value than the largest
eigenvalues of order unity. The 2D, 2Q, and 2G matrices are
normalized, as in second quantization, to N(N - 1), (r - N)(r - N
- 1), and N(r - N + 1) where r is the rank of the one-electron
basis set and N is the number of electrons.
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additional insight into the discrepancy between the CR-CC and
the CASPT2/ACSE results. While the CR-CC total energies for
bicyclobutane, the conrotatory transition state, and gauche-1,3-
butadiene are consistently about 16 mH below the ACSE total
energies, the CR-CC total energy for the disrotatory transition
state is only 1 mH lower than the total energy from the ACSE.
Although certainly not definitive, in the context of previous
ACSE results showing consistent accuracy in the presence and
absence of multireference correlation, this result suggests that
the CR-CC method may be missing some multireference
correlation that would lower the energy of the biradical
disrotatory transition state by about 15 mH or 9.5 kcal/mol.

The multireference solution of the ACSE generates both
energies and 2-RDMs. Previous work has shown that the
2-RDMs from the ACSE very nearly satisfy well-known
N-representability conditions including an important set of
conditions requiring three forms of the 2-RDM, the 2D, 2Q, and
2G matrices, to be positive semidefinite. A matrix is positiVe
semidefinite if and only if its eigenvalues are nonnegative. These
matrices restrict the probability distributions for two particles,
two holes, and one particle and one hole to be nonnegative.
For each molecule in the bicyclobutane reaction the most
negative eigenvalues of these three matrices, given in Table 4
for the 6-31G* basis set, are 3 to 4 orders of magnitude smaller
in absolute value than the largest eigenvalues on the order of
unity. The 1-RDM occupation numbers also lie between 0 and
1 in accordance with the N-representability conditions for the
1-RDM.25 Furthermore, for each singlet molecule the expectation
value of the total spin operator 〈 Ŝ2〉 yields zero within the 10-7

accuracy of the integrator.
Table 5 reports the occupation numbers of the natural orbitals

for the four molecules in the 6-311G** basis set from the
MCSCF and ACSE methods. Natural orbitals are defined as
the eigenfunctions of the 1-RDM. (Since the two spin blocks
of the 1-RDM are identical for a singlet system, we show the
natural-orbital occupation numbers for just one of the blocks.)
Because the determinant formed from the lowest N natural spin
orbitals has the maximum overlap with the N-electron wave
function, the natural occupation numbers provide important
information for identifying and analyzing multireference cor-

relation effects. For the molecules with a dominant single
reference, bicyclobutane, the conrotatory transition state, and
gauche-1,3-butadiene, the occupation numbers for orbitals 15
and 16, which are the highest occupied (HOMO) and lowest
unoccupied (LUMO) orbitals in a molecular orbital picture, are
fairly close to 1 and 0, but for the biradical disrotatory transition
state they are nearly degenerate. This near degeneracy of the
HOMO and LUMO occupation numbers is the signature within
the 1-RDM of multireference correlation, and it implies that in
the wave function there are at least two determinants (or
references) with nearly degenerate contributions at zeroth order
of perturbation theory. Unlike the MCSCF occupation numbers,
which are unequal to 1 or 0 only for the 10 active orbitals, all
of the ACSE occupation numbers are fully correlated. The
ACSE occupation numbers consistently display more correlation
than those from MCSCF, which reflects that the ACSE includes
electron correlation beyond the active space.

IV. Discussion

The barriers in the Woodward-Hoffmann pathways for the
electrocyclic conversion of bicyclobutane to gauche-1,3-buta-
diene have been studied with the multireference solution of the
anti-Hermitian contracted Schrödinger equation (ACSE).4-11 The
ACSE method enables the direct calculation of multireference
correlation energies and 2-RDMs without the fully correlated
many-electron wave function. Qualitatively, the Woodward-
Hoffmann rules indicate that the electrocyclic reaction of
bicyclobutane to form gauche-1,3-butadiene prefers the conro-
tatory pathway to the disrotatory pathway. The solution of the
ACSE in the 6-311G** basis set predicts 41.2 and 55.7 kcal/
mol reaction barriers for the conrotatory and disrotatory
pathways, respectively. These energies agree with the barriers
of 41.5 and 56.3 kcal/mol determined previously by second-
order complete-active-space perturbation theory (CASPT2) in
the 6-31G* basis set18 and the conrotatory barrier of 40.6 (
2.5 kcal/mol measured by experiment.12 On the basis of
completely renormalized coupled-cluster (CR-CC) computations,
however, it was recently proposed that the disrotatory barrier
might be higher than the earlier CASPT2 barrier.19 Because the

TABLE 5: Natural Occupation Numbers Are Reported for Bicyclobutane (BIBUT), the Conrotatory Transition State (TSC),
the Disrotatory Transition State (TSD), and gauche-1,3-Butadiene (GBUT) in the 6-311G** from the Multiconfiguration
Self-Consistent Field (MCSCF) and the Anti-Hermitian Contracted Schrödinger Equation (ACSE) Methodsa

occupation numbers of natural orbitals

BIBUT TSC TSD GBUT

orbital index MCSCF ACSE MCSCF ACSE MCSCF ACSE MCSCF ACSE

9 1.0000 0.9829 1.0000 0.9830 1.0000 0.9825 1.0000 0.9838
10 1.0000 0.9822 1.0000 0.9820 1.0000 0.9814 1.0000 0.9826
11 0.9966 0.9807 0.9916 0.9795 0.9915 0.9789 0.9918 0.9806
12 0.9881 0.9740 0.9893 0.9761 0.9894 0.9759 0.9905 0.9787
13 0.9874 0.9726 0.9844 0.9698 0.9844 0.9697 0.9887 0.9758
14 0.9845 0.9683 0.9834 0.9682 0.9837 0.9683 0.9662 0.9539
15 0.9836 0.9674 0.8779 0.8646 0.5533 0.5483 0.9543 0.9402
16 0.0237 0.0313 0.1239 0.1298 0.4473 0.4451 0.0480 0.0544
17 0.0124 0.0190 0.0188 0.0251 0.0191 0.0256 0.0316 0.0366
18 0.0115 0.0167 0.0113 0.0161 0.0118 0.0165 0.0113 0.0155
19 0.0096 0.0143 0.0102 0.0151 0.0105 0.0155 0.0096 0.0134
20 0.0026 0.0113 0.0094 0.0140 0.0091 0.0139 0.0079 0.0116
21 0.0000 0.0101 0.0000 0.0097 0.0000 0.0102 0.0000 0.0094
22 0.0000 0.0091 0.0000 0.0091 0.0000 0.0095 0.0000 0.0089

a The ACSE occupation numbers consistently manifest more correlation than those from MCSCF, which reflects that the ACSE includes
electron correlation beyond the active space. While the occupation numbers for orbitals 15 and 16, which are the highest occupied (HOMO)
and lowest unoccupied (LUMO) orbitals in a molecular orbital picture, are fairly close to 1 and 0 for BIBUT, TSC, and GBUT, they are nearly
degenerate for the biradical TSD.
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ACSE captures significantly more single-reference correlation
than second-order multireference perturbation techniques, the
ACSE offers a measure of the barriers, balanced between single-
reference and multireference correlation effects, that corroborates
the earlier CASPT2 results. While not definitive, comparison
of the CR-CC and ACSE total energies for reactant, product,
and transition states suggests the CR-CC method may be missing
some multireference correlation of the biradical disrotatory
transition state that would lower its energy by about 9.5 kcal/
mol.

The multireference solution of the ACSE provides not only
energies but also electron-density probabilities and molecular
properties. The Woodward-Hoffmann rules energetically dis-
favor the disrotatory pathway because the pz orbitals of the two
end carbons interact in the transition state with opposite phases
to produce an entangled (or multireferenced) wave function.
Both the multiconfiguration self-consistent-field (MCSCF) and
the ACSE confirm this entanglement through natural-orbital
occupation numbers. While the occupation numbers of the
highest occupied (HOMO) and lowest unoccupied (LUMO)
molecular orbitals are close to 0 and 1, respectively, for
bicyclobutane, the conrotatory transition state, and the gauche-
1,3-butadiene, they are nearly degenerate for the disrotatory
transition state. The degeneracy, which corresponds to two
determinants contributing almost equally to the N-electron wave
function, demonstrates that the disrotatory transition state is a
biradical.

Application of the ACSE to studying the electrocyclic
conversion of bicyclobutane to gauche-1,3-butadiene illustrates
the ACSE’s ability to capture significant multireference cor-
relation. Because the ACSE does not depend on a specific
reference wave function, it can be seeded with a mean-field
2-RDM from a Hartree-Fock calculation or a correlated 2-RDM
from an MCSCF computation. The solution of the ACSE by
the differential equations in section II.B introduces correlations
between the active and external (core or virtual) spaces through
a sequence of unitary transformations. Unitary transformations
involving four active orbitals or more than two virtual orbitals
are excluded. Introduced for efficiency in this paper, this latter
exclusion has a negligible effect on the accuracy of the energies
and 2-RDMs while decreasing the computational scaling in
floating-point operations from r6 to (rc + ra)2rv

4. Future work
will further enhance the efficiency of the ACSE through the
inclusion of molecular point-group symmetries. The multiref-
erence ACSE offers an important tool for studying chemical
and condensed-matter phenomena through the direct calculation
of energies and 2-RDMs.
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