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The use of ab initio potentials in Monte Carlo simulations aimed at investigating the nucleation kinetics of
water clusters is complicated by the computational expense of the potential energy determinations. Furthermore,
the common desire to investigate the temperature dependence of kinetic properties leads to an urgent need to
reduce the expense of performing simulations at many different temperatures. A method is detailed that allows
a Markov chain (obtained via Monte Carlo) at one temperature to be scaled to other temperatures of interest
without the need to perform additional large simulations. This Markov chain temperature-scaling (TeS) can
be generally applied to simulations geared for numerous applications. This paper shows the quality of results
which can be obtained by TeS and the possible quantities which may be extracted from scaled Markov chains.
Results are obtained for a 1-D analytical potential for which the exact solutions are known. Also, this method
is applied to water clusters consisting of between 2 and 5 monomers, using Dynamical Nucleation Theory to
determine the evaporation rate constant for monomer loss. Although ab initio potentials are not utilized in
this paper, the benefit of this method is made apparent by using the Dang-Chang polarizable classical potential
for water to obtain statistical properties at various temperatures.

1. Introduction

The temperature dependence of thermally accessible regions
of the potential energy surface generally requires that Monte
Carlo1,2 (MC) simulations be performed separately for each
temperature of interest. This situation leads to the execution of
many simulations, each differing only by temperature. These
additional simulations, although computationally demanding, do
not usually suffer from a bottleneck condition in computational
resources due to the availability of fast classical potentials, such
as the Effective Fragment Potential,3 TIP4P,4 and Dang-Chang5

potentials for water. However, with the development of petascale
supercomputing platforms and more efficient parallel algorithms,
it is conceivable that more expensive ab initio methodologies6

could be utilized in these MC simulations. With the additional
computational expense that ab initio electronic structure calcula-
tions would impose, it becomes very important to reuse the data
from every simulation as much as possible. While it is possible
to perform one ab initio simulation on small systems at a
particular temperature, it becomes prohibitively expensive to
perform 5 or 10 simulations at different temperatures. In this
paper, a temperature-scaling method (TeS) is developed in an
attempt to “reuse” the results of a MC simulation at one
temperature (T1) and produce results (with relatively little
computational overhead) at another temperature (T2) or a set of
temperatures. This method is applied to a 1-D model potential
and to water cluster simulations.

2. Temperature-Scaling (TeS)

As mentioned above, Markov Chain Monte Carlo1,2 (MCMC)
methods are performed separately at each temperature of interest.
The rational lies in the fact that temperature is a parameter that
affects the composition of the resulting Markov chain. As a
result the statistical properties obtained from this chain depend
on temperature. The computational expense in this approach

grows roughly linearly with the number of temperatures desired,
the exception being the increase in computational expense due
to configurational space becoming more or less thermally
accessible. The goal of this research is to increase the number
of temperatures for which a single MCMC simulation can
provide statistical information.

In the canonical ensemble, the acceptance probability between
two states, i and j, within a volume, V, is Pij(T, V ) )
min[1, exp(-∆ijU/kbT )], where the difference in these states’
potential energy is ∆ijU, kb is Boltzmann’s constant, and T is
the temperature. The use of this acceptance probability to build
a Markovian chain of states allows the determination of the state
distribution. This distribution of states approaches, as the
Markov chain grows, a stationary state distribution which is
equivalent to that of the canonical ensemble. The stationary
distribution is a Boltzmann weighted distribution of states such
that the probability of the occurrence of state i within a volume
V in the Markov chain is equal to

Pi(T, V ))
gi exp[- Ui

kbT]
Q(T, V )

)
Ni(T, V )

Ntotal(V )
(1)

where Ui is the potential energy of state i, Q(T, V ) is the
canonical partition function which serves as a normalization
constant, and gi is the degeneracy of state i. This probability is
physically encoded within the Markov chain and is obtainable
by “counting” the occurrence of states, where Ni(T, V ) is the
temperature-dependent frequency of state i within a volume V
in the Markov chain and Ntotal(V ) is the total number of members
in the Markov chain. The Markov chain is, therefore, a truly
temperature-dependent entity.

As a result of the ability to “count” the occurrence of states
within the Markov chain, each member of the chain has an equal
weight of one. Can a different choice of weight, wi(T1, T2), for
each state allow a Markov chain obtained at a temperature T1

to reproduce the stationary distribution at another temperature
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wi(T1, T2)Pi(T1, V )

∑ i
wi(T1, T2)Pi(T1, V )

)Pi(T2, V ) (2)

where wi(T1, T2) denotes the weight of each state i in the Markov
chain. By substituting eq 1 into this expression for both Pi(T1, V )
and Pi(T2, V ), it is sufficient to require that the weight be equal
to the following.

wi(T1, T2)) exp[-Ui

kb
( 1
T2

- 1
T1

)] (3)

The weight for each state i is a constant that only depends on
the state’s potential energy, Ui, and the temperature change
(1/T2 - 1/T1), allowing the weights to be determined concur-
rently with the Markov chain at T1. These TeS weights act as
coefficients to scale the probability of a state at T1 to the
corresponding probability at T2. With this change in state
probability the distribution must be carefully renormalized to
preserve the relationship between the canonical partition func-
tions. Considering this renormalization, the partition functions
are related by (∑iwi(T1, T2)Pi(T1, V ))Q(T1, V ) ) Q(T2, V ), which
gives a complete transformation of the Markov chain between
the temperatures T1 and T2.

The structure of the original Markov chain at T1 is preserved
if no scaling is performed (T1 ) T2) giving wi(T1, T2) ) 1 for
every configuration in the chain. If TeS is performed, however,
states will change importance in the Markov chain based on
their relative potential energy and the temperature change. States
will become more important as temperature increases if they
possess higher potential energies. These states will, however,
become less important as temperature decreases. This behavior
mirrors the respective increase and decrease of thermally
accessible states as temperature changes.

The TeS method, which is performed with respect to a
Markov chain, is very similar to Weighted Histogram analysis.7

Ferrenberg and Swendson formulated this method to study phase
transitions. The goal was to use the results of a single MC
simulation performed close to the critical temperature to examine
the behavior of systems at temperatures around the critical
temperature. The necessity of this approach was to reduce the
computational expense and increase the accuracy of critical
temperature determinations associated with performing multiple
MC simulations at different and discrete temperatures. By using
Weighted Histogram analysis, the temperature could be scanned
at arbitrary precision, without the need for additional MC
simulations, to more accurately determine the critical temperature.

Weighted Histogram analysis7 is a general method in which
a histogram (probability distribution) obtained at one set of
conditions (parameters) is scaled to another set of conditions.
The probability distribution chosen for Weighted Histogram
analysis has the general form in one parameter

PB(A)) g(B) exp[-AB]
Q(B)

(4)

where A and B refer to a property and parameter respectively
which are necessarily thermodynamic conjugate variables. This
is similar to our TeS method where temperature is the varied
parameter, except that the quantity being scaled is the probability
distribution and not a Markov chain. In our TeS example A is
equal to the potential energy, U, and B is equal to (kbT )-1. Q(B)
is the canonical partition function, which is defined as a sum
over all potential energies, U. The scaling of this potential energy
distribution in Weighted Histogram analysis is performed by
defining weights to each value of the potential energy similar
to eq 3. The result of this formulation is that temperature-scaling

can only be performed on histograms of properties for which
temperature is the conjugate variable.

The major difference between the Weighted Histogram
analysis7 method and our Markov chain TeS method is the
quantity that is scaled. In both methods a MC simulation is
performed at a temperature T1. In Weighted Histogram analysis,
this simulation is used to produce a probability distribution at
T1, which is scaled to a new temperature T2. Alternatively in
our TeS method, the underlying Markov chain at T1 is scaled
to a new temperature T2 that is used to produce the new
probability distributions. The advantage of scaling the underlying
Markov chain is that probability distributions of properties not
conjugate to temperature can be obtained in the same manner
as the original Markov chain. TeS is therefore not restricted to
probability distributions of the potential energy or other energy
derived quantities such as the heat capacity.

Although TeS may be performed with respect to any
temperature change, care must be taken to ensure that the scaled
Markov chain produces a distribution that is sufficiently close
to the stationary probability distribution. Given that the initial
Markov chain, at temperature T1, is sufficiently close to the
stationary probability distribution, then the probability that state
i occurs within a volume in the chain is given by eq 1. Since
no states are added to or deleted from the Markov chain during
TeS, the states sampled at T1, albeit with altered importance,
must be able to provide a Markov chain at T2 that similarly
conforms to eq 1. The only way this is rigorously true is if all
important states at T2 are thermally accessible at T1. Therefore
T1 g T2 is a necessary condition. However, at sufficiently high
temperatures there is a possibility that not all thermally
accessible states are adequately sampled. As temperature
increases more states become thermally accessible allowing
entropic effects to become increasingly important. This effect
enters into the sampling probability, eq 1, through the state
degeneracy term.

Ferrenberg and Swendsen8 give a method that allows the
approximation of the maximum temperature change allowed in
Weighted Histogram analysis before enthalpic or entropic
contributions seriously degrade the quality of the scaled
distributions. This approximation is performed on the original
distribution (before scaling) and involves estimating the change
in temperature that would theoretically produce a certain change
in the average potential energy of the system. The heat capacity
at constant volume, CV ) (∂U/∂T )V, gives this relationship for
the canonical ensemble. Assuming that the heat capacity is
constant over a temperature range, the temperature change is
given by ∆T ) (∂T/∂U )V∆U. The determination of the maxi-
mum temperature change is driven by knowledge of the
maximum allowable potential energy change, ∆U. Similar to
the arguments above, the average potential energy of the system
should not change such that it lies outside of the range of
potential energies sampled. Therefore, Ferrenberg and Swendsen
use a measure based on the potential energy distribution, the
standard deviation of the potential energy (σ(U )) for the
maximum potential energy change. By using this choice for ∆U
and the definition of the heat capacity at constant volume for
the canonical ensemble, CV ) σ2(U)/kbT2, the maximum allowed
temperature change has an absolute value given in eq 5

∆T(T1))
kbT1

2

σ(U )
(5)

where T1 is the temperature of the initial MC simulation. The
change in potential energy can be easily changed to any multiple
of the standard deviation by multiplication of the right side of
eq 5 by the factor.
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The goal of this paper is to show the merits and limitations
of the TeS method. This goal is accomplished by examining
the results of MCMC simulations on some systems of interest.
First a 1-D, single-particle analytical potential energy surface
is examined with the advantage that the exact probability
distributions are available. Second, water clusters of various
sizes are examined. Since an exact probability distribution is
not known for these systems (as is the case in general) the results
of the TeS method are compared to conventional simulations
done at each temperature of interest.

3. Comparison between Methodologies

The TeS method is also similar to various Monte Carlo
methodologies such as J-Walking,9 S-Walking,10 Parallel Tem-
pering11 (also known as Replica Exchange),12 and C-Walking.13

These methodologies try to overcome quasiergodic behavior in
low-temperature simulations by sampling from a high-temper-
ature ergodic distribution. J-Walking, S-Walking, Parallel
Tempering, and C-walking generally utilize high-temperature
distributions which are obtained from concurrent MC simula-
tions. These methods differ from TeS in that they require these
additional concurrent MC simulations to obtain a selection of
configurations to incorporate in the low-temperature simulation.
These methods are also instituted as a sampling methodology
in the MC simulation, whereas TeS in performed as a postpro-
cessing step on a completed Markov Chain. J-Walking, S-
Walking, Parallel Tempering, and C-Walking differ from one
another by the method they use to gain configurations from the
high-temperature MC simulation.

J-Walking9 incorporates configurations into a low-temperature
MC simulation from a high-temperature MC simulation based
on a probability that may or may not be derived from Metropolis
criteria. These high-temperature configurations can be quite
different in both configurational space and potential energy than
the low-temperature configurations. The difference in configu-
rational space is beneficial in obtaining a more ergodic distribu-
tion at low temperature. However, a large difference in potential
energy requires additional MC steps to properly thermalize this
state to the lower temperature distribution.

S-Walking10 improves upon this situation by quenching the
high-temperature configurations via a steepest decent paradigm
such that the potential energy of this state is closer to the
potential energy distribution of the low-temperature MC simula-
tion. However, this methodology results in sampling from these
quenched configurations which comprise a non-Boltzmann
distribution.

Instead of incorporating a high-temperature configuration into
a low-temperature MC simulation, Parallel Tempering11 swaps
configurations between the low- and high-temperature MC
simulations. This methodology corrects two issues with J-
Walking and S-Walking. The potential energy difference
between configurations is included in the swapping probability,
which ensures that configuration swaps are not allowed between
states that differ greatly in potential energy. Also, this swapping
probability is based on Metropolis criteria, which takes into
account the temperature difference between MC simulations.
However, in order to have an acceptable swapping probability
the temperature difference between MC simulations must be
closely monitored.

C-Walking13 incorporates the best features of S-Walking and
Parallel Tempering methodologies by utilizing high-temperature
configuration quenching based on simulated annealing and
configuration swapping. This methodology eliminates the need
to closely monitor the temperature difference between MC

simulations and allows the configuration quenching to be
statistically relevant.

Parallel Tempering is sensitive to the temperature difference
between MC simulations. For this method to adequately obtain
ergodic low-temperature distributions a number of high-tem-
perature MC simulations are required to reach a sufficiently high
temperature. The highest temperature should produce an ergodic
distribution. The temperature difference between these multiple
MC simulations is closely monitored to provide a sufficient
swapping probability during the MC simulation. The probability
of swapping configurations is given by exp[{-(U1 -
U2)/kb}(1/T2 - 1/T1)], where T1 > T2 and U1refers to the
potential energy of a configuration that resides in the high-
temperature distribution before swapping. This probability
is equal to the product of two TeS weights,
w1(T1, T2)w2(T2, T1. It is not surprising given this similarity
that TeS also suffers from a sensitivity in the temperature
difference |T2 - T1|. This sensitivity is given by eq 5.

The TeS method, unlike J-Walking, S-Walking, C-Walking,
and Parallel Tempering, does not require concurrent MC
simulations in which to gain configurations. The only require-
ment is a Markov Chain obtained at a particular temperature.
For this method to be used to compensate for quasiergodic
behavior at low temperatures, a sufficiently high-temperature
MC simulation must be performed. This high-temperature MC
simulation must not suffer from quasiergodicity and must be
able to be scaled, via TeS, to the low temperature of interest.

4. Analytical Potential

The analytical potential used in this work is a single particle,
1-D potential used previously by Brown and Head-Gordon13 to
compare sampling methodologies. Brown and Head-Gordon
defined this as

V(x))∑
n)1

20

Cn sin(2nπx
L ) (6)

where the coefficients {Cn} are chosen to be between -1 and
1 and are given in their work. The units of the analytical
potential are arbitrary and L refers to the maximum length of
the 1-D {x} coordinate, which is chosen to be 10.

Figure 1 shows the form of the analytical potential and two
exact distribution functions at T* ) 0.1 and 3.0. T* refers to
the reduced temperature, which is equal to kbT, where kb is
Boltzmann’s constant and has arbitrary units of energy. How-
ever, if units of kcal/mol are assigned to the analytical potential
energy and T*, then T* ) 3.0 kcal/mol corresponds to a
temperature of T ) 1500 K and T* ) 0.1 kcal/mol corresponds
similarly to a temperature of T ) 50 K. This temperature change
is clearly not trivial and produces large changes in the related
probability distributions. Furthermore, the potential energy
surface is very rough with maximum barrier heights of about 8
kcal/mol and multiple (about 13) recognizable minima. Ap-
plication of the TeS method on this 1-D analytical potential
energy surface is a rigorous and extreme test of this method’s
ability to completely sample configurational space and produce
statistics at two very different temperatures.

This 1-D analytical potential was originally utilized by Brown
and Head-Gordon13 to study solutions to surfaces that demon-
strate quasiergodic behavior. Quasiergodicity is a condition in
which the Markov chain fails to sample all of the important
regions of configurational space. This situation mainly arises
due to the inability of a Metropolis Monte Carlo method to
transverse regions of low probability which connect regions of
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higher probability. These lower probability regions generally
correspond to barriers on the potential energy surface which
can confine MC simulations to a subset of available configu-
rational space.

MC simulations are performed on this 1-D analytical potential
energy surface at T* ) 3.0 and 0.1. Trial moves are attempted
with a probability of 1/2 in which the maximum displacement
along the coordinate is 0.01. An array of 1000 equally sized
bins of width 0.01 are utilized to collect statistical information.
The resulting probability distributions are obtained from the
average of 100 independent Markov chains. Each Markov chain
consists of 4 × 105 configurations for a total of 4 × 107

configurations and have initial configurations evenly distributed
along the 1-D coordinate.

Figure 1a shows the probability distribution obtained from a
MC simulation at T* ) 0.1. At this temperature, T ) 50 K if
the units on the potential are in kcal/mol, every barrier in this
rough potential can potentially cause quasiergodicity. The
quasiergodicity can be seen in the probability distribution
obtained via conventional Metropolis Monte Carlo after 4 ×
107 configurations. There are 13 peaks in this probability
distribution, one peak for every potential energy well. Each of
the 100 Markov chains utilized in this MC calculation remained
in the nearest well throughout the entire calculation. Since the
Markov chains were unable to surmount the barriers in the
potential energy, a series of quasiergodic distributions were
produced which do not resemble the exact ergodic distribution
also shown in Figure 1a. In contrast, if the entire configurational

space was efficiently sampled by these Markov chains the
resulting probability distribution would look similar to the exact
ergodic distribution. The exact probability distribution has only
four regions of probability corresponding to the four lowest
potential energy wells. This mismatch between the exact and
MC obtained probability distribution demonstrates the problem
with quasiergodic Markov chains.

At a much higher temperature (T* ) 3.0), the quasiergodicity
apparent in the Markov chains is diminished. The probability
distribution is shown in Figure 1b for this case. The barriers
present in the potential energy do not cause noticeable quasi-
ergodic behavior at this elevated temperature, T ) 1500 K if
the potential energy has units of kcal/mol. Note that the scale
in this figure differs by a factor of 3 in order to more clearly
show the difference. Because the potential energy barriers have
a maximum height of about 8 kcal/mol, the Markov chains have
enough energy to explore configurational space fully. Conven-
tional MC simulations at this temperature produce a probability
distribution that is very close to the exact ergodic distribution.
The sum of the absolute error across the entire distribution
reported as a percentage of the sum of the total probability for
both distributions is 9.41%. These probability distributions are
very spread out across the 1-D coordinate with most minima
having some probability, in contrast to the localized nature of
the distributions at T* ) 0.1.

The TeS method is applied to the Markov chains sampled at
T* ) 3.0, where each of the 4 × 107 configurations in these
Markov chains is given a weight based on eq 3 to produce a
corresponding distribution at T* ) 0.1. TeS should work well
for two related reasons. First, the Markov chains at T* ) 3.0
produce a distribution that is sufficiently close to the exact
(stationary) distribution, meaning that eq 1 is approximately
satisfied. Second, the temperature is sufficiently large enough
to overcome the quasiergodicity present at T* ) 0.1. Another
measure of the feasibility of TeS can be found in the ap-
proximate maximum temperature change shown in eq 5. This
measure gives information related to the distribution being scaled
such as the temperature change that will change the average
potential energy of the system to a value that lies outside of
the range that is sampled. Performing TeS beyond this limit
will adversely affect the quality of results due to the reliance
on states which are not adequately sampled. The maximum
temperature change determined from the distribution at T* )
3.0 is 2713 K. This range is sufficiently large as to allow the
about 1450 K temperature change performed in this work
without loss of quality. Figure 1a shows the resulting TeS
distribution at T* ) 0.1. Like the exact distribution, there are
only four regions of probability present. The TeS probability
distribution is very close to the exact ergodic distribution. The
sum of the absolute error across the entire distribution reported
as a percentage of the sum of the total probability for both
distributions is 3.73%. To further illustrate the similarity between
these distributions, we present in Table 1 the integrated peak
heights for the exact and TeS distributions expressed as a
percentage of the total. The largest absolute difference is 2.31%
between these distributions.

Figure 1. The exact, Monte Carlo (MC) sampled, and TeS probability
distributions at (a) T* ) 0.1 and (b) T* ) 3.0 for a (c) 1-D analytical
potential. Of the three distributions in part a, the pair corresponding to
the exact and scaled distributions overlap very heavily making them
hard to discern from each other. The probability distributions have been
scaled by 100 (a) and 300 (b) to better show differences. A total of
100 Markov chains and 4 × 107 configurations are used in the MC
simulation.

TABLE 1: Percent Peak Area at T* ) 0.1 for the
Analytical Potential

peak exact TeS

1 14.01 12.19
2 34.44 36.75
3 50.11 49.52
4 1.43 2.47
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The results above show the utility of the TeS method in two
ways. First, the effectiveness of using Markov chain scaling to
acquire statistical information at other temperatures is demon-
strated. Second, if the original Markov chain is obtained at a
temperature that overcomes quasiergodicity concerns then TeS
can be utilized to obtain lower temperature distributions free
from quasiergodic behavior. However, the 1-D nature of this
analytical potential neglects the effects of multidimensional
configurational space which include entropic contributions.

5. Water Molecular Clusters

An examination of the effect a multidimensional configura-
tional space has on the TeS method is presented by our work
on molecular clusters of water. This examination is done within
the context of Dynamical Nucleation Theory (DNT). DNT has
been successfully applied previously to water clusters consisting
of 2 to 10 monomers.14 The basis of DNT, discussed
elsewhere,15,16 is to determine the thermodynamic and kinetic
properties of nucleation events. This procedure is done via a
MC simulation in which a collection of interacting water
monomers are described in a spherical volume (defined by its
radius). The elementary evaporation process is defined as the
loss of a single monomer producing a cluster of size i - 1,
where i is the number of monomers in the simulation. Expressed
as a reaction equation, Ni f Ni-1 + N1, where N denotes
concentrations of the various sized molecular clusters, a
spherical dividing surface (defined by a radius) serves to define
configurations belonging to the i-cluster and those belonging
to the (i - 1)-cluster plus monomer. The radius (rcut) which
defines the molecular cluster of water monomers at a particular
temperature is determined by the location of a kinetic bottleneck
during this isothermal expansion process. The evaporation rate
constant (Ri(T, rcut)) is proportional to the rate of change in the
molecular cluster’s Helmholtz free energy with respect to
volume. Therefore, the radial probability distribution of water
monomers, which is related to the free energy, plays a large
role in the determination of the defining radius (rcut) and the
evaporation rate constant (Ri(T, rcut)).15,16

Since the exact radial distributions of conformations are not
known for these systems, the resulting probability distributions
from the TeS method are compared to MC simulations
performed at each temperature of interest. The properties
obtained from the TeS Markov chain are compared to those
obtained from a Markov chain built at the temperature of
interest. Application of TeS on this chemical system is a more
realistic test of this method’s quality and provides a basis to
address possible limitations.

The DNTMC methodology has been implemented in the
NWChem computational chemistry package.17 The Global Array
(GA) Toolkit18 has also been utilized to provide multilevel
parallelization with respect to potential energy calculations and
in running multiple simultaneous Markov chains. The potential
energies of configurational states are determined by the
Dang-Chang polarizable potential for water,5 also available in
the NWChem package. A total of ten simultaneous Markov
chains are utilized in each calculation in which their average is
presented as the probability distribution. Each Markov chain is
started at a unique, randomly determined configuration, which
along with the other Markov chains is evenly distributed along
the radial coordinate. TeS is performed on each Markov chain
independently and the resulting distributions are averaged as
with the conventional simulations.

There are 6i - 3 total degrees of freedom in water clusters
composed of i monomers. A number of degrees of freedom have

been removed by the use of rigid monomers (3i) and a center
of mass coordinate system (3). The probability distributions of
configurations are given with respect to one of these degrees of
freedom, rconfig. This coordinate is the maximum distance from
the origin (cluster center of mass) to the center of mass of a
monomer. The incorporation of all other degrees of freedom
describes a sphere, where rconfig is the radius, which encloses
the molecular cluster.

Trial moves in the MC simulation are attempted with an
uncorrelated probability of 1/2 which include translational and
rotational moves. After each successful attempt, the potential
is calculated and checked for acceptance. The last accepted
configuration, after both attempted moves, is placed into the
Markov chain. The maximum translational displacement is 0.04
Å and the maximum rotational displacement is 0.06 radians.
For the purposes of the radial distributions a total of 100 equally
sized bins along the coordinate are utilized. Configurations are
assigned bins based on their radius calculated from the center
of mass of the cluster.

DNTMC calculations are performed with water clusters of
varying size. These clusters are relatively small ranging in size
from dimers to pentamers. Calculations are performed with 4
× 106 configurations per Markov chain for a total of 4 × 107

configurations. Simulations at five different temperatures (243,
273, 303, 333, and 363 K) are performed without TeS
(conventional simulations). TeS is then applied to the Markov
chains obtained at 363 K to produce scaled results at 243, 273,
303, and 333 K. These scaled results are then compared to the
conventional results at these temperatures. This comparison
provides a basis to address the accuracy of the TeS methodology
and emphasize its limitations.

Three distinct features are present in the probability distribu-
tions for the water dimer shown in Figure 2 at five different
temperatures. A region of high probability around rconfig ) 1.50
Å corresponds to configurations where the water monomers are
close together and interacting. A region of low probability
follows between rconfig values of 2.00 and 3.00 Å. This region
corresponds to the kinetic bottleneck as the water monomers
separate. The defining radius of the water dimer (rcut) lies in
this region. Finally, a region of monotonically increasing
probability for rconfig values greater than 4.00 Å corresponds to
the entropic region where the interaction potential between
monomers becomes flat and configurational space continues to
increase. These three characteristic regions of the probability
distribution are called the interaction, bottleneck, and entropic
regions, respectively.

The relative importance of these regions are temperature
dependent. The probability shifts from the interaction to the
entropic region as temperature increases. This shift is
indicative of the increasing importance of entropic contribu-
tions to the free energy. The bottleneck region also shows
some temperature dependence in the location of rcut. In
general rcut decreases as temperature increases, as shown for
the water dimer in Table 2. However, the change in the
probability is not as dramatic as in other regions of the
probability distribution due to its low magnitude. Further
complications arise from the flat nature of this region of the
distribution and the fact that rcut is defined as the minimum in
this region. Also, rcut can only be defined as precisely as the
bins defined along the rconfig coordinate. The rconfig coordinate is
plotted with values between 1.25 and 5.25 Å giving a bin width
of 0.04 Å. Over the temperature range 243 to 303 K, rcut only
changes by 0.16 Å, which corresponds to four bins along rconfig.
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TeS distributions obtained for four temperatures (243, 273,
303, and 333 K) reproduce the temperature dependence of the
water dimer probability distributions, as shown in Figure 2.
Since the maximum temperature change obtained from the
distribution at 363 K with eq 5 is 255.6 K, TeS can be performed
on the 120 K temperature range. The maximum absolute
deviations between the scaled and conventional simulations,
shown in Table 2, are relatively small considering the value of
the probability at any point in the distribution. These maximum
deviations between distributions occur in the interaction or
entropic regions. The smaller maximum absolute deviations at
243 and 303 K occur in the entropic region while the larger
values at 273 and 333 K occur in the interaction region. Finally,
the values of rcut in the scaled distributions loosely correlate
with the values in the conventional distributions, although they
vary less with changes in temperature. While the local indicators
of a good correlation between conventional and scaled distribu-
tions are apparent from a low maximum absolute deviation and
similar locations for maxima and minima (rcut), a more global
measure of correlation is the squared correlation coefficient (R2)
which is greater than 0.99 for all temperatures of interest. These
indicators firmly establish TeS as a viable method for producing
distributions at multiple temperatures.

These probability distributions for the water dimer at various
temperatures allow us, through application of Dynamical
Nucleation Theory, to determine monomer evaporation rate
constants. The values of these evaporation rate constants,
Ri(T, rcut), between the conventional and TeS calculations are
similarly close to one another as shown in Table 2. The relative
maximum absolute deviation between rate constants occurs at
273 K and is 7.3%, which allows an overall R2 value over all
temperatures of 0.999. This reproducibility is also apparent in

the activation energy obtained from these methods. A linear
least-squares fit of an Arrhenius plot of the conventional and
temperature-scaled rate constants gives activation energies of
2.29 and 2.41 kcal/mol, respectively.

Table 3 shows the results of temperature scaling on the
distribution at 363 K to the set of four lower temperatures
between 243 and 333 K for the water trimer. The range of the
rconfig coordinate used for this simulation is 1.25 to 5.75 Å giving
a radial bin width of 0.045 Å. Once again, the maximum
temperature change obtained from the distribution at 363 K with
eq 5 is 126.9 K, which is larger than the attempted maximum
temperature change of 120 K. The resulting TeS distributions
are expected to be of high quality, even though the maximum
temperature change is about half the value obtained for the water
dimer. The maximum absolute deviations between the conven-
tional and TeS distributions are larger than the water dimer case,
especially for the lower temperatures of 243 and 273 K, although
still small. The maximum absolute deviations for all tempera-
tures lie in the interaction region and are within 5% to 15% of
the corresponding conventional distribution’s value. Although
the comparison between conventional and TeS distributions
shows additional variation, the associated R2 values are greater
than 0.97 for all four temperatures of interest. Also, the TeS
values of rcut correspond very closely with conventional calcula-
tions. Only at 243 K is there a significant deviation (0.09 Å)
that corresponds to the width of two radial bins. The monomer
evaporation rate constants are similarly consistent between
conventional and TeS calculations. The maximum relative
absolute deviation is only 5.6% of the conventional results,
occurring at the lowest temperature investigated (243 K). Given
the good agreement of Ri(T, rcut) between conventional and TeS
calculations, it is not surprising that the activation energies

Figure 2. The radial distributions obtained from DNTMC calculations with the Dang-Chang potential on the water dimer at 5 different temperatures.
rconfig refers to the radius of a spherical volume centered at the center of mass. Values obtained via conventional MC methods are shown as lines
whereas those obtained via TeS from a 363 K distribution are shown as open symbols.

TABLE 2: Comparison of Conventional and TeS DNTMC
Calculations for the Water Dimer

rcut (Å) Ri(T, rcut) (s-1)temp
(K) conventional TeS conventional TeS R2

max abs
dev (prob)

243 2.53 2.53 1.75 × 1011 1.63 × 1011 1.000 5.52 × 10-4

273 2.45 2.53 3.16 × 1011 2.93 × 1011 0.998 1.31 × 10-3

303 2.57 2.49 4.66 × 1011 4.55 × 1011 0.998 5.47 × 10-4

333 2.37 2.49 6.41 × 1011 6.30 × 1011 0.991 1.56 × 10-3

363 2.37 8.56 × 1011

TABLE 3: Comparison of Conventional and TeS DNTMC
Calculations for the Water Trimer

rcut (Å) Ri(T, rcut) (s-1)temp
(K) conventional TeS conventional TeS R2

max abs
dev (prob)

243 4.13 4.22 4.91 × 1010 5.19 × 1010 0.993 4.31 × 10-3

273 4.04 4.04 1.57 × 1011 1.60 × 1011 0.971 4.89 × 10-3

303 3.77 3.77 3.30 × 1011 3.48 × 1011 0.974 1.89 × 10-3

333 3.68 3.68 6.08 × 1011 5.90 × 1011 0.994 1.06 × 10-3

363 3.64 8.58 × 1011
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derived from these rate constants similarly agree with values
of 4.21 and 4.11 kcal/mol respectively for conventional and TeS
results.

The results, shown in Table 4, for the water tetramer and
pentamer are similar overall to those for the dimer and trimer.
The range of the rconfig coordinate used for these simulations is
1.50 to 6.25 Å for the tetramer and between 1.50 and 6.75 Å
for the pentamer. The TeS distributions provide a good
approximation to the conventionally obtained distributions with
R2 values greater than 0.9. The water tetramer, however, does
have a maximum absolute deviation that is about a factor of 2
greater than that of the water trimer system. These maximum
absolute deviations tend to increase as temperature decreases
and are located in the interaction region of the distribution. The
monomer evaporation rate constants, obtained from the TeS
distributions, deviate no more than 15% from the conventional
results. However, at 243 K the TeS result deviates by more
than 45%. This large deviation causes the determined activation
energy to change from 6.43 kcal/mol (for conventional calcula-
tions) to 7.26 kcal/mol. Although this change is less than 1 kcal/
mol in magnitude, it is significantly more than the approximately
0.1 kcal/mol change in the water dimer and trimer cases. An
explanation for the deviating results at 243 K between the
conventional and TeS distributions can be found by examining
the maximum temperature change determined by the distribution
at 363 K by using eq 5. Unlike the dimer and trimer cases, the
water tetramer is the first system studied in which this maximum
temperature change, which is 66.69 K, is less than the maximum
attempted temperature change of 120 K. This situation makes
the quality of TeS distributions obtained for 243 and 273 K
suspect. The use of one standard deviation unit in the formula-
tion of the measure in eq 5 is fairly conservative. We find that
using 1.5 standard deviation units makes this measure a little
more predictive in terms of our comparisons between conven-
tional and TeS distributions. By using 1.5 standard deviation
units the maximum temperature change for the water tetramer
is 100.0 K, making only the quality of results obtained at 243
K suspect.

The results for the water pentamer are similar to those for
the water tetramer, also shown in Table 4. Once again the
maximum temperature change obtained from the distribution
at 363 K with eq 5 is less than 120 K. By using 1.5 standard
deviation units in this expression the maximum temperature
change is 75.57 deg, which makes the quality of results obtained
at 273 and 243 K suspect. The maximum absolute deviation
between conventional and TeS distributions is about a factor
of 2 larger than those present in the water tetramer case. These
deviations also tend to increase as temperature decreases. The

values of rcut also suffer from increased deviation between the
conventional and TeS distributions. At 243 K, the lowest
temperature, rcut differs by 0.69 Å. These deviations between
the conventional and TeS distributions also manifest themselves
in the monomer evaporation rate constants, shown in Table 4.
At 243 K, the TeS result is 44.5% larger than the corresponding
conventional result. This deviation, similar to the probability
distribution shown in Figure 3, increases as temperature
decreases from 363 K. However, the activation energies obtained
from the conventional and TeS evaporation rate constants are
similar with values of 6.80 and 6.22 kcal/mol, respectively. This
deviation (0.58 kcal/mol) although smaller than in the tetramer
case is still significantly more than either the dimer or trimer
cases.

The diminished effectiveness of the TeS method in providing
accurate probability distributions at increasing lower tempera-
tures for the tetramer and pentamer systems is attributed to the
increasing influence of entropy. Figures 2 and 3 for the water
dimer and pentamer show an increasing importance in the
entropic region as temperature increases. At 363 K the
dominance of the interaction region is largely diminished in
the probability distribution. Comparing the probability distribu-
tion at 363 K for the dimer and pentamer systems, the interaction
region is diminished more for the pentamer. A result of this
interaction region depletion can be seen in Figure 3 where the
TeS distributions deviate from the conventional distributions.

The correlation between entropic changes and the chosen
coordinate (rconfig) can be seen by examining the extent of
configurational space that is contained within this spherical
volume. The extent of configurational space increases by 6
degrees of freedom for each additional monomer in the cluster.
These degrees of freedom correspond to 3 translational and 3
rotational degrees of freedom. The rotational degrees of freedom
can be equated to an equivalent volume expressed as r3i, where

TABLE 4: Comparison of Conventional and TeS DNTMC
Calculations

rcut (Å) Ri(T, rcut) (s-1)temp
(K) conventional TeS conventional TeS R2

max abs
dev (prob)

water tetramer
243 5.16 5.02 1.37 × 1010 7.17 × 109 0.996 8.01 × 10-3

273 5.06 4.97 5.24 × 1010 5.59 × 1010 0.999 3.75 × 10-3

303 5.11 4.92 1.92 × 1011 2.20 × 1011 0.992 2.04 × 10-3

333 4.73 4.78 5.24 × 1011 5.28 × 1011 0.978 2.46 × 10-3

363 4.35 1.03 × 1012

water pentamer
243 5.54 6.23 9.49 × 109 1.37 × 1010 0.973 1.61 × 10-2

273 6.07 6.23 4.53 × 1010 5.73 × 1010 0.986 7.95 × 10-3

303 6.12 6.17 1.54 × 1011 1.91 × 1011 0.913 7.61 × 10-3

333 5.07 5.49 5.04 × 1011 4.92 × 1011 0.952 2.26 × 10-3

363 5.39 9.08 × 1011

Figure 3. The radial distributions obtained from DNTMC calculations
using the Dang-Chang potential on the water pentamer at 5 different
temperatures. rconfig refers to the radius of a spherical volume centered
at the center of mass. Values obtained via conventional MC methods
are shown as lines whereas those obtained via TeS from a 363 K
distribution are shown as open symbols. Note the deviations between
the TeS distributions and their corresponding conventional distributions.
These deviations are caused by entropic effects which diminish the
sampling in the interaction region.
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r refers to the monomer radius, which is not dependent on rconfig.
The translational degrees of freedom can be equated to an
equivalent spherical volume (based on rconfig) as Veq ∝ rconfig

3i-3 .
The extent of configurational space increases as increasing
powers (as monomers are added) of rconfig along this coordinate.
For large values of rconfig where the interaction between
monomers is least, there is an increased likelihood of entropic
contributions.

The effect of entropic contributions on the effectiveness of
the TeS method is a very system dependent question. For the
1-D analytical potential, entropic considerations did not affect
the resulting distributions. However, for the water molecular
clusters entropy plays an ever increasing role as the size (number
of monomers) of these clusters increases. This system depen-
dence can also be seen by looking at the maximum temperature
changes determined by eq 5. This temperature change is very
large for the 1-D analytical potential. For the water cluster
systems, this temperature change decreases rapidly as monomers
are added to the system. Therefore, the quality of TeS distribu-
tions diminishes for large temperature changes. Systems dif-
fering from the ones presented in this work will undoubtedly
have different dependencies concerning entropic contributions.
A short list of important factors are the topography of the
potential energy surface, choice of coordinate for the analysis
of statistical properties, and system model. The straightforward
analysis of entropic effects in the water molecular clusters in
this work is aided by the combination of all three of these
factors. Therefore, the advantageous result that links the rconfig

coordinate with entropic contributions should be viewed as
specific to these kinds of systems.

6. Statistical Properties

So far emphasis has focused on probability distributions based
on monitoring a degree of freedom. Since the TeS method scales
a Markov chain by the individual weighting of its members, it
is very general and does not depend on the coordinate chosen
to construct probability distributions. Therefore unlike methods
which utilize corrections along a particular coordinate,7,19 TeS
Markov chains can be utilized to determine various statistical
quantities. To illustrate this capability, we present conventional
and TeS distributions at 243 K for the water trimer. Two
probability distributions are investigated. The first is the
oxygen-oxygen (O-O) distance, shown in Figure 4. The
second is the potential energy distribution, shown in Figure 5.
Table 5 shows numerical characteristics of these probability
distributions for the dimer and trimer systems at 243 K.

The probability distributions presented in this section illustrate
the determination of statistical properties of molecular clusters.
As such, DNT15,16 defines the molecular cluster as consisting
of all configurations which have rconfig e rcut. To keep our
descriptions consistent, only configurations fitting this definition
have been incorporated in the probability distributions. Similar
to our previous utilization of the TeS method, TeS distributions
are obtained from Markov chains obtained at 363 K.

Figure 4 shows the O-O distance distribution for the water
trimer at 243 and 363 K. Each of the three corresponding
distances have been included in these distributions. At 363 K,
the distribution is more spread out than at 243 K. However, at
both temperatures there is a significant peak in probability
around 3.0 Å. This corresponds to an O-O distance consistent
with hydrogen bonding. The TeS distribution at 243 K very
closely resembles the conventional distribution with a difference
in the thermally averaged O-O distance (〈O-O〉) of 0.05 Å,
as shown in Table 5.

Figure 5 shows the potential energy distributions for the water
trimer at 243 K. This distribution has been further decomposed
into four components. Each component corresponds only to
those configurations which approximately contain a certain
number of hydrogen bonds (0-3). The configurations have been
grouped into these categories by graphical inspection in which
a hydrogen bond is defined by a characteristic hydrogen-oxygen
distancebetween1.5and2.5Åandanoxygen-hydrogen-oxygen
angle g120°.20 The TeS distributions closely match the con-
ventional distributions. Further analysis of these distributions
is presented in Table 5 for the dimer and trimer systems. Two
properties have been determined from these distributions, the

Figure 4. The oxygen-oxygen (O-O) distance distribution for the
water trimer. Conventional MC distributions at 243 and 363 K are given
as lines along with a TeS distribution at 243 K (obtained from 363 K)
shown as open symbols.

Figure 5. The potential energy distributions for the water trimer at
243 K. Both conventional (lines) and TeS distributions (open symbols)
are shown. The total distribution is given along with its decomposition
into component distributions having between 0 and 3 hydrogen bonds
(HB). TeS was performed on the MC distribution obtained at 363 K.
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thermal average of the potential energy (〈Ui〉) and the percent
occupation of each component with respect to the total distribu-
tion. These properties closely correspond between the conven-
tional and TeS distributions. The thermal average potential
energy varies by much less than a kilocalorie per mole and the
percent occupation similarly agrees within about a percent.

7. Conclusion

These results rigorously establish TeS as a viable method
capable of producing statistics at multiple temperatures for a
wide range of properties from a single Markov chain. Unlike
Weighted Histogram analysis, distributions other than energy
may be gathered from the TeS Markov chain for analysis. From
our studies of a 1-D model potential, this method has the
potential for use as a way to circumvent quasiergodic behavior
at low temperatures. MC simulations can be performed at a high
temperature in which quasiergodicity is not an issue. Then TeS
can be applied to produce statistics at lower temperatures where
quasiergodicity is an issue with conventional MC simulations.
The maximum temperature change obtained from eq 5 can also
be reliably used as a measure of the quality of TeS results prior
to scaling and without knowledge of the exact distributions. This
measure inherently defines the limitations of the TeS method.
Scaling can only be performed within the confines of the original
MC simulation. Namely the average potential energy cannot
shift beyond the range sampled by the original distribution and
large temperature changes have an increased possibility of
shifting this property beyond this limit.

A large number of calculations proportional to the number
of temperatures of interest can be avoided by TeS Markov chains
obtained at a high temperature to produce statistics at lower
temperatures. However, a limitation is present in the form of
entropic contributions which cause inadequate sampling of low
potential energy configurations. In our water cluster systems,
an advantageous correlation between the rconfig coordinate and
increasing configurational space makes analysis of the effects
of increasing entropic contributions relatively straightforward.
At sufficiently high temperatures, entropy becomes increasingly
important (even more so than potential energy). This is evident
by a shift in the probability to higher values of rconfig as
temperature increases. Also this effect occurs more rapidly for
larger clusters (those with more monomers). At some high

temperature, as a result of this probability shift, there is a
detachment of the distribution from lower values of rconfig which
contain configurations that have lower potential energiess
meaning that entropic effects have become so important that
the high-temperature Markov chain predominately samples the
higher potential energy configurations in lieu of the lower
potential energy configurations. This entropic influence is also
present in the maximum temperature change determined from
eq 5 through its inverse dependence on the heat capacity at
constant volume. As entropy becomes more important in a
system, the heat capacity generally increases, which describes
the situation where more energy is required to change the
temperature of the system by a specified amount. This decreases
the maximum temperature change for which TeS is appropriate.
However, this situation does not represent a deficiency in
sampling. For the distribution to accurately describe the free
energy of the system, entropy must become increasingly
important as temperature increases.

In future work, larger sized clusters will be examined to
determine the extent to which TeS will provide useful data. In
particular, extrapolations to larger systems on the order of 103

to 105 particle systems will be performed where the usual
temperature spacing for the Parallel Tempering method is
approximately 3-5 K. In addition, it should be possible to
combine TeS and Parallel Tempering to improve the overall
efficient computation of properties at many temperatures.
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