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We modified the charge equilibration method (QEq) of Rappé et al. by including the third and fourth order
terms in the series expansion for the energy of charged atoms. This leads to a self-consistent scheme for
obtaining charges and total energy in a molecule. We combined the modified QEq with a scaled morse potential
(SMP) to get a new potential, SMP/QEq. The SMP/QEq method allows to do realistic geometry optimizations
and calculate reliable charge distributions and ionization energies. The performance of SMP/QEq was fully
tested by comparing to high level theories and experiments. We established a connection between first-
principles DFT and SMP/QEq which gives insight into SMP/QEq and suggests ways to improve it.

I. Introduction

Potential functions play a determining role in any molecular
simulation. It is important that a potential can estimate charge
distribution correctly because not only electrostatic energy is a
major part of the cohesive energy, but also charge distribution
is crucial to understanding many physical properties, such as
molecular reactivity. In the first application of the method that
is described here, we showed that different and nontrivial types
of AB ordering are possible in AxB55-x (A,B ) Cu, Ag, Au)
clusters depending on differences in electronegativity of the
elements and the resulting charge transfer and electrostatic
contributions to energy.1 Many models have been proposed to
describe charge distributions in molecules. Some models assign
fixed charges to each atom, such as RESP.2 However, a charge
distribution model should depend on the molecular structures
or else can treat only structures in close vicinity of the
equilibrium geometries that are used to fit parameters of the
model. Many methods were developed to estimate the charge
distribution dynamically based on the electronegativity equaliza-
tion principle of Sanderson.3,4 Examples are the electronegativity
equalization method (EEM),5-8 chemical potential equalization
(CPE),9 and charge equilibration (QEq).13 In this study, we
modified Rappé’s QEq method and combined it with the scaled
morse potential (SMP).1,12 We call this combination SMP/QEq
and will explain it in some detail in section IV.

Initially, we implemented QEq based on Rappé’s work,13 but
we got some physically unreasonable results. For example, for
one of Ag5Li5 isomers in Figure 3, QEq assigns a charge bigger
than +3 to a Li atom. Rappé et al. mentioned this problem and
proposed to fix it by restricting charges to certain reasonable
ranges. We believed that two factors contribute to this problem.
First, in the original QEq method, the electronegativity � and
hardness η are those of the isolated atoms but they are applied
to atoms-in-molecule (AIM).29,30 We suggest instead to obtain
a more suitable set of parameters by calculating � and η for
AIMs. Second, hardness represents an atom’s ability to resist
changes to its charge state. But if we charge an atom, both its

electronegativity and hardness will change. As an extreme
example, the hardness of Li+ is clearly much larger than that
of Li. So having a charge dependent hardness could prevent
excessive charge build-up. Based on these two points, we
developed the model described in the next section.

II. Self-Consistent QEq Model

We formulate QEq by expanding atomic energy with respect
to charge into a power series and retaining terms up to the fourth
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Figure 1. Special structures used for fitting. The difference between
the first IE from QEq and SVWN, IEQEq - IESVWN, are shown in
parentheses.
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order instead of the second order as in the original implementa-
tion. All of the following discussions are about AIM unless
specifically noted. We choose to cut at the fourth order term
after trying a few models in the fitting procedure described in
section III. This agrees with the suggestion from Iczkowski and
Margrave.16 So for atom i we have

Then by taking the sum of the charge induced energy on all
atoms and adding the Coulomb interactions, we will have the
total ionic energy of the entire molecule.

The derivation here is the same as the one in Rappé and
Goddard’s work.13 If we take the first derivative of the total
electrostatic energy with respect to Qi, we have

where λi(Qi) ) ηi
0 + 1/4[(∂3Ei)/(∂Qi

3)]Qi + 1/12[(∂4Ei)/(∂Qi
4)]Qi

2

can be regarded as a charge-dependent hardness, Jij stands for
the screened Coulomb interaction, and �i(Qi) is the electrone-
gativity of atom i in the molecule. This modification of QEq
requires an iterative calculation because of the nonlinear relation
it brings. An iterative scheme was introduced in previous
work14,15 but only for the hydrogen atom.

The Sanderson’s principle3,4 states that only one global
electronegativity exists in a N-atom system. Therefore, when
atoms form a molecule, their electronegativities must equalize.
For a N-atom system, we have

We also know the total charge on a system

By combining eqs 3-5, we have the linear system

For Jij, if i * j, we use the empirical function developed by
Louwen and Vogt.10

where γij ) 2[ηi
0ηj

0]1/2.11 When i is equal to j, we have Jii )
2λi(Qi), which is a charge dependent parameter. In eqs 6 and 7,
all quantities are in atomic units. To develop the linear system,
we rewrite eq 4 to N - 1 equations, �i - �1 ) 0, where i )
2,..., N. This choice is arbitray and assigns a “special status” to
atom 1 in the linear system. But this should not cause any
problem when we apply the LU decomposition with partial
pivoting and row interchanges to solve the linear system, and
in practice, we have not encountered any case of numerical
instability.

III. Fitting Procedure

The major difficulty in implementing this scheme is that the
various energy derivatives in eq 1, including �i

0 and ηi
0, are

unknown. We designed a fitting procedure to obtain them from
a higher level theory, in the present work density functional
theory (DFT) in the local spin density approximation with a
“SVWN” exchange-correlation functional.20-23 For fitting, we
selected model structures in which all atoms are equivalent, as
shown in Figure 1. The simplest one is a 10-atom ring. We
found that when a ring contains more than 10 metal atoms DFT
calculations are costly and very hard to convergence. On the
other hand, smaller rings give less data for fitting and bigger
error could arise due to atomic interactions between non-
neighbor atoms that are closer to each other. Other high-
symmetry structures can be used such as 12-atom cuboctahe-
dron, 12-atom icosahedron, 20-atom dodecahedron, etc. We
chose these high-symmetry structures because the partial charge
on each atom can be simply calculated by Qi ) Qtotal/N, so we
do not have to choose among different charge decomposition
schemes in ab initio calculations. Another benefit is that
coefficients are always identical for all atoms in a model system
and this simplifies our fitting procedure. The fitting procedure
consists of the following steps. First, for a N-atom structure,
we calculate the total energies with different charges, Etotal(Qtotal),
where Qtotal ranges from - 1 to N, using SVWN/DFT and the
deMon software.33 Spin states were restricted to singlet or
doublet. Model core potentials were used for Ag and Au, with
17 electrons per atom being treated explicitly. All electron
treatments were done for the other elements. The basis sets were
of double-� quality (except triple-� for K) with diffuse and

Ei(Qi) ) Ei(0) + �i
0Qi + ηi

0Qi
2 + 1

6( ∂
3Ei

∂Qi
3)Qi

3 +

1
24( ∂

4Ei

∂Qi
4)Qi

4 (1)

E(Q1, ..., QN) ) ∑
i)1

N

[Ei(0) + �i
0Qi + ηi

0Qi
2 +

1
6( ∂

3Ei

∂Qi
3)Qi

3 + 1
24( ∂

4Ei

∂Qi
4)Qi

4] + ∑
i>j

i,j)1 · · ·N

JijQiQj (2)

�i(Qi) ) �i
0 + 2Qiλi(Qi) + ∑

j*i

j)1 · · ·N

JijQj (3)

�1 ) �2 ) ... ) �N (4)

Qtotal ) ∑
i)1

N

Qi (5)

[ J21 - J11 J22 - J12 J23 - J13 ... J2i - J1i ... J2N - J1N

J31 - J11 J32 - J12 J33 - J13 ... J3i - J1i ... J3N - J1N

l l l l l l l
Ji1 - J11 Ji2 - J12 Ji3 - J13 ... Jii - J1i ... JiN - J1N

l l l l l l l
JN1 - J11 JN2 - J12 JN3 - J13 ... JNi - J1i ... JNN - J1N

1 1 1 ... 1 ... 1
] ×

[ Q1

Q2

l
Qi

l
QN-1

QN

] ) [�1
0 - �2

0

�1
0 - �3

0

l
�1

0 - �i
0

l
�1

0 - �N
0

Qtotal

] (6)

Jij ) ( 1

γij
3
+ Rij

3)-1/3
(7)

Self-Consistent Charge Equilibration Method J. Phys. Chem. A, Vol. 113, No. 13, 2009 3163



polarization functions for all elements except Ag and Au. The
auxiliary basis sets were standard ones used in the deMon
software.33,34 From each calculation we can extract a pair of
data, charge on each atom and corresponding atomic charge-
induced energy, (Qi,Ei(Qi)). As mentioned earlier, Qi is simply
equal to Qtotal/N due to symmetry. We get the AIM charging
energy as

The right-hand side of eq 8 could be interpreted as follows.
we use the neutral system as the reference for energy and
subtract it from the energy of the charged systems. The
underlying assumption in eq 8 is that the nonionic terms in the
energy are equal in the neutral and charged systems. Therefore,
the energy difference between neutral and charged has two
contributions: (i) the energy for charging atoms and (ii) the
pairwise electrostatic interactions between atoms. After we
subtract Coulomb energies, represented by the sum term in eq
8, we have only the energy for charging atoms left. Again
because of symmetry we can obtain Ei(Qi) simply by dividing
the total charge-induced energy by N. In fitting, we approximate
Jij by eq 7. In this procedure, we must choose sensible
interatomic distances. After many trials we decided that the best
choice is simply to set the nearest neighbor distance (dNN) in
the model system equal to dNN of the corresponding bulk system.
The fitting results from different model structures are not
identical. We expect this difference since atoms in different
model systems are in distinct molecular environment, strictly
they are different AIMs, and this should be reflected in the
parameters obtained. Ideally, we should choose parameters from
model systems resembling the dominant cluster structures which
are usually compact and have high coordination numbers.
However, we compared the performance of SMP/QEq using
different sets of coefficients, and found that those from the
simplest model structure (10-atom ring) work the best. We
elaborate on this point in section V.B. A possible reason is that
in our fitting precedure we introduced a few approximations.
The more complex a structure is, the bigger the error is from
approximations due to the entanglement of its atomic interac-
tions. The 10-atom ring has the simplest structure and the lowest
coordination. The only negative point of a 10-atom ring is that
it does not possess a compact structure typical of low energy
clusters structures. This defect causes a systematic error that
will be discussed in section V.D.

The coefficients we obtained with this fitting procedure for
eight metals are listed in the first four columns of Table 1. Since
we use neutral systems as reference for energy, as expected,
the zeroth order coefficients are essentially zero. In the next
two columns of the table, we list the electronegativity � and

hardness λ of isolated atoms from Parr and Yang’s book,17 which
are counterparts to the first and second order coefficients. The
last column contains the ratio of our hardness to theirs. We
observe that for alkali we obtained almost the same electrone-
gativity and bigger hardness. For group 11 elements, both
electronegativity and hardness are bigger than Parr and Yang’s
values. For Al we obtained a bigger electronegativity but the
same hardness. The second order coefficients are almost always
bigger than those from Parr and Yang’s book, meaning atoms
in molecules are harder than the isolated ones. Consequently,
unphysical big charges generated by using parameters for
isolated atoms will be reduced if we apply those found for atoms
in molecules. In addition, the third and fourth parameters give
a more realistic description of systems with large atomic charges.

IV. Explanation of SMP/QEq by DFT

We now wish to review some aspects of DFT formalism17 in
order to show the assumptions that give rise to SMP/QEq and
similar approximate methods.

Consider a N-electron system: if the external potential υ(r)
is known, the Hamiltonian of the system is determined. Thus
N and υ(r) determine all ground-state properties of the system.
The derivatives of energy with respect to N and υ(r) are

In these relations, µ is the chemical potential of the system,
η is the absolute hardness, f(r) is the Fukui function, and F(r)
is the ground-state electron density. With the help of these
derivatives, we can do a Taylor expansion for the ground-state
energy (see ref 17, page 226)

where we use superscript “0” to indicate quantities for the
system before any changes. Since electronegativity � is equal
to -µ and charge Q is equal to -∆N, we can substitute variables
in eq 13 and get

If only the external potential υ(r) changes, the first, second,
and third terms in eq 14 will be zero. If υ(r) is fixed and N
varies, the fourth, fifth, and third terms will disappear. So

TABLE 1: Coefficients of the E(Q) Polynomial Fit

element first second third fourth � λ 2nd/λ

Li 3.0215 3.2426 0.9056 0.0566 3.01 2.39 1.357
Na 2.8815 3.1339 0.6762 -0.1326 2.85 2.30 1.362
K 2.4419 2.5684 0.5326 -0.0996 2.42 1.92 1.337
Rb 2.3138 2.4580 0.5036 -0.1247 2.33 1.85 1.329
Cu 5.2775 4.1921 0.3808 0.2151 4.48 3.25 1.290
Ag 5.1362 4.2742 0.4097 -0.0490 4.44 3.14 1.361
Au 6.3450 4.0789 0.1825 0.1245 5.77 3.46 1.179
Al 3.8002 2.7974 0.1283 0.7036 3.21 2.78 1.006
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F(r) ) [ δE
δυ(r)]N
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∆E ) µ0∆N + η0(∆N)2 + ∆N∫ f 0(r)∆υ(r) dr +

1
2
∫∫ [δF0(r)

δυ(r′)]N
∆υ(r)∆υ(r′) dr dr′+∫ F0(r)∆υ(r) dr (13)

∆E ) �0Q + η0Q2 - Q∫ f 0(r)∆υ(r) dr +
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∆υ(r)∆υ(r′) dr dr′+∫ F0(r)∆υ(r) dr (14)
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we can say, in regard to energy, that the first and second
terms describe the effect of varying the number of electrons
and the fourth and fifth terms tell us how changes of external
potential induce energy variation. The third term shows the
compound effect when both quantities are changed.

Let us consider our simplest model system, a 10-atom ring,
Figure 1a. From the viewpoint of atom i, other atoms serve
as particle source and additional external field. We use eq
14 to represent the energy change, ∆Ei, for atom i when
forming a ring. If the ring is neutral, because all atoms are
equivalent, every atom has a zero charge. This means terms
1, 2, and 3 will be zero. Because bonding changes υi(ri),
terms 4 and 5 will not be zero and their sum is ∆Ei. This is
what SMP attempts to represent. That is, in SMP/QEq we
use SMP1,12 to approximate terms 4 and 5 in eq 14 due to
nonionic interaction. The only conceptual difference is that
SMP assigns energy to bonds, but terms 4 and 5 in eq 14
assign the same energy to atoms. Actually, other potentials,
such as embedded-atom method (EAM)31 and Morse poten-
tial,32 can do the same thing. It is essential, however, that
the chosen empirical potential be “purely covalent”, i.e.,
that it does not attempt in any way to describe ionic or other
electrostatic interactions. The SMP fits this criterion perfectly.

Now let us change the energy further by charging the ring
while keeping its size fixed. �0 and η0 were changed during
ring formation. To avoid any ambiguity, we rewrite eq 14
as

The subscript 2 represents coordination number and serves
as a reminder that the parameters refer to an AIM not an
isolated atom. For atom i, ∆Ei comes from two sources,
charge Qi and ∆υi(ri) We need to make a few approximations
to reach the main equation of QEq. First, we approximate
∆υi(ri) by the Coulomb field generated by charges on other
atoms. We also accept the “frozen core” assumption. Under
this assumption, when an atom gains negative charges, the
only change to its density is that additional electron density
is added to its lowest unoccupied molecular orbital (LUMO).
Similarly, the only change to a positively charged atom is
that the positive charge spreads in its highest occupied
molecular orbital (HOMO). So we can approximate atom j’s
contribution to ∆υi(ri) as gj(ri) ) -Qj ∫ (Fj(rj))/(|rj - ri|) drj

where Fj(rj) is the density of the LUMO or HOMO of atom
j, depending on the sign of Qj Then we have ∆υi(ri) )
∑j*igj(ri). Usually, f 0(r) is approximated using central dif-
ference as: f 0(r) ≈ 1/2[FLUMO(r) + FHOMO(r)] [ref 17, p 99].
Here we choose a one-sided difference formula and get f 0(r)
≈ Fi(ri), where Fi(ri) is the density of LUMO or HOMO
depending on the sign of Qj. We can rewrite the third term
in eq 15 as

Another approximation is that we neglect terms 4 and 5 in
eq 15 if we believe that the disturbance to external field due to
Coulomb field contributes little to energy change via terms 4
and 5 compared to other terms. Accepting this simplification,
we in fact represent terms 4 and 5 by SMP completely. After
all these approximations, we get the equation

∆Ei represents the ionic energy of atom i if we treat other atoms
as particle source and additional external field. This way of
thinking makes us assign all of the Coulomb energy between
atom i and all other atoms to atom i as potential energy. That
is, considering atom i and j, when we write down eq 17 for
atom i, the Coulomb energy between these two atoms is
completely given to atom i. In eq 17 for atom j, we assign this
energy to atom j. So when we sum ionic energies represented
by eq 17 to get total ionic energy, we have to avoid double
counting of Coulomb energies

In eq 18, the subscript ni represents the environment around
atom i since eq 17 is true for any AIM. If we take the first
derivative of ∆Etotal with respect to Qi, we have the basic
equation of QEq.13 Adding higher order terms to the equation
above will give

where λnii(Qi) ) ηnii
0 + 1/4[(∂3Ei)/(∂Qi

3)]ni
0 Qi + 1/12[(∂4Ei)/

(∂Qi
4)]ni

0 Qi
2. This the basic equation in our version of QEq, eq

3. If we apply eq 19 to all of our model systems, the only
difference is the subscripts representing molecular environment,
ni. That is to say, when we perform fitting using different model
systems, we will get parameters for different AIMs.

V. Result

To test the performance of SMP/QEq, we did several
calculations. Results are shown and discussed below.

A. Diatomic Molecules. Metal heterodimers are the simplest
alloy systems. In this test, we calculated the bond length, Re,
and dissociation energy, De, for 15 heterodimers AB (A,B )
Li, Na, K, Cu, Ag, and Au). Four different methods, SMP, SMP/
QEq, SVWN, and BP86,26,27 were used. Results are summarized
in Figure 2. We use results from BP86 as a reference because
it is theoretically the best method and also because it generally
agrees with experiment better than SVWN. The other methods
are compared to BP86. Figure 2b shows comparison for De.
The points gathered around 0.6 eV are for LiNa, LiK, and NaK
in which ionic interaction is weak since Li, Na, and K have
similar electronegativities. In those three cases, SMP and SMP/
QEq give almost the same values as SVWN and BP86, as

∆Ei ) �2i
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expected. However, things are quite different when ionic
interaction plays an important role as shown by the rest of the
graph. Overall, data from SVWN and BP86 are highly correlated
with a correlation coefficient of 0.993. On the contrary, SMP
gives us the least correlated results with respect to those of
BP86. The correlation coefficient is only 0.710, and the slope
is off that of SVWN by a lot. By adding the QEq components,
we not only improved the correlation coefficient to 0.988, but
also bring the slope much more closer to that from SVWN
results. Looking at the root-mean-square-errors (RMSE) in
Figure 2b, we see that the SMP/QEq dissociation energies are
much more consistent with BP86 results than those from the
other methods. So we can say that the ionic interaction is
essential to calculate De of heterodimers and that QEq estimates
it well. Surprisingly, as shown in Figure 2a, all potentials give
similar results for bond length. This is because the energy curve
for ionic interaction has a small slope near the minimum of the
nonionic energy curve, so adding the ionic component changes
the depth of the energy curve a lot but does not affect the
minimum position much.

B. Li and Ag Alloy Clusters. An advantage of SMP/QEq
over most empirical potentials is that it includes a crude model
of electronic structure and can be used to evaluate ionization
energy (IE). In this section, we compared IE calculated with
SMP/QEq and with higher level theories, SVWN, B3LYP,24,25

and BP86. Our sample systems, shown in Figure 3, include five
homotops of Ag5Li5, which are all based on the same geometry
but with different site occupation by the two elements, and pure

clusters Ag10 and Li10. We calculated the first and second IEs
and plotted results in Figure 4, panels a and b. Note that for
structure no. 5 we were unable to get BP86 results because of
SCF convergence problems. SMP/QEq results follow the trend
of values from SVWN well but are consistently higher. On
average, SMP/QEq overestimated the first IE by 0.61 eV
compared to SVWN, and the overestimation is 1.10 for the
second IE. It is quite encouraging that SMP/QEq successfully
describes the relative values of IEs, but the systematic overes-
timation is puzzling. We will go back to this question in section
V.D.

As we said in section III, the parameters obtained from the
10-atom ring are better than those from other model systems.
This can be seen by looking at the first IE of the Li5Ag5

homotops in Figure 3. Using the 12-atom icosahedron param-
eters, QEq failed to give physically meaningful results for
homotops nos. 3, 4, and 5. The IEs calculated for the homotops
in Figure 3 are, in order from (a) to (g): 3.98, 6.09, 5.59, 4.71,
4.26, 4.37, and 4.76 eV with the 12-atom cuboctahedron
parameters and 4.07, 6.57, 5.63, 4.95, 4.73, 4.59, and 5.01 eV
with the 20-atom dodecahedron parameters. Overall, linear
regressions show that IEs based on the parameters from the 10-
atom ring correlate well with those from SVWN with a
correlation coefficient of 0.994, whereas the correlation coef-
ficient is 0.95 for the 20-atom dodecahedron model, and 0.92
for the 12-atom cuboctahedron model. The difference of IE
between nos. 3 and 2, and between nos. 3 and 4, is particularly
instructive: SVWN (the reference) gives +0.14 and +0.77 eV;

Figure 2. Dissociation energy and bond length of metal heterodimers calculated by four different methods, SMP, SMP/QEq, SVWN, and BP86;
F and RMSE represent the correlation coefficient and root-mean-square-error, respectively.

Figure 3. AgnLi10-n (n ) 0, 5, and 10) homotops obtained by exchanging the positions of silver and lithium atoms based on the same geometry.
Lithium atoms are in white.
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other DFT functionals give results similar to SVWN; QEq
parametrized with the 12-atom cuboctahedron gives -0.46 and
-0.11 eV; QEq parametrized with the 20-atom dodecahedron
gives +0.13 and -0.22 eV; and QEq parametrized with the
10-atom ring gives +0.04 and +0.94 eV. Note also that IEs
calculated from QEq are lower when the model structures have
higher coordination numbers.

C. Au and Na Alloy Clusters. We performed further test
on SMP/QEq’s ability to estimate ionization energy because,
in our previous test, the sample size is small, only Ag and Li
are involved, and we only compared to other theory. Nakajima
et al.19 measured the first IE of Au13Nan, n ) 1,10. In order to
compare to experiment, we need to find out the structures of
these clusters. We did global optimizations by tabu search in
descriptor space (TSDS)18 method. The PBE28 functional
implemented in VASP was used to evaluate energies for
optimizations. The global minima (GM) are shown in Figure
5. Three quantities are calculated to show their structural
characters and are listed in Table 2. The first one is an overall
mixing index (OMI) which represents the mixing of two
elements on a large scale. The second one is a local mixing

index (LMI) which shows how two elements are mixed locally.
The last quantity is a cage-like index (CLI) which is a measure
we designed to quantify how much a cluster resembles a cage.
Mixing indices are of obvious interest in bimetallic clusters.
The CLI is of special interest here because cage structures have
been proposed for gold clusters (“golden cages”) in a size range
from 15 to 20 atoms roughly.35 We will now briefly explain
the OMI, LMI, and CLI. Suppose that we have two kinds of
elements A and B in a cluster. We use the symbols dAA and
dBB to represent the nearest-neighbor distances for bulk A and
B, respectively. Then dAB ) (dAA + dBB)/2 is the estimated A-B
bond length. We denote by cbBA the vector that starts at the center
of mass of atoms of B type and ends at the center of mass of
atoms of A type: its norm is |cbBA|. We use PBiAj

to represent
the projection of the vector from the ith atom of type B to the
jth atom of type A on the direction cbBA, so

here rbAj
and rbBi

are the position vectors of the jth atom of type
A and ith atom of type B. By moving all A type atoms together
along direction cbBA until A and B type atoms are completely
separated, we can get the displacement, ∆, needed to reach
complete separation. Figure 7 gives illustrates this process.
Figure 7a is a hypothetical structure; 7b shows what happens
to to the position vectors and cbBA as atoms of A type and B
type are pulled apart (∆ is increased); and Figure 7c shows how
the projection of vectors (rbAj

- rbBi
) on the vector cbAB all become

positive at some value of ∆. Choosing a criterion for complete
separation is subjective and depends on a given application. We
define that A and B type atoms are completely separated when
the relation PBiAj

g dAB/4 is true for all i and j. We define the
OMI as

Figure 4. First and second ionization energy of AgnLi10-n (n ) 0, 5, and 10) isomers shown in Figure 3.

Figure 5. Global minimum of Au13Nan (n ) 1-10) clusters obtained
by TSDS with VASP/PBE.

TABLE 2: Mixing and Cage-Like Indices of Au13Nax (x )
1-13) Clusters

x OMI LMI CLI

1 0.179 0.031 0.34
2 0.732 0.052 0.56
3 0.838 0.078 0.64
4 0.768 0.062 0.39
5 0.938 0.056 0.43
6 0.866 0.056 0.40
7 0.898 0.077 0.38
8 0.886 0.081 0.39
9 0.888 0.092 0.49
10 0.976 0.111 0.53

Figure 6. Vertical ionization energy of Au13Nan (n ) 1-10) clusters
shown in Figure 5.

PBiAj
) ( rbAj

- rbBi
) · cbBA/| cbBA| (20)
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To define the LMI, we need three quantities sjAA, sjBB, and
sjAB. The variable sjAA is a weighted average of the scaled A-A
pair distances

where wij ) [(|rbAi
- rbAj

|)/dAA]-4, and the sum goes over all
A-A pairs. The quantities sjBB and sjAB are defined in a similar
way. We choose a negative power of pair distances as weights
to emphasize short bonds in the weighted average. But if we
put too much weight on short bonds, the weighted average will
be determined only by the shortest pair distance. The power
-4 is chosen as a compromise Finally, we have this definition
for LMI

where a is the number of A-A pairs, b is the number of B-B
pairs, and t ) a + b. We illustrate the meaning of the OMI and
LMI with examples of configurations shown in Figure 8.
The OMI for Figure 8a-d are 0, 1, 1, and 0, respectively. For
Figure 8, panels a, b, and d, LMI < 0 (poor mixing), and for
Figure 8c, LMI > 0 (good mixing) because the AB distances
are smaller, on average, than the AA or BB distances. Clearly,
case 8a (and 8d) is poorly mixed at any scale, and case 8c is
well mixed at any scale. Case 8b is well mixed in a global sense
(OMI ) 1) but poorly mixed in local sense (LMI > 0). The
definition of CLI depends on two quantities which we will now
explain. Consider an arbitrary point p in a cluster with position
xbp, and denote by dip the distance between this point and atom
i. We define the function f of xbp: f(xbp) ) min{dip: all i} Let d0

be the maximum value of f(xbp) among all interior points of the
cluster. This d0 has a geometric interpretation: it is half the length
of the longest stick that could be placed at a fixed position in
the cluster and could rotate freely in any direction without
intersecting any of the nuclei positions. The cube of d0 (or 4πd0

3/
3) is then a measure of the largest empty space that could be
found in the cluster. Another relevant quantity is dmin, the
smallest interatomic distance in the cluster. The cube of dmin is
a way to quantify the volume associated with a missing atom
defect in a structure. The CLI is a comparison of these two
volumes

Division by dmin ensures that the same CLI is obtained when a
cluster is uniformly expanded. A CLI value greater than one is
consistent with this concept of a cage: a continuous empty region
of space inside a cluster whose size is clearly bigger than the
usual space between atoms. From Table 2, we can observe that
all LMIs are bigger than 0. This indicates good local mixing,
with Au13Na10 having the highest degree of local mixing. Cluster
Au13Na1 has an OMI close to zero. This is simply because the

only Na atom resides on its surface. The values of OMI being
close to one for all other clusters tell us that Au and Na atoms
are well mixed on a large scale. Clusters Au13Na2 and Au13Na4

have slightly lower OMIs than other clusters except Au13Na1.
By looking at their pictures in Figure 5, we can clearly see that
Na atoms really show a tendency to gather on one side of the

OMI ) ∆
| cbBA|+∆

(21)

sjAA )
∑ i<j

wij · (| rbAi
- rbAj

|/dAA)

∑ i<j
wij

(22)

LMI ) 1 -
sjAB

(a/t)sjAA + (b/t)sjBB
(23)

CLI )
d0

3

dmin
3

(24)

Figure 7. Illustration of how the OMI is calculated. Atoms of A are
shown as filled circles, B as open circles. In (a), BMC and AMC are
the centers of mass of B-type atoms and A-type atoms, respectively:
the vector connecting them is cbAB.

Figure 8. Four types of AB ordering used to illustrate the OMI and
LMI: (a) and (d) no overall mixing and poor local mixing; (b) good
overall mixing, poor local mixing; (c) good overall mixing and good
local mixing.
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clusters. Before looking at CLIs of Au13Nan, we want to mention
the CLIs of special structures. The CLIs for the 12-atom
cuboctahedron (Figure 1b), 12-atom icosahedron (Figure 1c),
and 20-atom dodecahedron (Figure 1d) are 1.00, 0.86, and 2.75,
respectively. These values are typical of true cages. The CLI
of the icosahedron being smaller than 1 reflects the fact that
the central atom in a 13-atom icosahedron is slightly com-
pressed. On the other hand, compact structures with no cage
feature at all have CLI values in the vicinity of 0.246 (13-atom
icosahedron) or 0.230 (13-atom cuboctahedron). If we take the
criterion that the 12-atom icosahedron is the smallest possible
cage, then structures with CLI smaller than 0.86 are not truly
cages. The CLIs in Table 2 show that none of our Au/Na alloy
clusters has a cage. Among all clusters, Au13Na2, Au13Na3, and
Au13Na10 have relatively large CLIs. Figure 5, panels b and c,
shows us clearly that Au13Na2 and Au13Na3 do have empty space
inside but are simply not large enough to accommodate an atom
of a size comparable to a gold atom. It is not easy to visualize
empty space in Au13Na10 shown in Figure 5j, but when we look
closely we see that a part of the cluster is open.

Based on these structures, the first IEs were calculated by
SMP/QEq and PBE. Results together with experimental values
are shown in Figure 6. The experimental values or ranges are
shown by horizontal bars with arrows. The PBE results fall close
to experiment except for Au13Na2 and Au13Na9. There are many
possible factors that may explain these two mismatches. In
experiment, the measurement could relate to isomers other than
the GM, so the IE may be an average of different isomers. It is
also possible that our global optimization did not reach the true
GM. It is an embarrassment in any global optimization that one
never knows that the GM was obtained. All we can say is that
these structures are the best we could get. Based on the results
for these 10 clusters, we still can say that our global optimization
generated sensible results and IEs calculated by PBE resemble
the experiment. SMP/QEq again gives results consistently higher
than those of PBE and experiment. The average overestimation
is 1.0 eV as before. If we shift down the SMP/QEq curve by
1.0 eV to make comparison easier (dashed lines in Figure 6),
we see that SMP/QEq results agree well with those from PBE
and experiments except for Au13Na2 and Au13Na7. There are
plenty of possible error sources, particularly the fact that SMP/
QEq does not include any quantum effects which could be
important for structures with a magic number of electrons (20)
like Au13Na7. Adding a correction for electronic shell closing
into SMP/QEq might improve it. Another important error source
is that our parameters were fitted based on a ring structure which
is different from the compact structures of most metal clusters.

D. Systematic Error. As shown in the previous two sections,
systematic errors persist in ionization energy calculations. From
the fitting precedure described in section III and discussion in
section IV, especially eqs 18 and 19, we know that the
parameters from a 10-atom ring structure will be good for AIMs
in a very similar molecular environment. When we use this set
of parameters for compact structures, some errors are expected.
We can assess these errors by calculating the first IE for our
model systems shown in Figure 1 using parameters from the
10-atom ring and comparing them with those from SVWN. The
difference of the first IE from QEq and SVWN, IEQEq - IESVWN,
are shown in brackets of Figure 1. For the 10-atom ring itself,
the IE from QEq is lower by 0.28 eV which is an error of 4%.
For other structures, QEq consistently overestimates the first
IE, and for 4 out of 5 structures, the overestimations are around
1 eV. This is consistent with overestimations in previous
calculations. Another way to assess the errors is to check the

parameters fitted from different model structures. Taking Ag
for example, the coefficients from the 10-atom ring are shown
in Table 1. Those from the Ag12 cuboctahedron, listed starting
from the first one, are 4.3306, 3.1165, 0.9682, and 0.9095. When
the Ag12 cuboctahedron has a +1 charge, the partial charge on
each atom is +1/12 independent of parameters. Because the first
and second coefficients from the cuboctahedron fit are lower
than those from the 10-atom ring, the IE decreases. The QEq
calculations overestimate SVWN IE by 0.78 eV or 12% when
using the 10-atom ring parameters and underestimate by 0.19
eV or 3% when using the 12-atom cuboctahedron parameters.
We did similar tests on other elements and found the above
argument is true for all elements and all model structures we
have. As shown in eq 19, all parameters are environment
dependent. That is, if atoms of the same element are in different
molecular environment in one molecule, they are actually
different AIMs. Ideally we should assign different parameters
to each of them. We think such a scheme would remove
systematic errors. Another advantage of that scheme is that we
could estimate charge distributions and dipole moments in pure
clusters. However putting this idea into practice is not easy and
will require robust automated procedures to derive parameters
for AIMs representative of various environments.

VI. Conclusion

Based on the analysis and calculations of this study, we can
say that the inclusion of third and fourth order terms in the
energy expansion eq 1, and use of self-consistent screened
Coulomb interactions Jii in eq 7 eliminate the problem of
unphysical atomic charges. It makes QEq more reliable and
potentially more accurate. Results for metal dimers and 55-atom
alloy clusters1 show that the QEq ionic contributions to the total
energy are essential in mixed metal systems when there are
appreciable electronegativity differences between atoms. The
IEs of Ag5Li5 and Au13Nan (n ) 1-10) calculated by QEq are
surprisingly good, especially in a relative sense (trends). This
is important because the IE is one of the easiest property to
measure and IEs of metal clusters have been found to correlate
with chemical reactivity.36 More importantly, the analysis in
section IV establishes a connection between DFT and the SMP/
QEq approximation. This gives insight into the validity of the
approximations and ways to improve them. In particular, we
made the assumption, in our current implementation of SMP/
QEq, that the last two terms of eq 14 do not change appreciably
when we go from a neutral to a charged system. This may be
approximately true in large metal clusters where charging
involves the filling or emptying of mostly nonbonding orbitals,
but it is clearly a bad approximation in small systems, or
covalently bonded systems, where charging occurs via the filling
or emptying of bonding and antibonding orbitals. An extreme
example of this would be He2/He2

+/He2
2+. Therefore, an

important improvement in the future will be to model the charge-
dependent changes to the covalent energy terms, in both the
parametrization and application stages of SMP/QEq.
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