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Rotational Spectrum of NSF; in the Ground and »s = 1 Vibrational States: Observation of
Q-Branch Perturbation-Allowed Transitions with A(k — [) = 0, =3, £6 and Anomalies in
the Rovibrational Structure of the »s = 1 State

1. Introduction

In a series of investigations of C;, symmetric top molecules
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The rotational spectrum of NSF; in the ground and »s = 1 vibrational states has been investigated in the
centimeter- and millimeter-wave ranges. R-branch (J + 1 < J) transitions for J = 0, 1 and Q-branch rotational
transitions for the vs = 1 vibrational state have been measured by waveguide Fourier transform microwave
spectroscopy in the range 8 —26.5 GHz. The Q-branch transitions include 28 direct /-type doubling transitions
(kI = +1, Ay) <= (kl = +1, Ay) with J = 62, and 108 direct [-type resonance transitions following the
selection rule Ak = Al = £2 with J < 60 and G = |k — Il < 3. A process called “regional resonance” was
observed in which a cluster of levels interacted strongly over a large range in J. This process led to the
observation of 55 perturbation-allowed transitions following the selection rules A(k — [) = £3, £6. In particular,
kl=+1,A) <= *ki=—2,A),kI=+4,A) <= (kl=~+1,A), (kl=+2) < (kIl=—1), (kl=+3) < (kI
=0), (kl = +2) < (kl = —3), and (kI = +3) <> (kl = —3). The various aspects of the regional resonances
are discussed in detail. An accidental near-degeneracy of the kI = 0 and kI = —4 levels at J = 26/27 led to
the observation of perturbation-allowed transitions following the selection rule A(k—/) = &+ 6 with (kI = +2)
<> (kI = —4). A corresponding near-degeneracy between kKl = —1 and kI = —3 levels at J/ = 30/31 led to the
detection of similar transitions, but with (kI = +3) <> (kI = —3). In the range 230—480 GHz, R-branch
rotational transitions have been measured by absorption spectroscopy up to J = 49 in the ground-state and
up to J = 50 in the vs = 1 vibrational state. The transition frequencies have been analyzed using various
reduced forms of the effective Hamiltonians. The data for the vs = 1 vibrational state have been fitted
successfully using two models up to seventh order with Ak = =£3 interaction parameters constrained (d;
constrained to zero, and ¢ to zero or to the ground-state value). On the other hand, reductions with the (Ak
= +£1, Al = F2) interaction parameter ¢, fixed to zero failed to reproduce the experimental data since the
parameters defining the reduction transformation do not arise in the correct order of magnitude. The ground-
state data have been analyzed including parameters up to fourth order constraining either parameters of the
Ak = + 3 interactions to zero (reduction A), or of the Ak = =46 interactions to zero (reduction B). The
unitary equivalence of the different parameter sets obtained is demonstrated for both vibrational states.

In order that the particular reduction employed is suitable to
fit the data set, the parameters defining the reduction
transformation have to arise in the correct order of magni-

in an isolated singly excited vibrational state of a degenerate
vibration (v, = 1), it has been shown that it is possible to fit
data sets with parameter sets of different reductions which are
unitary equivalent. This method has also been applied to the
nondegenerate vibrational states. Two reductions have been
proposed for the analysis of the nondegenerate states and three
reductions for the singly exited degenerate vibrational states.!*?

For each reduction scheme considered, the parameters
characterizing the Hamiltonian take on effective values which
represent linear combinations of several molecular constants.
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tude.! Otherwise, the reduction might fail to produce an
acceptable model. The failure is typically characterized either
by an inability to reproduce the data within the experimental
accuracy, or by the need to include a large number of higher
order parameters, resulting in problems with correlations
between the parameters and slow convergence of the fit. The
most common cases of such failures arise for symmetric top
molecules close to the spherical top limit. For such molecules,
owing to the small magnitude of A — B (or C — A), those
terms arising from the reduction transformation exceed the
order-of-magnitude limit if the Ak = +£3 interaction param-
eter ¢ is constrained to zero. Therefore this constraint should
be avoided. In an investigation of rotational spectra of OPF;
in the ground vibrational state, Styger et al.> have presented
a stringent test on this process. They have shown that a
reasonable reproduction of the data was not possible if € was
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fixed at zero, and that the models with & varied were of
significantly better quality. For other quasi-spherical sym-
metric top molecules such as SbH3,* it has been shown that
models making use of the constraint ¢ = 0 needed a
significantly larger set of parameters to obtain a reasonable
quality of the fit. Problems in the use of reductions have also
been reported for isolated singly excited degenerate vibra-
tional states of C3, symmetric top molecules. Pracna et al.’
have reported the failure of reduction D (see ref 1) for CDF;
in the vibrational state vs = 1; in this case, several parameters
were highly correlated. These correlations could be explained
as arising from the rather small value of the (Al = Ak =
+2) interaction constant g, which made the reduction
transformation break the order-of-magnitude limits in reduc-
tion D.

The molecule thiazyl trifluoride, NSF;, can be regarded as
an intermediate case. With a value of (A — B) = 550 MHz and
a value of y = 2(A — B)/(A + B) = 0.11, it is rather close to
the spherical top limit, but is not an extreme case like FC1'30;
(y = 0.03), OPF; (y = 0.05), or SbH; (y = 0.05). For NSF;, v
is closer to PH; (y = 0.13) or FCI'®O; (y = 0.12). Previous
investigations of rotational spectra in the vibrational state v =
1 gave indications that standard models may fail to reproduce
observed spectra for NSF;.% In the v = 1 state, Small and Smith
had to refine both ¢, and ¢ in fitting spectra which included
(Ak = £3) Q-branch perturbation-allowed transitions in the
radio frequency range.” It was found that some of the constants
determined were highly correlated. Thus NSF; seemed to be a
good candidate for testing the various models of reductions both
in the ground and degenerate vibrational states. Furthermore,
the molecular constants and the thermal population for vs = 1
and v = 1 seemed to allow the observation of high-resolution
Q-branch rotational spectra for the ground-state as well as the
vs = 1 and v = 1 excited states. It might then well be possible
to use Fourier transform microwave (FTMW) spectroscopy to
measure (Ak = £3) transitions in the ground-state and direct
[-type resonance transitions in the excited states with the high
accuracy necessary to carry out a stringent test on the models
of reduction. However, we have only succeeded in obtaining
and assigning Q-branch spectra for the vs = 1 vibrational state.
For both the ground and vs = 1 vibrational states, R-branch
spectra have been recorded as well. The data for each of the
two vibrational states have been analyzed separately.

As will be shown, the rovibrational structure of the vs = 1
vibrational state shows clustering of energy levels at low values
of K = |k| leading to resonances extending over a large range
in J. These “regional resonances” led to the observation of
perturbation-allowed Q-branch rotational transitions following
the selection rules A(k — [) = 43, £6; these transitions occurred
in several series which were followed over many values of J.
To our knowledge, this phenomenon has not been previously
observed for any other symmetric top molecule in an isolated
excited vibrational state. Furthermore, these resonances allowed
the observation of anomalous splittings in the hyperfine structure
of transitions with E-symmetry owing to the lifting of the parity-
degeneracy by the “tensor” terms in the spin-rotation interaction
off-diagonal in k, as reported, for example, for PH; in ref 8.
The regional resonance will be discussed in terms of eigenvec-
tors of the affected levels in section 5, while the analysis of the
hyperfine components will be given in a forthcoming paper.’

The hyperfine-free frequencies determined for the transitions
could not be fitted with reductions in which the parameter g,
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of the (Al = +2, Ak = F1) interaction was constrained to zero.
A possible reason for this failure will be discussed in section
5.

Both ground and excited-state data have been analyzed using
two different reductions. In section 4, the unitary equivalence
of the parameter sets obtained is shown, thus demonstrating the
correctness of the models applied.

2. Experimental Section

The sample was provided by Professor R. Mews of the
University of Bremen and was purified from more volatile
compounds by typically three freeze—pump—thaw cycles.

Absorption spectrometers employing phase stabilized Thom-
son-CSF backward-wave oscillators were used between 340 and
480 GHz to record the millimeter wave rotational spectra. At
lower frequencies measurements were done with harmonics of
gunn diodes. The detection was carried out using helium-cooled
InSb bolometers except for measurements around 230 GHz
where superheterodyne detection was used. Measurements were
performed at ambient temperatures and at pressures between 1
and 3 Pa.

Measurements in the centimeter wave range were performed
using FTMW spectrometers in the ranges 8—18 and 18—26.5
GHz with rectangular and circular waveguides as sample
cells.!%! The spectrometer running in the 8—18 GHz range
used an oversized X-Band sample cell nominally working in
the range 8—12 GHz. From 12 to 18 GHz, the sensitivity can
be considerably lower due to increased reflections, so that only
relatively strong transitions could be measured here with
acceptable high quality. Typically pulses of 10 W and 0.5—1.2
us were used to reach optimal conditions for the polarization
of the molecular sample. Measurements were performed at
ambient temperatures or 212 K and at pressures of typically
0.15 Pa. The transition frequencies and their experimental errors
(three times the standard deviation) were determined from a
least-squares fit of the time-domain data. For cases where the
hyperfine structure had to be resolved (particularly where small
splittings occurred), the required accumulation times were
relatively long due to a reduced sample pressure (ca. 0.1 Pa)
and the need for an improved signal-to-noise ratio. As a result,
the number of such cases studied was limited. The center
frequencies of these hyperfine multiplets were determined from
the individual components in a process which was checked in
most cases by the hyperfine analysis. Some transitions were
measured at higher pressures, in which case only unresolved
lines were obtained.

3. Spectra

R-Branch Rotational Spectra in the Ground and vs = 1
State. On the basis of constants reported by Small and Smith,°
rotational spectra for J + 1 < J were predicted and measured
by absorption spectroscopy for the ground and vs = 1 vibrational
states up to J = 49, K = |kl = 49 and J = 50, K = 50,
respectively. The corresponding spectra for / = 0 and 1 fall in
the range of the FTMW spectrometer but, mainly for technical
reasons, for the ground-state only the J = 0 and for vs = 1 the
J = 1 transition was measured with this instrument. The
recorded spectra follow qualitatively the description by Small
and Smith,® except that the measurements were extended to
higher values of J and K. For the ground state, (K = 3) splittings
were observed for J = 47—49. These splittings arise from off-
diagonal interactions and the associated parameters therefore
become determinable. For the vs = 1 vibrational state, the
resonances are much stronger at higher J, and consequently the
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Figure 1. Amplitude spectrum in the range 8000—8040 MHz using
microwave Fourier transform spectroscopy. The two strong lines at
about 8006.7 and 8009.4 GHz are the direct /-type resonance transitions
in the vibrational state vs = 1 of NSF; with / =34, G =0 and J = 24,
G = 1, respectively.

assignment for a few lines was not straightforward. Furthermore,
the observation of rovibrational splittings in the spectra at higher
J for kIl = —2 and kIl = +4 yielded additional information on
the Ak = =+ 6 interaction, information which is otherwise
difficult to be obtained solely from R-branch rotational transitions.

The experimental frequencies of the transitions are given in
the Supporting Information (see Tables S1 and S2).

Q-Branch Rotational Spectra in the Vibrational State v
= 1. Direct I-Type Resonance Transitions. Direct [-type
resonance transitions are observable due to the mixing of states
by the (2,2) [-type interaction, which couples states with the
same value of G = |k — II. This can lead to rather global
resonances with very pronounced effects at low K and high J.
Direct I-type resonance transitions can in general be observed
if the (2,2) interaction parameter ¢ is relatively large in
magnitude and |A — B — A{l is small. Both the vibrational states
with s = 1 and vs = 1 meet these requirements. For vs = 1,
although 1A — B — Al (=1700 MHz) is larger than for any
molecule for which direct /-type resonance transitions have been
previously measured, lg»l ~1.7 MHz is large enough to
compensate. For v4 = 1, lgal is not large (~0.25 MHz), but
IA — B — A{l is relatively small (813 MHz). Furthermore,
both states are well populated at room temperature.®

We started the investigation with broadband scans around 8
GHz using a FTMW spectrometer operating in the scan mode.'”
In this region, we predicted lines for the ground-state as well
as the vs = 1 and vs = 1 vibrational states. With a value of
(A — B) = 550 MHz, ground-state forbidden transitions are
predicted with (k = +4) <= (k = £1) around 8000 MHz, as
well as several transitions for the v = 1 state and a few lines
of the G = 0 and G = 1 bands of vs = 1. A few strong lines
with comparable intensities were observed corresponding to the
number of lines predicted for s = 1. A typical spectrum is
shown in Figure 1. In these spectra, the G = 0 lines could be
easily assigned, while the lines expected to belong to the G =
1 band showed deviations from the predictions with no simple
dependence on J. These deviations could be explained by a
strong resonance between the kl = —1 and kI = —3 states. After
some trial refinements, the lines could finally be assigned to
the G = 1 band. With improved parameters, transitions were
predicted more precisely and measurements were extended up
toJ=062and G = 3.
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Figure 2. Fortrat diagram of the direct /-type resonance transitions
observed for NSFj; in the vibrational state vs = 1.

Nevertheless, the assignment was not straightforward. One
of the problems was that some of the transitions had irregular
hyperfine structure that was not initially understood and the
hyperfine-free (center) frequencies could not be determined
accurately. These transitions could be taken into account only
after significant improvement in the understanding and analysis
of the patterns observed. Another problem is reflected in the
Fortrat diagram given in Figure 2. There are clear discontinuities
in the G = O series at J = 50 and in the G = 1 series at J = 43,
as well as less obvious discontinuities in the series with both G
=1 and 2 at J = 52. At each discontinuity, there is an overall
shift of the transition frequencies from a specific value of J on.
These shifts can be to higher frequency as for G = 0 or to lower
as for G = 2. The value of J at the discontinuity appeared to be
somewhat arbitrary since the labeling of the levels around this
J-value was quite sensitive to the model. None of the frequency
shifts characteristic of typical level crossings could be found.
To our knowledge, such behavior has not been previously
reported for similar spectra in symmetric top molecules. The
origin of this anomaly lies in the resonance referred to
throughout this paper as ‘regional’ and is discussed below.

Finally, the G = 3 transitions were found to be split due to
various rovibrational interactions. The observed splittings
reached a maximum value of 320 MHz for J = 47. For J = 48,
the calculated splitting is larger, but only one component was
measured.

Regional Resonance Transitions with A(k — 1) = £3, +6.
If the discontinuity in the Fortrat diagram for G = 0 is neglected,
the branch for J-values below the discontinuity can be extended
continuously to higher values of J. For J-values on this branch
above the discontinuity, the lines observed follow the selection
rule A(k — I) = =£3. The transitions result from strong
resonances extending over large ranges of J (regional reso-
nances) as discussed below. Similar perturbation-allowed transi-
tions could be measured above each discontinuity. The specific
selection rules followed for the transitions observed are as
follows: (kI = +1, Ay) <= (kI = —2, A_) for J = 50—62; (kl =
+4, Ay) <= (kI = +1, A-) for J = 34—39, 43—49; (kI = +2)
< (kI = —1) for J = 46—52; (kI = +3) < (kl = 0) for J =
43—54; (kl = +2) < (kl = —3) for J = 38, 41, 43—47, 51; and
(kl = +3) <> (kI = —3) for J = 41, 42. The various branches
are shown in Figure 3 for A;,A; (a) and E symmetry (b).

Local Resonance Transitions with A(k — 1) = + 6. In
addition, four transitions due to local resonances were observed.
An accidental near-degeneracy of the (kI = 0) and (kI = —4)
levels at J = 26, 27 allowed the measurement of transitions
with the detailed selection rule (kl = +2) <> (kl = —4), which
corresponds to A(k-/) = &£ 6. Similar transitions following the
detailed selection rule (kI = +3) <> (kI = —3) were observed
for J = 30, 31 as a result of a local resonance between the (k/
= —1) and (kl = —3) levels.
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Figure 3. Fortrat diagram of Q-branch transitions observed for NSF;
in the vibrational state vs = 1. (a) Ay, symmetry; (b) E symmetry.

Some of the Q-branch transitions appeared as multiplets due
to the "N and '°F hyperfine interactions. A detailed description
and analysis will be given in a forthcoming paper.’ The center
frequencies calculated from these multiplets are given in the
Supporting Information (see Table S2). For some multiplets it
occurred that hyperfine components were missing or overlap-
ping. In these cases the observed hyperfine lines could not be
assigned unambiguously which lead to larger errors on the center
frequencies and correspondingly to lower weights for these data
in the fit (see below).

Closed Loops in the range of regional resonances. The shift
of the branches at the discontinuities in Figures 2 and 3
corresponds to the frequency difference between the direct I-type
resonance transitions and their counterparts following the
selection rules A(k — [) = 3 or 6. This shift is the energy
level difference between interacting levels in the range of the
regional resonances, a difference which could therefore be
precisely determined. For E-symmetry, these differences have
been determined by two sets of transitions forming a closed
loop allowing the application of the Ritz principle. Besides the
direct [-type resonance transitions with G = 1, 2, there are four
further types of transitions observable. In Figure 4, we have
indicated the various transitions observed due to the regional
resonance. It is worth noting that no transitions could be detected
between the kI = +3 level and the upper level of the three lower
levels indicated (level c), so that closed loops of transitions could
only be obtained involving the lower energy level difference
of kl = 0 and kI = —1. The transitions forming the closed loops
are the direct /-type resonance transitions with G = 1 and 2
and the A(k — [) = & 3 transitions with (kl = +3) <> (kI = 0)
and (kl = +2) < (kl = —1) for J = 46—49, 51 and 52. The
Ritz principle has been tested on these closed loops by
calculating the energy differences of the kI = 0 and kI = —1
levels using two different sets of transitions. Alternatively, one
could have also calculated the difference of the kl = +2 and k/
= +3 levels. As shown in Table 1, one finds excellent agreement
for the differences experimentally obtained even though their
determination was difficult due to irregularities in the hyperfine
structure. In fact, the application of the Ritz principle to the
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Figure 4. Energy level scheme showing perturbation-allowed transi-
tions in the range of the regional resonance for symmetry E. Level a
corresponds in reduction D to kIl = —1 for 35 < J < 51 and kI = 0 for
J =52, levelbtokl = —3for35 <J <42, ki=0for43 <J <51
and kKl = —1 for J = 52, and level c to kl = 0 for 35 < J < 42, kIl =
—3 for J = 43.

hyperfine components has been a very helpful tool in under-
standing the various different types of hyperfine spectral
patterns.

4. Multiple Fitting Analysis

The Ground Vibrational State. The data set for the ground-
state included 96 transitions measured by Small and Smith® and
134 transitions recorded in this work. The transition frequencies
were fitted with the program SIMFIT? using the matrix elements
as given in the Appendix in a symmetrized basis set according
to the symmetry species Aj, A,, and E. The data were included
with a weight proportional to the inverse square of the
experimental error assumed. Two fits were performed with
parameter sets corresponding to the reductions described by
Aliev and Aleksanyan!? (reduction A) and by Sarka'? (reduction
B). In reduction A, the data are fitted with the parameters
characterizing the Ak = £3 matrix elements (¢,¢,) fixed to zero.
In reduction B, the parameter characterizing the Ak = +6 matrix
elements (h3) was fixed to zero. Parameters up to fourth order
(sextic terms) have been refined. The rotational constant A was
fixed to the value of 5194 MHz, which was obtained in the
analysis of the vs = 1 state (see next section), while Dx and Hg
were fixed to zero. In addition, in reduction B, the constants
H g and €, were constrained to zero. In total, 7 parameters were
fitted in reduction A, while 6 parameters were fitted in reduction
B. In both reductions A and B, the quality of the fit was
insensitive to signs for /5 and ¢, respectively. However, the
analysis of the vs = 1 state clearly shows that the negative sign
has to be taken for /3. For &, the positive sign has been assumed
in accordance with the force field value of the related molecule
OPF;.'* All transition frequencies were reproduced to within
their experimental errors. In both reductions, the standard
deviation was 20.5 kHz for data measured in this work, and
29.7 kHz for data of Small and Smith.® The values of the
parameters obtained for each reduction are given in Table 2.
The corresponding reproduction of the transition frequencies is
given in Table S1 of the Supporting Information.

The unitary equivalence of two parameter sets is verified if
the relations demonstrating the unitary equivalence are fulfilled
and if the two fits are of comparable quality. Since the standard
deviations for reductions A and B are essentially the same, one
is left to check the fulfilment of the relations following from
the theory of reduction, namely:

AH, AHy  AHy, AHy Ag’

BT 30 7 M= —p
(1)

where AP refers to the difference P? — P between the values
obtained for parameter P using reductions A and B.
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TABLE 1: Energy Level Differences AE of the kI = 0 and kI = —1 Levels Experimentally Obtained from Transitions Involving

Upper Levels kI = +2, +3

AE (MHz)
upper level J =46 J =47 J =148 J =49 J =51 J=52
Kkl =+2 283.598(70) 274.940(80) 267.707(73) 263.048(80) 264.419(3) 270.925(7)
kI =+3 283.637(20) 274.944(12) 267.723(12) 263.091(16) 264.424(12) 270.923(7)
Ritz principle —0.039(90) —0.004(92) —0.016(85) —0.043(96) —0.005(16) 0.002(14)

TABLE 2: Parameters of the Effective Hamiltonian in the
Vibrational Ground State of NSF; in Reductions A and B,

where Standard Deviations Are Given in Units of the Least
Significant Digit

TABLE 4: Parameters of the Effective Hamiltonian of the
vs = 1 Level of NSF; in Reduction D and Model II, where
Standard Deviations Are Given in Units of the Least

Significant Digit

parameter unit reduction A reduction B parameter unit reduction D model II
B MHz 4636.24921 (15) 4636.24921 (15) B MHz  4640.954071 (116) 4640.956917 (116)
A MHz 5194.0¢ 5194.0¢ A MHz  5194.421323 (403) 5194.415613 (412)
bk loeeay  wmnao D do s e
JK z . .
g’K tg; 3'(1)385 8 (19) (2)'(1)3850 (16) Dy kHz  —1.6674 (185) —1.6471 (189)
K : : H, mHz  0.2¢ 0.5227°
Hx mHz 2.8467 (456) 0.0¢ Hy, mHz —1.723¢ 3.118%
Hg; mHz —1.7233 (465) 3.0039 (617) Hy mHz  0.0¢ —2.259°
Hy mHz 0.0 0.0 Ly uHz  0.31562 (952) 0.27987 (973)
e kHz 0.0 0.2945 (197) Lix uHz  —0.3902 (107) —0.2714 (107)
hs mHz 01563 (389)  00° " K 41911805 G185 | 45 (618)
Ny Z . X
no. of data H ;(3)45 ;g‘: % KHz ~ —98.3996 (754) —104.0959 (773)
o z : : Tk Hz  1.62006 (615) 1.93541 (611)
a . % Hz  —10.350 (209) —7.581 (215)
Constrained value. o WHz 00" —4188 (102)
TABLE 3: Demonstration of Unitary Equivalence of OiK pHz — —66.60 (136) —89.03 (145)
: ) . oxy uHz ~ 36.43 (338) 165.19 (260)
Parameter Sets Obtained for Reductions A and B in the o MHz —1.697076444 (588)  —1.697071566 (645)
Vibrational Ground State of NSF; 8 Hz 1.511616 (472) 3.683292 (482)
rerm T ficati % kHz  0.1339075 (406) 0.127163 (101)
erm unt verincation ) uHz  13.3723 (869) —26.6322 (900)
UNN: mHz 0.1589 (212) qn MHz  2.1121777 (112) 1.7861075 (116)
_]/ AH mHz 0 1582 (25) q‘{z Hz —37.41595 (419) —52.56248 (438)
|, 8K ’ fo Hz  —1.707509 (125) 0.459057 (121)
l0AHg; mHz 0.1576 (36) Fo uHz 127254 (573) —25.7866 (574)
Ahs mHz 0.1563 (39) B kHz 0.0 0.3
A&(A — B) mHz 0.1555 21) hs mHz  —0.190830 (144) —0.027293 (145)
P no. of data 505/225 505/225
AP = PP — P4 (MMW/ETMW)
o kHz  33.8/1.18 33.0/1.20

In refs 2 and 3, the last expression in eq 1 was replaced by:

&'Ae
E=-2 00 @)
This is an approximation suitable only in the case of quasi-
symmetric top molecules. It involves the true value of &, here
indicated with prime, which is not determinable from the fits
and which has to be taken from force field calculations, if
available. The last expression in eq 1, however, is obtained
without approximation. It is not restricted to quasi-spherical tops
and thus is of general use. If this expression is applied to the
parameters from refs 3 and 4 to calculate C, its value is in much
better agreement with the mean values obtained for the other
expressions in eq 1. For OPF;, we get £ = 1.67 x 1073 Hz
using the last expression in eq 1, whereas the value of 1.78 x
1073 Hz resulting from eq 2 is significantly different from the
mean value of 1.68 x 1072 Hz. This improvement was also
noted in Table 4 of ref 3 with a very brief explanation in the
footnotes. For SbHj, the situation is similar to that in OPFs;.
The value calculated with eq 1is 6.16 x 107! cm™!, compared
to the mean value of 6.14 x 107'° cm™!, whereas the value
obtained with eq 2 is 5.54 x 107! cm™!. Work similar to that
reported here was presented in ref 15 with respect to CH;CF;,
a near-spherical rotor with y = 0.06. This work on CH;CF;
also points out that, when the distortion dipole moment up, can
be determined, the value of up can (in favorable cases) be used

@ Constrained to the ground-state values. ® Constrained values.

to obtain the true magnitude of &. Alternative expressions to
the approximations given for & and ek in eq 5 of ref 4 can be

derived:

e t e,

eatep
= —Agy 5
K

D, 2

In Table 3, experimental values obtained here for NSF; using
eq | are compared. Excellent agreement is found, with all values
agreeing within one standard deviation. This is true even for
H g, which was constrained to zero in reduction B. Obviously,
Hx takes an accidentally small value in this reduction and
constraining it to zero does not have a significant effect on the
calculated difference. The verification of eq 1 for h; also
confirms that the negative sign assumed for this parameter is
correct. The results obtained here show that both reductions
work equally well for NSF;, a conclusion which was not
necessarily expected beforehand due to the rather small value
of A — B. Although the current data set might not be accurate
enough to make a final judgment, it seems that the value of
A — B does not cause the transformation parameter 7 to exceed
its order-of-magnitude limit. The slightly larger value of the
parameter y probably makes the constraints applicable to NSF;
(y = 0.11), constraints that are not useful for the related
molecule OPF; (y = 0.05).

£§=Ag, 3)
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The Vibrational State vs = 1. Very accurate measurements
have been performed for the vs = 1 vibrational state especially
in the range 18—26.5 GHz. However, for many of the transitions
with AJ = 0, the hyperfine multiplet was not sufficiently
resolved to determine precise center frequencies. As a result,
systematic errors occurred in the analysis and it was not possible
to reproduce the Q-branch data within the “intrinsic” experi-
mental errors obtained from the fits of the time-domain signals.
Some of these hyperfine multiplets were remeasured under
improved experimental conditions to resolve the hyperfine
structure and obtain better agreement. In the final fits, some
transitions for which the hyperfine structure was not or not fully
resolved were included with reduced weight (errors of 20, 30,
or 50 kHz) while other transitions, those at low J and the series
with G = 3 (except below J = 20), were included with the
obtained experimental errors.

The final data set consists of several types of data. The
measurements taken with FTMW spectroscopy contribute 225
frequencies with an experimental error determined mostly from
the fit of the time-domain signal (typically 1—5 kHz). Of these,
222 are Q-branch transitions. There are 163 transitions of the
direct I-type resonance spectrum including both transitions
following the selection rule (Ak = Al = +2) and direct
[-doubling lines; 53 perturbation-allowed transitions with
A(k — ) = £3; and 6 perturbation-allowed transitions with A(k
— [) = 6. In addition, there are 3 frequencies for the J = 2 —
1 transition. The measurements taken with absorption spectros-
copy contribute 494 R-branch frequencies. Of these, 168 were
reported by Small and Smith* with an accuracy of 50—400 kHz,
and 326 were measured in the present study with a typical error
of 50 kHz.

The vibrational states closest to the fundamental level with
vs = 1 at 429 cm™! are those with g = 1 at 342 cm™' and v
=1 at 521 cm™". (The wave numbers are taken from ref 6.)
Thus vs = 1 can be treated as an isolated state and an effective
rovibrational Hamiltonian is suitable for the analysis. We have
fitted the data using the program SIMFIT,> which builds up three
Hamiltonian matrices according to A, A,, and E symmetry
using matrix elements of the rovibrational interactions up to
seventh order as given in the Appendix. The matrices are
subsequently diagonalized to obtain the eigenvalues and
eigenvectors.

Three reductions have been proposed for fitting the experi-
mental data of C;, symmetric top molecules in a degenerate
vibrational state with v, = 1; see refs 1, 2, 16, and 17. In
reduction D, the parameters of the k- and [-dependent (0,3)
interactions (g, d,,...) are fixed at zero. In reduction Q, parameters
of the (2, —1) and k-dependent (0,3) interaction (g, &,...) are
constrained to zero. In reduction OD, the parameters of the (2,
—1) and [-dependent (0,3) interaction (g, d,,...) are fixed at
zero. Furthermore, it is recommended to constrain to zero all
parameters corresponding to k-dependences of off-diagonal
terms. All three reductions have been applied to the experimental
data. However, the fits appeared to be rather difficult due to
the strong resonances affecting a large number of transitions,
and the convergence of the fits was rather slow. Another problem
in fitting the data was that small changes in the parameters led
to changes in the labeling of some of the states involved in
transitions for several low values of K and in the millimeter
wave data for some lines with high J and high K. This occurred
in all reductions, but particularly in reductions Q and QD. In
trial fits, parameters up to septic order were included. Neverthe-
less, reasonable fits were obtained only using reduction D. The
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fits using reductions Q and QD were of much poorer quality
even when reduced data sets were used.

Several different attempts in fitting the data were made to
obtain the most reasonable fits for reduction D. It was necessary
to include parameters for diagonal terms up to seventh order
(0-Coriolis type constants), while for the off-diagonal terms
parameters up to sixth order were sufficient. It has been shown
in previous investigations that fitting /%, instead of one of the
T-constants leads to equivalent results and in some cases can
be even the better choice, particularly if IA — B — Al is small
(for a detailed discussion, see Margules et al.'®). For the current
data set, the best result was obtained with f%, fitted and T,
constrained to zero.

With the H centrifugal distortion constants being varied, the
best fit to the data was obtained, but the resulting values differed
by up to 100% from their ground-state counterparts. To get a
better agreement between ground and upper state parameters,
we have finally constrained the H centrifugal distortion constants
for vs = 1 to the ground-state values and fitted Lyx and Lk,
which then take on rather large values. (The values are around
1073 MHz, rather than the 10~ MHz expected.) When the
constant ok, was included, the convergence of the fit was slower
and the stability was lower due to its correlation with 7.
However, ok, led to a slight but significant improvement of the
fit and therefore was included in the analysis.

The best-fit parameters are given in Table 4. Most of the
millimeter wave data were reproduced within the error limits
assigned, with an exception of only a few lines of high K. The
standard deviation of the millimeter wave data is 33.8 kHz.
Systematic deviations for the Q-branch rotational transitions
remained only for those lines where the hyperfine structure could
not be sufficiently resolved. As mentioned above, the weight
in such cases was reduced accordingly (e.g., for the series (k/
= +4) <> (kI = +1)). Several lines of the series with G = 3
clearly could not be fit within the assigned experimental error.
However, because the nonsystematic deviations remained well
below 2 kHz and the data were of high quality, the weight has
not been reduced in this case. The standard deviation of the fit
of the FTMW data is 1.2 kHz.

In the course of investigation of the hyperfine structure, it
appeared to be useful to apply a reduction different from those
discussed above. We have carried out fits using a modified form
of reduction D with € constrained to the value determined for
the ground state. This choice was based on the assumption that
the sensitivity of ¢ to the transformation parameter ¢ should be
rather weak due to the small value of A — B (see following
section). As a result, the value of & obtained in the ground-
state fit is expected to be close to the true parameter, i.e., to the
parameter in the unreduced effective Hamiltonian. This as-
sumption is supported by the results obtained for OPF; and
SbH;.3# A similar model has been applied by Graner et al.'” in
the fit of vs spectra of FC1O; where the value of ¢ for v = 1
was fixed to that of its ground-state counterpart. In the current
work, this reduction will be called model II. In this model, the
same parameters were varied as in reduction D, but with o,
added and with the H constants constrained to values determined
from eq 1. In model II, in contrast to the fits with reduction D,
the inclusion of either f5 or 7; led to equivalent results.
Furthermore, the inclusion of ok; had less effect on the rate of
convergence of the fit. The standard deviations for the millimeter
wave and FTMW data were 33.0 kHz and 1.2 kHz, respectively,
values which are practically identical to those in reduction D.
For both fits, only a very few of the more than 200 pairwise
correlation coefficients exceed a value of 0.9 (8 in reduction D
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TABLE 5: Demonstration of Unitary Equivalence of
Parameter Sets Obtained for Reduction D and Model II in
the Vibrational State vs = 1 of NSF;

term* unit verification
Agqin MHz —0.326070 (23)
[FACAe)/[2g2(A — B)] MHz —0.3264966 (4)
Any kHz 5.7634 (11)
—Ang kHz 5.696 (153)
2AB kHz 5.692 (463)
—AA kHz 5.710 (815)
4AGeo(qtr + qt)l[gn(A — B)] kHz 5.772 (39)
Af Hz 2.17168 (95)
Afn Hz 2.16657 (25)
[eo/(A — B)I[(ALen/2g2) +qts + gh] Hz 2.169 (15)
Ahy mHz 0.1635 (28)
A& /(A — B) mHz 0.1626 (20)

“F=A—B+2AL."AP = P" — PP,

and 7 in model II), with none exceeding 0.99. The results of
both fits are given in Table 4. The corresponding reproduction
of the transition frequencies is given in Table S2 of the
Supporting Information.

Again it is useful to check the unitary equivalence of the
parameter sets. As already pointed out, the data sets cannot be
correctly reproduced with reductions Q and QD, and we will
not consider these reductions further. Thus we are left with
checking the unitary equivalence of the parameter sets deter-
mined for reduction D and model II. The standard deviations
determined with these models are nearly identical. Relations
for checking the unitary equivalence between these two models
can easily be obtained using results given in refs 1 and 2.

__ FAC
A= g =B @
Ale,
A= —Ang =208 =—AM =4I} +qil —7 g
(&)
& Ale,
Afyy =My = A—B ?22 +an+ai (©)

where F = (A — B + 2A{) and AP now corresponds to the
difference (P — PP) in the parameter values obtained with
model II and reduction D. The results presented in Table 5
demonstrate that the unitary equivalence relations are fulfilled.
In general, good agreement is found for all the relationships.
Clearly, for eq 4 which provides the lowest order comparison,
the values differ by many times the statistical error 0. However,
30 is very small in this case: only ~200 ppm. There will be
higher order corrections to the contact transformations used,
and the resulting contributions might be significantly larger than
this rather small value of 30. On the other hand, the relations
in eq 5 are fulfilled to within the 1o limit. Some of the values
obtained have larger relative errors, for AA up to nearly 50%
(30), but astonishingly all expressions in eq 5 agree within 2%.
In eq 6, the differences experimentally obtained agree with their
calculated counterparts, but they exceed the 30 limit slightly if
compared directly. The relation involving the parameter /5 taken
from eq 1 is fulfilled to within 1o. The relations involving
7-constants have also been tested, but were not fulfilled. This
might be explained by the correlation of 7x with o;.

The results demonstrate the validity of the models applied.
Consequently, the parameters obtained can be considered as
reliable, except possibly those of highest order. Furthermore,
this check confirms the validity of the effective Hamiltonian
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for an isolated degenerate vibrational state. Thus the failure in
fitting the data using reductions Q and QD cannot be explained
by resonant interactions with levels from other vibrational states.
A possible explanation must then be found in the transformation
properties of the free contact transformation within the (vs =
1) vibrational state itself.

5. Discussion

Failure of Reductions Q and QD. Here we would like to
discuss how the theory of reduction could explain or provide
indications why the reductions Q and QD fail to reproduce the
experimental data. In this discussion, it is necessary to focus
our attention on the parameters ¢ and s that characterize the
lowest order contact transformation. In particular, we require
the expressions that relate the transformation parameters ¢ and
s to the molecular constants that appear in the untransformed
Hamiltonian, constants whose values could lead to a violation
of the order-of-magnitude limits on 7 and s and thus lead to a
slow convergence of the reduced effective Hamiltonian. !

Consider the three lower order off-diagonal parameters g,
¢, and d,. For each of these parameters, the value P after the
application of the contact transformation is related to the value
P that appears in the untransformed Hamiltonian through
relationships that involve ¢ and s, as well as other molecular
parameters in the untransformed Hamiltonian. It has been shown
that?

1
dn=4qn* 2FS (7a)
E=¢+3A—B)t (7b)
d,=d +2q,,s — 6ALt (7¢)

The definitions of the transformation parameters ¢ and s depend
on the reduction chosen which in turn is defined by the
constraints applied to qi,, €, and d,. With constraints indicated
below, one defines the reduction (Q, D, or QD) and obtains the
associated expressions for the transformation parameters ¢ and
st

oD __ q12

fma@ 00— @= T
£Q=€D=O—>tQ=tD=——3(A€_B) (8b)
d?=0—*sD=—gzz AACB ] (8¢c)
dQ 02— 6A§[ f]zz‘hz] (8d)

In addition, one finds that?

$=d - 4‘”;?” AL (%)
dn=qn- [d +2AACB (9b)
€+A2A£ d- 4‘]22912] 9¢)

From these expressions, one has to estimate the order of
magnitude of the transformation parameters ¢ and s, and
consequently one has to know the values of the parameters
appearing in the unreduced effective Hamiltonians. Since there
is no knowledge about the values of the true parameters ¢, d,,
and ¢, one has to assume that they are at the order of magnitude
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TABLE 6: Molecular Parameters (MHz) Relevant for the
Calculation of Free Transformation Parameters for Selected
Molecules and Vibrational States”

molecule  vibr state  13(A — B)l  IF/2l 12l 16AEl  ref
NSF; vs =1 1659 883 3.3 6954 6
NSF; ve =1 1649 1089 0.5 4877 6
OPF; vs =1 600 625 1.3 3150 14
OPF; ve =1 624 606 0.5 4260 14
CDF; vs =1 12783 2042 1.1 24972 5
CH;CF; vp =1 965 1681 3.8 9124 20
SiHF; vy =1 9201 912 7.3 14670 21
FClO3 ve =1 1097 1964 5.3 10684 19

“For oblate tops, the parameter A in the table needs to be
exchanged by C.

required for the model to be valid. If this assumption is fulfilled,
one is left to check the absolute values of F/2, 2¢»,, 6AC, and
3(A — B). These four constants appear in the denominators in
eq 8; if they are too small, the order-of-magnitude requirements
will not be met. In order to judge whether the values of these
constants for NSF; in »5 = 1 are too small or not, we have
collected values of these four parameters in Table 6 for various
molecules in different degenerate vibrational states v, = 1. One
criterion for the selection was that the vibrational states should
have been investigated under high resolution and various
reductions should have been applied. Table 6 furthermore
contains parameters of the related molecules OPF; and CH;CF;
which are of particular interest because they are closely related
to NSF;. Of the parameters in Table 6, only those which are
neither bold nor italic do not—according to the published
analyses—lead to a violation of the order-of-magnitude limits
for the transformation parameters. Those included in bold clearly
lead to a violation, and for those included in italics no significant
information is available (e.g. the corresponding reduction has
not been applied). From an inspection of Table 6, for NSF; in
the state s = 1 only the absolute values of 3(A — B) and F/2
are clearly relatively small and therefore may lead to a violation
of the order-of-magnitude requirements. The absolute values
of gy and 6A( are large enough so that no problems should be
expected from the constraint d, = 0 in reductions D and QD,
respectively, (see eqs 8c and 8d). The conclusion with regard
to reduction D is confirmed by the fact that this is the only
reduction for which the data could be fit successfully. This
experimental result also leads to the conclusion that the second
constraint in reduction D, ¢ = 0, does not cause problems either.
This deduction is supported by the results obtained in the ground
vibrational state where the same constraint has been applied in
reduction A. It follows then that the small value of I3(A — B)I
does not introduce any serious difficulties with the application
of reduction Q. Finally, we can conclude that the primary reason
for the failure of reductions Q and QD is the relatively small
value of |F/2I. This is surprising since |F/2| for SiHF; in the v4
= 1 state takes a similar value and the other constants for this
case are in general larger than their counterparts for vs = 1 in
NSF;. Thus, with respect to the order-of-magnitude consider-
ations, the value of |F/2| for SIHF; has to be considered to be
more critical than the NSF; value relevant to the reductions
applied here, but nevertheless all reductions could be performed
equally well.

It is interesting to discuss the analysis and results obtained
for NSF; in the vg = 1 vibrational state by Small and Smith.°
As mentioned in the Introduction, in their analysis of data which
included measurements of both millimeter wave R-branch lines
and radiofrequency perturbation-allowed Ak = =+3 transitions,
g2 and T,,,, = 4¢ were fitted simultaneously, a process which
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is in disagreement with the theory of reduction. To understand
their analysis, it is necessary to keep in mind that, when their
work was done, the theory of reduction had not been developed
yet. Small and Smith believed that the inclusion of ¢ or 4, is
equivalent for their experimental data set, and furthermore they
did not question the possibility of fitting one of these together
with ¢1,. In fact, as stated in ref 6, the inclusion of both ¢, and
Tor: Was necessary to obtain a good fit to the data. An
explanation for this choice can be seen from the parameters
given in Table 6. Clearly the largest difference between the
parameters for the vs = 1 and vs = 1 states is the much smaller
value of 12¢gy,| for the v = 1 state. This small value can lead to
a violation of the order-of-magnitude limits if the constraint d,
= 0 is applied to define the transformation parameter s (see eq
8c). Since Small and Smith did not consider fitting d,, the
parameters to be fitted had to be chosen in such a way that the
constraint d; = 0 defines the transformation parameter ¢ rather
than s. It follows then that 7., had to be fitted, and this
corresponds to reduction QD. Since fitting the data only with
T Was not sufficient, the value of |F/2| must be too small to
allow ¢, to be constrained to zero, a result already obtained
for vs = 1. The transformation parameter s might have been
defined by the constraint g = 0, but this is rather awkward. It
is worth noting that the fact 7., had to be included in the fit
does not follow from the small value of 13(A — B)I.

There is another interesting feature which can be taken from
Table 6 with regard to OPF;. For both vibrational states, it seems
that none of the well-known reductions can be applied. The
relatively small value of 13(A — B)| prevents ¢ from being
constrained to zero, so that both reductions Q and D can be
expected to fail to reproduce the data. Furthermore, the small
value of |1F/2| should lead to problems in reductions Q and QD.
It then seems to be necessary for both states to fix ¢ to the
ground-state value and to fit ¢;,. For the v5 = 1 state, d, can be
constrained to zero (the resulting model corresponds to model
IT used in this work). However, this choice might not be possible
for v¢ = 1 because of the small value of gy,. It might be
interesting for the understanding of the application of models
of reduction to reinvestigate these two states of OPFs;.

Regional Resonances. In the Introduction, we have intro-
duced the term “regional resonance” for the process in which a
cluster of several closely spaced energy levels strongly interacts
for a large number of J-values. This process leads to the
observation of several series of perturbation-allowed transitions.
We have introduced the term to distinguish this particular type
of resonance from its global and local counterparts. Global
resonances involve levels interacting over a wide range in J,
but the number of strongly interacting levels is typically smaller
(most commonly only two) and the coupling increases with J,
an example being the resonances due to the (2,2) interaction.
Local resonances involve typically two accidentally near-
degenerate levels which interact strongly only over a very
narrow range in J. In general, the resulting shifts of local
resonances are clearly visible in Fortrat diagrams and energy
level schemes. On the contrary, in the Fortrat diagram for the
Q-branch transitions observed in the present work (see Figures
2 and 3), we notice that the reduced energy plots themselves
are rather smooth, but there are sudden changes in the labeling,
changes which are caused by the “regional resonance”.

In the following, we would like to pay particular attention to
the situation in NSF; of interest here, by considering the
development with J of the relative position of the energy levels
in regional resonance, and the development of the decomposition
of the corresponding eigenvectors in terms of the usual
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Figure 5. Relative position of the energy levels k/ = 0, —1, —3 and
—4 for NSF; (v5 = 1). Calculated with (a) all off-diagonal interaction

terms or (b) with the (2,2) interaction as the only off-diagonal
interaction.

symmetric top basis functions. In Figure 5a, we have plotted
the reduced energy (pure vibrational and rotational terms
neglected) and consequently the relative position of the four
lowest lying levels of E-symmetry (within a J-block) against
the quantum number J. The levels change their relative positions
upon change in J and two crossings are easily detected, both
associated with local resonances. The first one is between the
two higher levels shown in Figure 5a, namely those with kI =
—4 and kI = 0 at J = 26/27. The second one is a crossing of
the two lower levels, namely those with kl = —3 and kl = —1
at J = 30/31. The first crossing allowed the observation of the
perturbation-allowed transitions with selection rule (kI = +2)
<> (kI = —4). The second crossing leads to even larger frequency
shifts, and perturbation-allowed transitions could be observed
following the selection rule (kI = +3) <> (kI = —3) for J =
30,31.

There are two additional changes in the relative ordering of
the two lower levels, both caused by the regional resonance.
However, these are not as obvious as the ordering changes
associated with the two crossings mentioned above and they
are only noticed when following the labeling of the states. The
kIl = —3 and kIl = 0 levels change their relative position at J =
42/43, and the kIl = —1 and kI = 0O levels at J = 51/52. The
levels have been labeled by their dominant basis function. These
changes appear to be somewhat mysterious since it is difficult
to find any indication of the labeling change from the relative
positions of the associated levels, and it is impossible to identify
J-value for the changes from the plot. Note that for J] > 35 the
three lowest levels in Figure 5a are shown as levels a, b, and
¢ in order of increasing energy in Figure 4.

In Figure 5a, starting at low values of J, one can easily follow
the levels at the crossing of Kl = —4 and kI = 0, and at the
crossing of kI = —3 and kl = —1. At higher values of J, the
three lowest levels stay in rather stable relative positions, not
indicating any additional energy shift. Nonetheless, the labeling
changes. Furthermore, as further fits revealed (not shown here),
the labeling depends on the reduction or model chosen. The
labeling indicated in Figure 5a was derived using reduction D.
To give more insight into this change of labeling, we consider
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Figure 6. (a—c) Contribution of basis states to the levels a, b, and ¢
(kl = 0, —1, =3) of NSF; (v5 = 1).

the mixing coefficient ¢; = [ljlJ which represents the contribu-
tion of the basis state lillto the eigenstate |jlJ. Figure 6 shows
lc;l as a function of J for three selected levels (kI = 0, —1,
—3). Except for the above-mentioned crossings at J = 26/27
and J = 30/31, we follow the levels in Figure 6 according to
their relative position in Figure Sa, and not according to their
labeling by their dominant basis function. The method adopted
for following the levels in Figure 6 corresponds to the levels
connected by solid lines in Figure 5a. For example, the
contribution of basis states is shown in Figure 6a for the lowest
level for J < 31 and the second lowest for J = 31.
Inspecting Figure 6, one can easily recognize the local
resonance at J = 30/31 from the peaks in the contributions of
the |kl = —3> and |kl = —1> basis states in Figures 6a and
6b, respectively. Similarly, the resonance at J = 26/27 can be
easily recognized from the peak of the contribution of the |kl =
—4[basis state in Figure 6¢. For higher values of J, the levels
are strongly mixed; especially for J between 35 and 65, several
basis states contribute to the eigenstates of the corresponding
levels. In this range in J, we use the term regional resonance
where typically more than two basis states are contributing to
the eigenstates over a large range of J-values. At even higher
values of J, the resonance becomes global in nature. The (2,2)
interaction provides the strongest mixing, and consequently each
eigenstate consists primarily of two basis states with |1£k, [ =
F10and I+=(k + 2), I = £ 10U In particular in Figure 6a, the
basis states |kl = OUand kI = +2[Jare dominant; in Figure 6b
Ikl = —1L] kKl = 430 and in Figure 6c, Ikl = =30kl = +50]
The different resonances lead to different types of transitions.
The local resonances for J = 26/27 and J = 30/31 are due to
the (2, —4) interaction which made possible the observation of
perturbation-allowed transitions with selection rule A(k — ) =
+6. These particular resonances occur because the first order
energy differences AE between the levels connected by the (2,
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—4) interaction are accidentally very small (AE = 4(k + 1)[
(2(A — B) + AQ)] with (2(A — B) + Af) = —52 MHz and k
corresponding to the level with kI < 0). The global resonance
induced by the (2,2) interaction allows the observation of direct
[-type resonance transitions with A(k — /) = 0 for J > 15 and
G = 0 to 3. The limitation in J and G is mainly due to the
spectral ranges covered by the spectrometers used and the
weaker (2,2) interaction at low J. For the regional resonances,
an interplay of practically all the off-diagonal interactions leads
to strong mixing with several basis states contributing. Because
of this, it was possible to observe a large number of A(k — )
= 43 and =£6 perturbation-allowed transitions following various
detailed selection rules. For E-symmetry, six types of transitions
(four in addition to the two direct /-type resonance transitions)
should be observable due to the strong mixing and are predicted
for the spectral range covered. Five of these have been measured
for several values of J. For example, the observation of the
transitions with (kI = +3) <> (kI = 0) was only limited by the
spectral range (18—26.5 GHz) of the spectrometer employed.
Measurements of transitions following the selection rule (kI =
+3) <> (kI = —3) were only successful for J = 41 and 42. For
these values of J, the kI = —3 level is at lower energy than the
kl = 0 level and the (kI = +3) <> (kI = —3) transitions are the
extension to lower frequencies of the (kI = +3) < (kI = 0)
series, see Figure 3b (in this discussion, the transitions observed
for / = 30 and 31 are not considered because these are due to
a local resonance).

For both A, and A, symmetries, the situation is quite similar,
but the number of perturbation-allowed transitions observed for
each series was even larger because significantly more transi-
tions fall into the spectral range covered.

Calculations with the (2,2) interaction as the only off-diagonal
interaction included are shown in Figure 5b. It is seen, for
example, that a crossing of the kl = —1 and k/ = 0O levels is
predicted at J = 53/54, whereas in reality this crossing does
not occur. The comparison with Figure 5a leads to the
conclusion that the other off-diagonal interactions just balance
the effect of the (2,2) interaction in the region of the regional
resonance. As a result, the energy levels stay more or the less
in the same relative position, with their spacing being rather
stable. This competition of interactions leads to the strong
mixing of several basis states. The effect is very pronounced
for the lowest lying levels of E-symmetry because in this case
three interacting levels are relatively close.

Measurements of the hyperfine structure of the “regional
resonance’ transitions show that the properties of the eigenstates
are more sensitive to the relative position of levels than to the
identity of the particular one of the many basis states that is
dominant. Through the associated range in J, many of the basis
states in each of these eigenstates are of comparable importance.
The properties of the eigenstates are an average over those of
the contributing basis states, and this average changed relatively
little when the mixing coefficients change by the small amounts
needed to promote a different basis state to the first rank.
Consequently, it is more constructive to label the eigenstates
by their relative energy (as was done here) rather than their
dominant basis function. The conclusion regarding the sensitivity
to the relative position is supported by the fact that transitions
following the selection rule (kI = +3) <> (kI = —3) could only
be measured if the k/ = —3 level is at lower energy than the k/
= 0 level. Transitions from the kI = +3 level to the upper level
with kI = —3, kIl = —1, and kIl = 0 could not be observed.

Parameters Determined in the Two Chosen Models. All
parameters determined in both the ground and s = 1 vibrational
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states are of the correct order of magnitude except the L
constants. The internal consistency of most of the parameters
has carefully been tested and verified using relations resulting
from the theory of reduction.

The regional resonance in the vs = 1 vibrational state allowed
the precise determination of the A rotational constant. The
precision obtained is similar to that in previous investigations
(see, e.g., ref 1). However, because the measured transitions
sampled a considerable variety of different selection rules, the
value of A shows a correlation with AC that is smaller than usual:
0.92 as compared to typical values of 0.99. The presently
determined value of A as given in Table 4 is significantly larger
and more precise than those obtained by Small and Smith® for
vs = 1 (5182 MHz) and for v = 1 (5178 MHz).

The constants D; and Dk are well determined (error < 100
ppm) in the ground and the vs = 1 states, and are in good
agreement with those reported in ref 6. The regional resonance
allowed the determination of Dy, which is in general not possible
for direct /-type resonance spectra even if strong local resonances
affect the observed transitions. This parameter is well determined
(error ~1%) and shows no strong correlation with any other
parameters. The constants H;, H,k, and Hg, were determined in
the ground-state with a precision of about 2—4%. The results
for the L constants in the v5 = 1 state should be considered as
effective values. The parameters of off-diagonal centrifugal
distortion terms, € and /5, are well determined. The values of
h; obtained in the ground-state and the vs = 1 excited state
(reduction D) differ by roughly 20%.

The lower order z-Coriolis constants AZ, 1, and 5k are well
determined and show no severe correlations (correlation coef-
ficients <0.97). Compared to the result of —1169.4 MHz in ref
6, the present value of —1158.8 MHz for A¢ differs considerably
which parallels the result for A. For the higher order z-Coriolis
constants (7, 0), the set obtained in model II seems to be more
reliable since the correlation between 7x and og; is less
pronounced. The precision is between 0.3% and 3%.

Finally, the parameters of the off-diagonal (2,2), (2,—1) and
(2,—4) interactions have been precisely determined. The ac-
curacy is better than 0.001% at second order (g2, q12); better
than 0.1% at fourth order (5, £, fi2, fi); and better than 1% at
sixth order (f#, fi5). Thus even at sixth order, the constants have
been accurately determined.

A comment should be made about the relative signs of the
off-diagonal parameters of the molecular Hamiltonian of the
degenerate vs = 1 level. It is well established? that, from the
direct analysis of only rotational data, it is not possible to
determine the absolute sign of the leading parameter g, of the
(2,2) I-type interaction and consequently its expansion terms.
In addition, according to the phase conventions discussed in
ref.,? the sign of the parameter f}, is linked to the sign of ga».
These sign relations can be represented by the arbitrary factor
&, = =4 1 used in Tables 3 and 4 of ref.? In a similar manner,
only the relative signs of the parameters g, €, and d; for the
interactions with A(k — [) = £3 can be determined. The sign
ambiguity of ¢, can be resolved by analyzing infrared data when
the "Qy branch and one of the "Py/'R, branches can be assigned.
Unfortunately, the "Q, branch is frequently congested and of
no use in this regard. In such a situation, one can often still
determine the sign of g, by simulating the intensity distribution
in the perpendicular vibration—rotation band.

In the present case, only rotational data are available, but
reduction theory can provide another method of determining
the sign of g,. This method is based on eq 4 that links the
difference Ag, in values of the ¢, parameter in the two
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reductions to the difference Ae in ¢ for the same two reductions.
From this relationship, the sign for ¢, results as negative from
the relative sign of Agj, and Ae and the known signs of the
other parameters in eq 4. The important point is that Ae is fixed
and Ag, results from the fits with the relative sign of the
differences clearly determined. In the present case the magnitude
of ¢ has been taken from the fit of the ground-state data.
Furthermore, it has been assumed that the sign of ¢ is known,
as positive in this case, as follows from the sign assumed for
the ground state (see section 4). However, the theory of
reduction itself is consistent with the existence of a second
parameter set with ¢ > 0, but in this case g, with opposite
sign but with a different magnitude of g,. It is also consistent
with parameter sets with ¢ < 0 which have been discarded
beforehand. Any combination of these parameter sets fulfils eq
4 based on a negative sign of gy.

This method to determine the sign of ¢, can be applied to
any symmetric top molecule with Cs, symmetry in the degener-
ate vibrational state v, = 1. Besides the fits following the
standard reductions a fit has to be performed with one parameter
of a A(k — [) = 3 interaction fixed. In case the fixed parameter
is €, eq 4 can be used to determine the sign of ¢, in case g,
or d, are the parameters fixed, the corresponding relations might
be obtained from eq 7.

6. Conclusion

We have investigated the rotational spectra of NSF; in the
ground and vs = 1 vibrational states to test the applicability of
models of reduction of the effective Hamiltonian to a molecule
which is close to a spherical top, but not an extreme case. For
the ground state, the R-branch data set was extended signifi-
cantly, but no Q-branch transitions could be observed. The
standard models with the Ak = +£3 interaction (reduction A)
or Ak = %6 interaction (reduction B) constrained to zero were
applied successfully. Both models led to practically the same
quality of fit and the unitary equivalence of both parameter sets
has been demonstrated. In contrast to the related molecule OPF;
which is closer to the spherical-top limit, the value of A — B is
not small enough to lead to a violation of the order-of-magnitude
limits for the transformation parameter #, a violation which
would not have allowed the application of the constraint ¢ = 0.

The »s = 1 vibrational state shows anomalies in the
rovibrational structure. The clustering of levels at low K leads
to a regional resonance extending over a large range of J, which
in turn allows the observation of a considerable number of
Q-branch perturbation-allowed transitions. In addition, R-branch
transitions and direct /-type resonance transitions have been
observed. The analysis of the data shows that models using ¢,
constrained to zero (reductions Q and QD) fail to reproduce
the transition frequencies measured. This can be explained as
being due to the small absolute value of F = (A — B + 2A{)
which makes the transformation parameter s exceed its order-
of-magnitude limits. Using reduction D, the data set was
reproduced very well showing that the constraints ¢ = 0, d; =
0 can be applied. This is in agreement with the result obtained
for the ground-state with respect to the constraint ¢ = 0.
Furthermore, an alternative model with d; = 0 and ¢ constrained
to the ground-state value obtained with reduction B was applied
to test the internal consistency. This second model proved to
work equally well and it has been demonstrated that the
parameter sets of both models are unitary equivalent.
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Appendix

The Hamiltonian employed in the calculations of vibration—rotation
levels had the following form. The diagonal matrix elements
up to sixth order were taken as follows:

EX(J,k,)=E,+BJ(J+ 1)+ (A,— B)k*— D'*(J +
1)’ = DY J(J + DK — Dok’ + HoP (T + 1) + Hy () +
DK+ HY (T + DI+ Hk + L2+ 1)+ LY, S0+
DY+ LT+ 1)+ LY J(T + DK+ Lok +
[—2(AQ), + n"J(J + 1) + i + TP+ 1) + 20 J(J +
DK + 7ok 4+ 04 + 1) + 0 P+ 1)K + 0%, J(J +
Dk + 0%k 1kl (A1)

Clearly, the [-dependent terms apply only to the vs = 1
vibrational state. For (v5 = 1), the following off-diagonal matrix
elements of /-type operators were taken into account:

@250, k= 2IH,, + Hy, + Hyllo!sJ, k0= 2{ gy, + forJ(J +
D)+ /51K + (k+ 22 + £ + 1)V FE(JL k) (A2)

D720, k + 1H,, + H, 0, k0= 2[q,, + ¢, J(J + 1)] %
k=4 1)F;(J,k) (A3)
@720, k 4+ 4H,, + H, vk J, k0= 2[f,, + f1,J(J + DIF;(J, k)
(Ad)
For both states studied, matrix elements of the operator for the

(Ak = £3) interaction was taken in the form

@50, k 4 3IHy, 0l J, kO= ek £ 3)F5(J, k) (AS)

and of the operator for the (Ak = = 6) interaction in the form

@3J, k= 6IHy(lo'sJ, kC= hyFe (J, k) (A5a)

The matrix elements of rotational shift operators were taken
in the conventional form as follows:

Fi(J, k)= |‘|;?=1 JUJ+1)—(k+iF Dk+i)]" (A6)

Supporting Information Available: Text file giving the
spectral data (frequencies of transitions) for the ground and the
vs = 1 vibrational state, denoted as S1 and S2, respectively.
This material is available free of charge via the Internet at http://
pubs.acs.org.
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