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A new, efficient, configuration-driven algorithm utilizing the unitary group approach (UGA) was developed
and implemented for the generalized van Vleck perturbation theory (GVVPT) variant of multireference
perturbation theory. The computational speed has been improved by 1 or 2 orders of magnitude compared to
the previous implementation based on the Table-CI technique. It is shown that the reformulation is applicable
to both the second-order (GVVPT2) and third-order (GVVPT3) approximations. Calculations on model
problems and on a chemically realistic description of cyclobutadiene are used to illustrate the performance of
the method. The calculations on cyclobutadiene, using over 2.3 billion CSFs, provide results on geometric
parameters and the barrier height of the automerization reaction in good agreement with established high
accuracy results.

I. Introduction

Generalized van Vleck perturbation theory (GVVPT)1-3 is
distinguished from other multireference or quasidegenerate
perturbation theories in that it is subspace-specific and allows
for the interaction of the perturbed states of interest with the
unperturbed complementary states. By using a degeneracy
corrected reference state energy in the resolvent, as well as a
hyperbolic tangent function as a switching function from
nondegenerate to degenerate states, the notorious “intruder-state”
problem is avoided completely. As a consequence, both ground
and excited potential energy surfaces (PESs) generated by
GVVPT are rigorously continuous and differentiable. GVVPT
is also inherently spin-adapted; thus, it is capable of treating
electronic states while maintaining a pure total spin quantum
number. Reliable results have been obtained for a variety of
difficult molecular systems, including difluorodioxirane,4 azoben-
zenes,5 etc., even at second order (GVVPT2), and GVVPT2
appears to be a promising method when large portions of PESs
need to be considered at comparable levels of accuracy.
However, the resolvent in the perturbation series in GVVPT is
nonlinear and each external configuration needs to be handled
explicitly. Because of the central role of configurations, the
configuration-driven Table-CI technique6,7 was selected for
initial implementations of GVVPT methods to evaluate Hamil-
tonian matrix elements. Table-CI is not as efficient computa-
tionally as other modern CI methods, such as those based on
the unitary group approach (UGA),8-14 for the evaluation of
matrix elements over configuration state functions (CSFs) or
their products with trial vectors (i.e., the so-called sigma
vectors). The UGA, especially graphical UGA (GUGA),12-14

has usually been implemented in integral-driven, “loop-driven”,
or CSF-driven manners, which, while very efficient for CI
calculations (especially those using a complete active space

reference), is not well-suited for efficient use in GVVPT theory.
For example, in our recent implementation of a GVVPT code
based on a conventional CSF-based GUGA-CI program, blocks
of Hamiltonian matrix elements were saved successively in fast
memory and resorted implicitly to the corresponding external
configurations. Although some improvements were found rela-
tive to the Table-CI variant, the enhancement of efficiency was
limited. The situation deteriorates for larger molecular systems
where the size of matrix blocks exceeds the available memory
or not all CSFs of one external configuration are accessible with
a reasonable partition size of the Hamiltonian matrix. A similar
dilemma can be expected for other integral-driven or loop-driven
algorithms.

In reality, a configuration-driven algorithm is not incompatible
with the UGA technique. A combination of both has been
realized efficiently in our recently developed multireference
configuration interaction including single and double excitations
(MRCISD) program,15 which we refer to as CFGCI [i.e.,
configuration-driven (UGA)-CI]. In the new CFGCI program,
calculation of sigma vectors is organized by a hierarchy
of comparisons, starting from macroconfigurations (a set of
configurations; see ref 16 for details), then configurations, and
only finally CSFs. The narrowing of possibilities of interactions
allows a significant reduction of conditional execution through-
out the algorithm. Each macroconfiguration is represented by a
modified distinct row table (mDRT), which is different from a
regular DRT8 in that it considers only the occupancies but
ignores the spin of orbitals that have single occupancies. Thus,
every viable path in a mDRT corresponds to one configuration,
while in a regular DRT it represents one CSF. By using mDRTs,
configurations are compared recursively to locate interacting
configuration pairs, which identifies potentially nonvanishing
Hamiltonian matrix elements. In practice, sets of related
configurations can be processed simultaneously. Subsequently,
the required integrals are retrieved and organized if necessary.
Recombining the single orbital occupancies in the configuration
and the precomputed branching spin diagram, the Shavitt step
vectors12 for each CSF in the configuration can be obtained and
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the coupling coefficients evaluated by the UGA technique,
specifically in our case, as proposed by Paldus and Boyle.9

To fully exploit the efficiency of GVVPT methods, GVVPT
codes based on the configuration-driven algorithm with UGA
techniques have been developed. In the new CFGCI-based
GVVPT, interactions of each external configuration with all
model configurations are conveniently considered together for
both eigenvectors (X) and sigma vectors (σ ) HX). All coupling
coefficients are calculated “on the fly”, so there is no external
“formula file” and correspondingly very little I/O or memory
requirement. Although Hamiltonian matrix elements are evalu-
ated twice, to minimize memory usage and/or bandwidth usage,
the overall speed-up relative to the original Table-CI-based
algorithm is several orders of magnitude. Furthermore, memory
usage is not a significant concern for GVVPT2, since the largest
memory requirement in GVVPT2 is the storage of a small subset
of the two-electron integrals, which scales as a2k2 for a active
orbitals and k external orbitals. With modern computers having
at least 2 gigabytes of memory per processor, this allows
calculations of molecular systems with 20 active orbitals and
up to 1000 external orbitals to be performed on a single node.
In practice, it has been found that the computation time of the
new GVVPT2 code is much less than that of the preceding
multiconfiguration self-consistent field (MCSCF) in some large
cases. Although we make no claims of particularly fast MCSCF
code, on account of our rigorous control of Hessian eigenvalue
structure, the code should be considered to be a modern,
production caliber MCSCF code. Our main goal in this Article
is to give a detailed account of the configuration-driven
algorithm of UGA-based GVVPT.

In third-order GVVPT (GVVPT3), the total energies include
all orders of energy corrections based on the first-order
primary-external space (P-Q) interactions, which are calcu-
lated in GVVPT2. GVVPT3 has been demonstrated to be a close
approximation to MRCISD, and the computation effort is
equivalent to one iteration of MRCISD.17

Some test calculations have been performed for different
GVVPT2 and GVVPT3 codes, and the computation times are
compared with the earlier Table-CI-based algorithm. While the
speed of GVVPT3 code depends linearly on its parent MRCISD
code, the efficiency of the new GVVPT2 code, based on the
CFGCI algorithm, has been greatly improved relative to previous
code. To demonstrate the efficiency of the new GVVPT2 code,
results from a number of diatomics are analyzed and cyclob-
utadiene (c-C4H4), which is computationally unfeasible (with
chemically reasonable basis sets and model space) with the older
code, has been studied in greater detail to provide a concrete
example. The truncated model space of c-C4H4 includes 3094
CSFs and the total space is spanned by 2 389 313 884 CSFs
when using the cc-pVTZ basis set. The GVVPT2 part in a single
point calculation took only 314 s on a 2.0 GHz dual core AMD
Opteron Processor 2212. Although chemical results are not the
primary focus of this Article, we compared the results of
calculations on c-C4H4 with previous high accuracy results. It
was found that the predicted geometries of the rectangular
ground-state and square transition structure of c-C4H4 are in
good agreement with those obtained by the MRAQCC method.18

The energy barrier height for the automerization reaction of
c-C4H4 is predicted to be 7.7 kcal/mol, which is close to the
8.6 kcal/mol predicted by MRAQCC.

The Article is organized as follows. A section on theoretical
background, in which the parts of the GVVPT2 and GVVPT3
formalisms that are needed to understand the UGA implementa-
tion are given, is presented. Then, the configuration-driven

algorithms for GVVPT2 and GVVPT3 are given in detail. Some
test examples are collected and discussed. The conclusions are
given in a final section.

II. Theoretical Background

In GVVPT, the total Hilbert space L is spanned by an
orthonormal set of N CSFs

It is partitioned into a model space LM, often of a CASSCF
type but more generally of a MCSCF type with additional
restrictions on occupancies of orbital groups, and an external
space LQ (whose configurations are related to the model ones
through excitations to external orbitals)

The primary subspace LP ⊂ LM, with dimension Np ) dim(LP),
is spanned by the Np lowest orthonormal eigenvectors, {Φp}p)1

Np ,
of the unperturbed Hamiltonian in the model space

where Ep
(0) ) diag{E1

(0), E2
(0),..., ENp

(0)} is a diagonal matrix with
energies of the unperturbed primary states. The set |ΦP〉 ) |Φ1,
Φ2,..., ΦNp

〉 is connected with the many-electron basis set FM

) |F1, F2,..., FNm
〉 through a transformation matrix CMP

which satisfies the equations

If the molecular orbitals were optimized in an MCSCF calcula-
tion, with the same group and occupancy structure as the model
space, one can recognize the primary space as the set of Np

lowest MCSCF states.
Let us introduce the projectors P̂M ) |FM〉〈 FM| and P̂ )

|ΦP〉〈 ΦP| on the model and primary subspaces, respectively.
Then, the projector Ŝ ) P̂M - P̂ will be a projector on the
complementary (secondary) subspace LS (LP x LS ) LM), and
the following conditions will be satisfied

Figure 1. Automerization of cyclobutadiene.

L ) Span{Fn}n)1
N

LM ) Span{Fm}m)1
Nm

LQ ) Span{Fq}q)1
Nq

〈Φp|H|Φp〉 ) Ep
(0) (1)

|ΦP〉 ) |FM〉CMP (2)

HMMCMP ) CMPEP
(0) (HMM ) 〈FM|Ĥ|FM〉) (3)

CMP
† CMP ) IP (4)

P̂ĤP̂ ) |ΦP〉EP
(0)〈ΦP| (5)
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In the framework of the GVVPT2 method, the effective
Hamiltonian matrix within the model space is defined as follows

where X̂(1) ) -(X̂(1))† and X̂(1) ) Q̂X̂(1)P̂ - P̂(X̂(1))†Q̂.
Although the definition of the complementary subspace

coincides with that in the intermediate Hamiltonian approaches,19

GVVPT describes its interaction with LQ in a completely
different way, i.e., through coupling through the primary space
(see eqs 10 and 11 for GVVPT2 and eq 28 for GVVPT3). It is
this feature that allows facile avoidance of intruder states as
well as high efficiency algorithms. The most straightforward
definition of the elements of the matrix XQP

(1) is

where εi
(0) and εq

i are Møller-Plesset-type energies, which are
computed from the state-specific one-particle reduced density
matrix Di

(m, n ∈ M, i ∈ P and a, b are occupied orbitals), and state-
dependent orbital energies fµ

i

(i ∈ P and a, b are occupied orbitals; µ is any orbital).
Finally, εi

(0) and εq
i are obtained

εq
i is the state-specific zeroth-order energy of CSF q, which has

the same value for all external CSFs belonging to a given
external configuration (e), and Nµ

q is the occupation number of
orbital µ in CSF q.

The straightforward definition of zeroth-order energy de-
scribed above often leads to small or even sign-reversed
denominators. The GVVPT method adjusts (or shifts) the zeroth-
order energy differences by two considerations. Following
degeneracy corrected perturbation theory for single determinants,
the reference energy is lowered and the energy difference
between εi

(0) and εq
i is calculated in the following way

which considers the quasidegeneracy of the CSFs within each
external configuration. Second, a hyperbolic tangent function
is applied to provide a meaningful bound when the energy
difference ∆i approaches zero. The hyperbolic tangent acts as
a switching function from nondegenerate to degenerate pertur-
bation theory. Thus, the final form for the GVVPT2 coefficients
is

A representation of the effective Hamiltonian matrix in the
basis, |FM〉 , of the model space can be written as

In block matrix form, the above equation can be written as

where CMP are the eigenvectors of the unperturbed model
Hamiltonian matrix, and

The diagonalization of the effective Hamiltonian matrix can
be performed directly using a transformation technique or by
Davidson’s method20 for larger model spaces. Instead of storing
the entire effective Hamiltonian matrix, the contributions to
sigma vectors from the GVVPT2 corrections are evaluated
directly in each iteration. This approach allows large model
spaces to be considered. The σ vectors for the Davidson
diagonalization are evaluated as follows

ŜĤP̂ ) 0 (6)

P̂ĤŜ ) 0 (7)

P̂ĤP̂ + ŜĤŜ ) P̂MĤP̂M (8)

P̂ĤeffP̂ ) P̂ĤP̂ + 1
2

P̂[ĤX̂(1) + (X̂(1))†Ĥ]P̂ (9)

ŜĤeffP̂ ) ŜĤX̂(1)P̂ (10)

P̂ĤeffŜ ) P̂X̂(1)+ĤŜ (11)

ŜĤeffŜ ) ŜĤŜ (12)

Xqi
(1) )

〈Fq|H|Φi〉

εi
(0) - εq

i
(i ∈ P, q ∈ Q) (13)

Dab
i ) 〈Φi|Eab|Φi〉 ) ∑

mn

CmiCni〈Fm|Eab|Fn〉 (14)

fµ
i ) hµµ + ∑

agb

Dab
i [(µµ|ab) - 1

2
(µa|µb)] (15)

εi
(0) ) ∑

a

fa
iDaa

i (16)

εq
i ) ∑

µ
fµ

iNµ
q ()εe

i ) (17)

∆i )
1
2

(εq
i - εi

(0)) + 1
2�(εq

i - εi
(0))2 + 4 ∑

q∈ e

Hqi
2 (18)

Xqi
(1) )

-tanh(∆i)

∆i
Hqi )

-tanh(∆i)

∆i
∑

m∈ M

HqmCmi (19)

P̂MĤeffP̂M ) P̂ĤeffP̂ + P̂ĤeffŜ + ŜĤeffP̂ + ŜĤeffŜ

) P̂MĤP̂M + P̂(X̂(1))†ĤP̂M + P̂MĤX̂(1)P̂ -
1
2

P̂(ĤX̂(1) + (X̂(1))†Ĥ)P̂ (20)

HMM
eff ) HMM + (HX)MPCPM

† + CMP(HX)PM
† -

CMP(CHX)PPCPM
† (21)

(HX)MP ) HMQXQP (22)

(CHX)PP ) 1
2

[CPM
† (HX)MP + (HX)PM

† CMP] (23)

σMR ) HMM
eff BMR

) HMMBMR + (HX)MP(CPM
† BMR)PR +

CMP[(HX)PM
† BMR - (CHX)PP(CPM

† BMR)PR] (24)
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where BMR are the trial vectors for the Davidson diagonalization.
Since the unperturbed model Hamiltonian matrix is sparse, it
is computationally more advantageous to form σ vectors directly
from the unperturbed model Hamiltonian matrix and the
corrections without the explicit construction of the effective
Hamiltonian matrix.

GVVPT3 energies include all orders of energy corrections
based on the first-order P-Q1 interaction. The effective Hamil-
tonian is defined as

where X(1) has been obtained previously in GVVPT2. GVVPT3
energies can be obtained by diagonalizing the effective Hamil-
tonian matrix

The terms on the right side of above equation can be expanded

Explicit determination of the secondary space eigenvectors can
be circumvented, and the effective Hamiltonian expanded in
the basis of the model space can be written as

In the matrix form, the effective Hamiltonian is

where UPP ) (eX(1)
)PP and VPP is defined by

The matrices UPP and VPP can be obtained easily from the
eigenvalues and eigenvectors of the small (i.e., Np × Np) matrix
APP ) XPQ

† XQP

Then

Finally, the σ vectors for the Davidson diagonalization are
evaluated as follows

where

From a computational perspective, the most time-consuming
part of GVVPT3 is the evaluation of matrix XHX, which is
equivalent to one iteration of MRCISD in computation time.

III. Computational Implementation

The most time-consuming step in GVVPT2 is the evaluation
of the correction to the wave function, XQP, and subsequently
the sigma vector (HX)MP. A computational difficulty is that the
value of any Xqp for a given CSF (q) is only available after
evaluation of Hqi for all CSFs belonging to one external
configuration (q ∈ e). Thus, an efficient code requires an explicit
treatment of configurations, which is essentially unavailable from
conventional GUGA-CI codes based on integral-driven or loop-
driven algorithms. Moreover, once the values of Xqp are available
for all q ∈ e, (HX)mi is evaluated, which requires the matrix
element Hqm once again. In principle, it is possible to save the
values of Hqm for all q ∈ e in memory, or on disk, for the
evaluation of (HX)mi. However, there are some drawbacks in
doing so. First, the matrix HQM is sparse, with a nonzero pattern
that is not readily amenable to sparse storage techniques; storage
of the entire matrix causes unnecessary calculations. Second,
for large calculations, the number of nonzero matrix elements
of HQM could easily exceed the available fast memory space.
Temporary storage on disk is not generally viable, since I/O
operations on large disk files are slow, especially when the
writing and reading are interspersed. An alternative is to
recalculate the matrix element Hqm during the evaluation of
(HX)mp. In this case, memory usage is minimized and most
significant usage is for the storage of two-electron integrals,
which scales as a2k2 for a active orbitals and k external orbitals
for GVVPT2. Since the implementation of the new GVVPT2
code, very large calculations have been applied without any
memory issue; e.g., a large calculation with 33 153 model CSFs
and over 18 billion total CSFs was performed and completed
successfully.

ĤU
eff ) (e-X(1)

)Ĥ(eX(1)
) (25)

P̂MĤU
effP̂M ) P̂ĤU

effP̂ + P̂ĤU
effŜ + ŜĤU

effP̂ + ŜĤU
effŜ (26)

P̂ĤU
effP̂ ) P̂e-X(1)

(P̂ + Q̂)Ĥ(P̂ + Q̂)eX(1)
P̂ (27)

P̂ĤU
effŜ ) P̂e-X(1)

Q̂Ĥ(P̂M - P̂) (28)

ŜĤU
effŜ ) ŜĤŜ (29)

P̂MĤU
effP̂M ) P̂MP̂e-X(1)

P̂ĤP̂eX(1)
P̂P̂M +

P̂MP̂e-X(1)
Q̂ĤP̂eX(1)

P̂P̂M + P̂MP̂e-X(1)
P̂ĤQ̂eX(1)

P̂P̂M +

P̂e-X(1)
Q̂ĤQ̂eX(1)

P̂P̂M + P̂MP̂e-X(1)
Q̂ĤP̂M -

P̂MP̂e-X(1)
Q̂ĤP̂P̂M + P̂MĤQ̂eX(1)

P̂ - P̂MP̂ĤQ̂eX(1)
P̂P̂M +

P̂MĤP̂M - P̂MP̂ĤP̂P̂M (30)

(HU
eff)MM ) CMPUPP

† HPPUPPCPM
† +

CMPVPP
† XPQ

† HQPUPPCPM
† + CMPUPP

† HPQXQPVPPCPM
† +

CMPVPP
† XPQ

† HQQXQPVPPCPM
† + CMPVPP

† XPQ
† HQM -

CMPVPP
† XPQ

† HQPCPM
† + HMQXQPVPPCPM

† -

CMPHPQXQPVPPCPM
† + HMM - CMPHPPCPM

† (31)

(eX(1)
)QP ) XQP

(1) VPP (32)

APP ) TPPDP
2TPP

† (TPP
† ) TPP

-1) (33)

UPP ) (eX(1)
)PP ) (cosh X(1))PP ) TPP cos DPTPP

† (34)

VPP ) TPP(DP
-1 sin DP)TPP

† (35)

σMR ) (HU
eff)MMBMR

) HMMBMR + CMP(YPP(CPM
† BMR)PR +

(ZPM
† BMR)PR) + ZMP(CPM

† BMR)PR (36)

YPP ) UPP
† EPUPP - EP + (HXV)PP

† UPP +

UPP
† (HXV)PP + VPP

† (XHX)PPVPP - (HXV)PP
† - (HXV)PP

(37)

ZMP ) (HXV)MP (38)
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It is clear that when the denominator ∆i in eq 19 approaches
zero, numerical instabilities are a possibility and there is need
for simultaneous consideration of numerator and denominator.
In particular, one can set Xqi ≡ -Hqi, when the absolute value
of ∆i is smaller than a certain threshold, e.g., 10-7.

Following the CFGCI algorithm,15 the evaluation of XQP and
(HX)MP starts with macroconfigurations, which are sets of
mathematically well-defined configurations.16 The details of the
generation of configurations from a compact mDRT representa-
tion of macroconfigurations will be discussed in a separate
publication.15 The orbitals are partitioned into core orbitals that
are always doubly occupied in all configurations, virtual orbitals
that are always empty in all configurations, internal orbitals that
have a nonzero occupancy in at least one reference (model)
configuration, and external orbitals that are empty in reference
(model) configurations, but can have a nonzero occupancy in
excited (external) configurations. While the treatment of the first
two kinds of orbitals is trivial, the internal and external orbitals
are handled separately for the sake of efficiency.21

The algorithms for GVVPT2 and GVVPT3 are given in detail
below. The superscript on Xqi

(1) indicating first-order P-Q1

interactions is dropped for clarity.
(0) Initialization: memory allocations, etc.
(1) Calculate diagonal elements of the model Hamiltonian

matrix Hmm (m ∈ [1, Nm]). Calculate the off-diagonal
elements in matrix HMM and store the nonzero elements.
Diagonalize HMM to obtain the model CI vectors CMP

and energies of the primary states, Ep
(0), p ∈ [1, Np].

(2) Calculate the one-particle reduced density matrices for
all states, Dab

i , the orbital energies, fµ
i, and the zeroth-

order primary state energy, εi
(0), as defined by a

conventional, Møller-Plesset-type, one-electron Hamil-
tionian for each primary state.

(3) Calculate the GVVPT2 first-order corrections, Xqi, and
matrix (HX)mi ) ∑q∈Q 〈Fm|Ĥ|Fq〉Xqi and (X†X)ij )
∑q∈Q Xiq

† Xqj.
(3.1) Initialize (HX)MP, XQP (HQP), and (X†X)PP.
(3.2) Loop over external (Q-) macroconfigurations

Loop over Qint-configurations (occupancies in
internal orbitals)

Loop over all interacting model (M-) macrocon-
figurations

Loop over model (M-) configurations
If the model configuration interacts with the Qint-

configuration
If XQP is being evaluated:
Calculate Hqi ) ∑m∈M 〈Fq|Ĥ|Fm〉Cmi;
else if (HX)MP is being evaluated:
Calculate (HX)mi ) ∑q∈Q 〈Fm|Ĥ|Fq〉Xqi

(next M-configuration)
(next M-macroconfiguration)
If XQP is being evaluated:
Loop over Q-configurations (all possible occupan-

cies in external orbitals)
Calculate elements in XQP

Calculate εq
i and ∆i

If |∆i| < threshold, Xqi ) - Hqi;
else Xqi ) [ - tanh(∆i)/∆i]Hqi
Calculate (X†X)ij

Go to loop over all interacting M-macroconfigu-
rations to evaluate (HX)MP;

else
Reinitialize XQP (HQP)
Go to next Qint-configuration to evaluate XQP

(4) Calculate (CHX)PP and diagonalize the GVVPT2 ef-
fective Hamiltonian matrix HMM

eff , which is not explicitly
constructed, using Davidson’s method with σ vectors
as in eq 24.

(5) The primary-primary effective Hamiltonian matrix
could also be built and diagonalized (this can be useful
for direct comparison with multistate CASPT2 and
MCQDPT).
(5.1) Calculate HPP

eff ) (CHX)PP + EP
(0).

(5.2) Diagonalize HPP
eff to obtain the eigenvalues and

eigenvectors.
Since GVVPT3 uses the same first-order corrections
generated for GVVPT2, the above algorithm for GV-
VPT2 is executed with the addition of a few more steps.

(6) Calculate (X+HX)PP
(6.1) Initialize (HX)QP

(6.2) Loop over bra Q-macroconfigurations
Loop over ket Q-macroconfigurations
If two macroconfigurations interact,
Loop over bra Qint-configurations
Loop over ket Qint-configurations
If two configurations interact,
Needed integrals are gathered from the whole

array and organized.
Coupling coefficients are evaluated.
Loop over viable configurations for external

orbitals.
Evaluate (HX)qi ) ∑ q,q′∈ Q 〈Fq|Ĥ|Fq′〉Xq'i
(next ket Qint-configuration)
(next bra Qint-configuration)
(next ket Q-macroconfiguration)
(next bra Q-macroconfiguration)

(6.3) Calculate (XHX)ij ) ∑q∈Q Xqi(HX)qj.
(7) Diagonalize XPQ

† XQP ) APP ) TPPDP
2TPP

† , (TPP
† ) TPP

-1).
(8) Calculate UPP and VPP.
(9) Calculate (CHXV)PP ) (CHX)PPVPP, YPP, and ZMP.

(10) Diagonalize the GVVPT3 effective Hamiltonian matrix
(HU

eff)MM, which is not explicitly constructed, using
Davidson’s method with σ vectors as in eq 36.

IV. Test Calculations and Discussion

Calculations for some representative molecules with different
model and external spaces using three GVVPT2 codes were
performed, and the computation times are given in Table 1. Only
one primary state, i.e., Np ) 1, is considered in all cases except
that two primary states (Np ) 2) are calculated for the c-C4H4

molecule. The sizes of the model spaces (Nm) and total spaces
(N ) Nm + Nq) are also given in terms of numbers of CSFs.
Three algorithms, CFGCI, Table-CI, and conventional CSF-
based GUGA-CI, were compared. As we expected, the relative
speed of the three different codes is CFGCI > GUGA-CI >
Table-CI, which is the same as the corresponding MRCISD
speeds. The CFGCI-based GVVPT2 is about 30 times faster
than the Table-CI version for small cases. The speed-up is more
significant for larger molecular systems, especially for larger
model spaces. The computation times by GVVPT3 codes are
about one iteration of their parent CI methods. CFGCI-based
GVVPT3 is 5-11 times faster than the conventional GUGA-
CI counterpart in our test calculations.

The high efficiency of the new GVVPT2 code allows accurate
theoretical study of larger molecular systems at low cost. The
study of the ground state of c-C4H4 by GVVPT2 is used as an
illustration. The stable geometry of the ground state of c-C4H4

is a planar rectangle, as confirmed by many experiments (see,
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e.g., ref 22). It can automerize between two equivalent D2h

structures through a square intermediate. The automerization
reaction has been studied theoretically by highly accurate
MRCC23,24 and MRAQCC methods.18 In a GVVPT2 study, the
choice of model space is critical, as it is in the optimization of
molecular orbitals in the preceding MCSCF. In the study of
c-C4H4, the four lowest molecular orbitals (1ag, 1b1g, 1b2u, 1b3u)
are taken as the core (i.e., doubly occupied in all configurations
of the MCSCF). The valence orbitals are divided into five
groups: (2ag, 2b1g, 2b2u, 2b3u) for σCH; (3ag, 4ag, 3b2u, 3b3u) for
σCC; (3b1g, 4b1g, 4b2u, 4b3u) for σCC

* ; (5ag, 5b1g, 5b2u, 5b3u) for
σCH

* ; and (1b2g, 1b3g, 1au, 1b1u) for πCCπCC
* . The major configura-

tions include four electrons and four orbitals in πCCπCC
* and full

occupancies in σCH and σCC. Single and double excitations from
σCH to σCH

* and from σCC to σCC
* are considered while keeping

four electrons in πCCπCC
* . Up to quadruple excitations from σCH

or σCC to πCCπCC
* , or from πCCπCC

* to σCH
* or σCC

* , are also
included. The configurations in this model space generate 3094
CSFs. We use such a relatively large model space to demonstrate
the efficiency of the new GVVPT2 code and to test the
effectiveness of GVVPT2 in recovering electron correlation
relative to the highly accurate MRCCSD(T) and MRAQCC.
The molecular orbitals were optimized for the two lowest singlet
states (1Ag) using state-averaged (SA) MCSCF with equal
weights of both states. Two primary states were considered in
all GVVPT calculations. The geometry optimization was based
on the energy of the ground state. When the cc-pVTZ basis set
is used, the total space includes 2 389 313 884 CSFs. Despite
its size, the GVVPT2 part of a single point calculation required
only 314 s on a 2.0 GHz dual core AMD Opteron Processor

2212. As shown in Table 2, our prediction of geometry is in
excellent agreement with MRCCSD(T). The automerization
energy barrier predicted by GVVPT2 is 7.7 kcal/mol, which is
close to the 8.6 kcal/mol predicted by the MRAQCC method.18

V. Conclusions

In conclusion, a new GVVPT2 code based on a configuration-
driven graphical unitary group approach CI code (CFGCI) has
been implemented and proved to be much more efficient than
the previous version that was based in Table-CI. The efficiency
of the new algorithm was illustrated by calculations on a set of
model compounds and on cyclobutadiene; speed-ups of 1-2
orders of magnitude have been realized. Geometrical parameters
of both the equilibrium and automerization transition structures
of the conjugated organic molecule cyclobutadiene by the
GVVPT2 method are in close agreement with MRCCSD(T) and
MRAQCC results. The prediction of the energy barrier to
automerization is also in good agreement with MRAQCC. With
this new CFGCI-based code, GVVPT2 can now be used to study
larger systems, including transition states of organic molecules.
GVVPT2 is seen to continue to be a very promising method in
quantum chemistry, and is shown in this study to be amenable
to algorithmic advances that allow it to be applied to challenging
molecules of larger size than previously possible.
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