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The quantum trajectory framework incorporates quantum effects on dynamics through the quantum potential
acting on a trajectory ensemble in addition to the classical potential. A global quadratic approximation to the
quantum potential makes the method practical in many dimensions and captures dominant quantum effects
in semiclassical systems. In this paper the approach is further developed to describe the “double well”
dynamicssa prototype of the proton transfer reactionsswhich exhibits the “hard” quantum effect of tunneling.
Accurate description is achieved by combining the approximate quantum trajectory dynamics with the
population amplitudes in the reactant and product wells. The quantum trajectory dynamics is defined by the
asymptotic classical potentials. The population amplitudes represented in a small basis describe transfer between
the wells. The method is exact if the reactant/product potentials are quadratic and the basis size is sufficiently
large. In the semiclassical regime the trajectory dynamics is approximate and the basis size can be as small
as two functions. The approach is fully compatible with the trajectory description of multidimensional systems
capturing quantum tunneling along the reactive coordinate and zero-point energy flow among all degrees of
freedom.

I. Introduction

Quantum-mechanical (QM) effects in molecular dynamicss
zero-point energy, tunneling, and nonadiabatic dynamicssare
essential for accurate description and understanding of reactions
in complex molecular systems. The proton transfer reactions in
condensed phase are of special practical importance,1-4 yet they
cannot be modeled accurately in full dimension because of (a)
the exponential scaling of the conventional methods of solving
the Schrödinger equation (SE)5 with the system size, and because
of (b) the long-time scale of relevant dynamics.6 While there
are multidimensional quantum approaches based on basis set
contraction and7-9 coherent state representations10,11 as well as
mixed quantum/classical strategies,12-18 a trajectory representa-
tion of large molecular systems has special appeal. (i) Initial
conditions can be sampled with the Monte Carlo techniques
circumventing exponential scaling of exact QM. (ii) All degrees
of freedom (DoFs) can be treated on equal footing avoiding
quantum/classical separation issues.19 (iii) The trajectory de-
scription of heavy particles (such as nuclei) is often more
appropriate than the grid or basis set representations, because
the wave function is highly oscillatory in p f 0 limit. (iv)
Classical equations of motion are cheap to solve: methods of
molecular mechanics20 based on classical trajectories are
routinely applied to high-dimensional systems of hundreds of
atoms. The challenge for the trajectory dynamics methods is
incorporation of the dominant QM effects caused by the wave
function localization.21,22 Therefore, it is logical to consider
representing the wave function in terms of a trajectory ensemble
rather than in terms of independent trajectories as common in
semiclassical methods.23-25

Semiclassical dynamics with the approximate quantum po-
tential (AQP) is based on the de Broglie-Bohm formulation26

of the time-dependent SE. Here and below, the term “semiclas-
sical” is used not in a sense of formal expansions with respect
to small parameter p, but refers to systems for which classical
treatment gives reasonable qualitative description of their
properties and the quantum corrections are small yet important.
In the de Broglie-Bohm formulation the wave function,
represented in terms of the real amplitude A(x,t) and phase S(x,t),

is discretized in coordinate space in terms of the quantum
trajectories (QTs) with positions x and momenta p,

Unlike trajectories of the conventional classical/semiclassical
methods, the QTs evolve according to Newton’s laws of motion
in the presence of the additional quantum potential.

Here m is the mass of a particle. For clarity the formalism is
given for one Cartesian dimension suppressing arguments of
functions if unambiguous. Generalizations can be found in ref
27.

The time evolution of the wave function density, F(x,t) )
A2(x,t), along the trajectory, that is, in the Lagrangian frame of
reference, is given by
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ψ(x, t) ) A(x, t) exp( i
p

S(x, t)) (1)

p(x, t) ) ∇ S(x, t) (2)

U ) - p
2

2m
∇ 2A(x, t)

A(x, t)
(3)
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From eq 4 it follows that for closed systems the probability of
finding a particle in a volume element associated with each
QTsthe trajectory “weight”sremains constant in time,28

Therefore, the QT description, which is equivalent to the time-
dependent SE, provides an ideally compact coordinate space
representation of ψ(x,t). The quantum behavior is compressed
into a single nonlocal quantitysthe quantum potential given
by eq 3.

QTs provide an intuitive visualization of the wave function
density evolution,29 and the formalism has been extended to
nonadiabatic dynamics,30-32 to the phase-space representations,
to the density matrix approaches,33-40 and to the arbitrary
coordinate systems.27 Several high-dimensional exact QT ap-
plications have been reported,41,42 but for general, even low-
dimensional systems the exact implementation is impractical
because of the singularities in the quantum potential.43-46 This
motivated some interesting alternative implementations based
on the Taylor expansion of the equations of motion,47,48 on the
bipolar decomposition of wave functions,49,50 and on the
complex QTs.51

We use the QT formalism as a basis for a well-defined
semiclassical propagation method using a single approximation
to the quantum potential.52 The classical limit can be defined
as the AQP being zero. When the AQP is determined with high
accuracy, the formulation approaches full QM limit. We are
interested in the intermediate regime when the AQP is simple
enough to be determined globally (in other words, it is
determined for all trajectories at once, without analyzing the
vicinity of each trajectory separately), making it efficient and
practical in many dimensions, and at the same time is accurate
enough to describe leading quantum effects in semiclassical
regime appropriate for dynamics of nuclei.

The central idea is to determine the AQP from the global
least-squares fit to the nonclassical component of the momentum
operator,

at each time t in a small basis fb(x). The physical motivation
for focusing on r(x,t) is that it complements the classical
momentum p(x,t) to give a full description of the quantum
trajectory ensemble and that its effect on dynamics vanishes as
p f 0. The least-squares fit procedure is reducible to the system
of linear equations of the size of the basis. The matrix elements
can be found from a single summation over trajectory weights
given by eq 5, which eliminates numerical difficulties associated
with small A(x,t) in eq 6, because r(x,t) is formally multiplied
by A2(x,t) in computation of average quantities. The energy is
strictly conserved because the least-squares fit of r weighted
by the wave function density is equivalent to the variation of
the average AQP53 with respect to the fitting parameters. The
linear basis gives exact Gaussian wavepacket dynamics and
describes the dominant QM effects in general systems.54 In
principle, the method can be taken to the exact QM limit using
subspaces54 or complete bases,55 though it might be expensive

if the interference effects on dynamics are large. The methodol-
ogy has been also extended to nonadiabatic systems using the
complex population amplitudes on multiple electronic surfaces.31,56

Most importantly, the approach is cheap with essentially linear
scaling of the numerical effort with the system size.

The AQP method has been applied to several triatomic
reactive systems in gas phase,54,56 where the leading quantum
effects were reproduced on the reaction time scale of a few
molecular vibrations. Dynamics studies of complex molecular
systems, however, may require propagation for picoseconds. To
this end, the original approach has been extended to give stable
description of ZPE in anharmonic degrees of freedom.57 The
key was to treat dynamics of classical and nonclassical
components of the momentum operator given by eqs 2 and 6,
respectively, on equal footing which balances errors,

and to compensate for the truncation of equations of motion on
the level of equations. Model calculations were performed for
an unbound reactive coordinate in the presence of up to 40
Morse oscillators. The wavepacket coherence and associated
with it “quantum” energy 〈U〉 , which is one-half of ZPE for the
harmonic oscillator eigenstates, were reproduced for hundreds
of oscillation periods. In the remainder of the paper we address
the outstanding methodological challenge: description of bound
reactive dynamics compatible with the trajectory description of
the high-dimensional anharmonic bath.

II. Bound Dynamics with Tunneling

In general, semiclassical methods are not expected to ac-
curately describe “hard” quantum effects, such as tunneling and
interference. In this regime, the exact QT dynamics is numeri-
cally unstable, because the exact quantum potential of eq 3 is
singular due to the nodes of ψ(x,t). The AQP trajectories are
stable, but quantum forces quickly become inaccurate, trajec-
tories decohere and dynamics becomes essentially classical. For
an initially localized wave function evolving in the double well
potentialsa prototype model of the proton transfer in condensed
phasesthe key dynamics feature is tunneling between the
“reactant” and “product” wells. To capture this “hard” quantum
effect in the trajectory framework, we represent the wave
function as

Wave functions φ1 and φ2 evolve independently of each other
in the asymptotic potentials of reactants and products V1 and
V2, respectively, according to the SE

For chemical systems, asymptotic dynamics can be sufficiently
simple to be accomplished semiclassically with two ensembles
of the AQP trajectories. Below the superscripts will label
quantities associated with trajectories in these two ensembles.

d
dt
F(x, t) ) ( ∂

∂t
+ p

m
∂

∂x) F(x, t) ) -∇ p F(x, t) (4)

w(x) ) F(x, t) δx(t),
dw
dt

) 0 (5)

r(x, t) ) ∇ A(x, t)
A(x, t)

≈ cb · fb(x) (6)

m(dp
dt

+ ∇ V) ) (r + ∇
2 )∂r

∂x

-m
dr
dt

) (r + ∇
2 )∂p

∂x
(7)

ψ(x, t) ) �1(x, t) φ1(x, t) + �2(x, t) φ2(x, t) (8)

ip
∂φj

∂t
) p

2

2m

∂
2
φj

∂x2
+ Vjφj, j ) 1, 2 (9)
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The tunneling or population transfer between the two wells
under the influence of the full potential V is accomplished
through the complex amplitudes �1 and �2. These two functions
will be represented in a basis fbof Nb polynomials, for example
in the Taylor basis fb) (1,x,x2,...):

Multiplication of the SE for the function ψ given by eq 8 by
the components of the total basis of ψ,

and integration over x gives a linear system of differential
equations for the basis coefficients cb,

Equation 9 has been used to obtain the last result. Matrix S,

is the time-dependent overlap matrix of the size 2Nb. The right-
hand-side of eq 12 is a “partial” Hamiltonian matrix H,

containing the derivatives of �i as well as the potential energy
terms. The matrix is constructed as the outer product of the
basis function vector Fb given by eq 11 and the vector Kb + Πb
whose elements are given by

where j ) 1 for 1 e i e Nb and j ) 2 for Nb + 1 e i e 2Nb.
In the AQP implementation, the integrals in the diagonal

blocks of the matrices can be readily expressed as sums over
trajectory weights,

k indexing the trajectories. In the minimal basis set, Nb ) 1,
related to the two state representation of the system58 there are
no kinetic energy terms. The AQP dynamics is exact for
Gaussian wave functions governed by the harmonic asymptotic
potentials V1,2. Functions φ1,2 and their derivatives are known
analytically in this case, and the whole approach becomes exact
for a sufficiently large basis for �1,2. In the semiclassical regime
in order to use the minimal basis for �, we can define
anharmonic V1,2 and use the approximate evolution of r and p
given by linearized and stabilized eq 7.57 Then, the derivatives
of φj at the trajectory positions are

In the off-diagonal matrix elements, 〈φ1|o(x̂)|φ2〉 we use the
linearization parameters of r and p, already available from the
AQP dynamics, for evaluation of φ2 at the positions xk

(1) of
the first trajectory set and vice verse. The mixed-type integrals
are evaluated in a symmetrized fashion,

The ratio of the wave functions, z(x) ) φ2(x)/φ1(x), is found
from the linearizations of r(j) and p(j) as well.

Note that the overlap matrix S is Hermitian and, generally,
is time-dependent. The Hamiltonian matrix H is complex and,
generally, is nonsymmetric. Conservation of the total wave
function normalization,

can be expressed as

Equation 21 is not necessarily satisfied in the course of the
approximate dynamics.

III. Test Applications and Discussion

The first numerical illustration is performed for a total
potential consisting of two harmonic wells coupled by a
switching function,

The asymptotic potentials are

In atomic units, the parameter values are k ) 4,
x0

(1) ) -(2)1/2, x0
(2) ) (2)1/2. The potential is shown on Figure

1a. The initial wave function is a Gaussian wavepacket localized
in the left well,

The initial “image” Gaussian φ2 has the same form as φ1 with
q0

(2) ) -q0
(1) and p0

(2) ) -p0
(1). The corresponding population

functions are �1(x,0) ) 1 and �2(x,0) ) 0. In general, one can
use more compact basis for � if φ2 is chosen such that it has
large overlap with the barrier region at times when φ1 has
significant overlap with the barrier.

Figure 1 shows quantities relevant to the initial wave function
ψ(x,0) ) φ1(x,0) which is an eigenstate of V1 and centered in the
left well, q0

(1) ) x0
(1) on panels a and b. Panels c and d correspond

to the displaced ψ(x,0) with q0
(1) ) x0

(1) - 0.4a0. The particle has a

�1 ) ∑
n)1,Nb

cn(t)x
n-1, �2 ) ∑

n)1,Nb

cn+Nb
(t)xn-1 (10)

Fb ) (f1φ1, ..., fNb
φ1, f1φ2, ..., fNb

φ2) (11)

ipScḃ ) Hcb (12)

S ) 〈Fb X Fb〉 (13)

H ) 〈Fb X (Kb + Πf)〉 (14)

Ki ) - p
2

2m(∂2fi

∂x2
φj + 2

∂fi

∂x

∂φj

∂x ) (15)

Πi ) (V - Vj)Fi (16)

∫ |φj(x, t)2|o(x) dx ) ∑
k

o(xk
(j))wk

(j) (17)

∂φj

∂x |
xs
)xk

(j)
) (rk

(j) + ipk
(j))φj (18)

2〈φ1|o(x̂)|φ2〉 ) ∑
j)1,2

∑
k

o(xk
(j)) wk

(j)z(xk
(j)) (19)

N ) cb†Scb (20)

cb†(i d
dt

S + H - H†)cb ) 0 (21)

V ) 1
2

(V1(1 - tanh κx) + V2(1 + tanh κx)) (22)

Vj ) (x - x0
(j))2/2

φ1(x, 0) ) (2γ
π )1/4

exp(-γ(x - q0
(1))2 + ip0

(1)) (23)
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unit mass. Functions φ1,2 are coherent wavepackets with the width
parameter γ ) 0.5 and zero initial momenta, p0

(j) ) 0. For
eigenstates the classical potential is compensated up to a constant
by the quantum potential. Thus, there is no force acting on the
trajectories evolving under the potentials V1,2 and they remain
stationary. The population of the right well,

as a function of time is shown on panel b. We see that the minimal
basis,

gives a small time-shift in P(t) compared to QM result, whereas
results for the linear basis track the quantum behavior very closely.

On panel c the trajectories for the initially displaced wave
function are shown. The exact QTs for the full potential V are
compared with the trajectories evolving in the asymptotic potentials.
Note the complicated and unstable (!) behavior associated with V
as the wave function is transferred between the wells in “install-
ments” which interfere constructively. The “asymptotic” trajectories
follow the basic coherent oscillatory motion. P(t) on panel d shows
irregular oscillations, which are not well captured in the minimal
basis; linear basis already gives very good agreement and quadratic
basis gives essentially exact result.

The next example involves strongly anharmonic double well,
which is the reactive coordinate potential in the proton transfer
model of Topaler and Makri59 that became the benchmark for
approximate and semiclassical methods. With the particle mass
rescaled to m ) 1 the potential is

The parameters of the initial Gaussian wavepacket given by eq
23 are chosen so that ψ(x,0) resembles the part of the ground-
state localized in the left well: γ ) 4.47, x0 ) -0.77, and p0 )
0. The parameters of the asymptotic potential V1 are chosen to
minimize its deviation from the full potential, 〈(V - V1)2〉 ,
weighted by the initial wave function density |ψ(x,0)|2. The
product asymptotic potential V2 is a reflection of V1, V2(x) )
V1(-x). We consider two asymptotic potentials: (A) the
quadratic potential,

and (B) the Morse oscillator,

The parameters are k ) 34.500, q0 ) 0.741, and D ) 28.204,
z ) 1.114, q0 ) 0.836.

Figure 2a shows the full potential and its asymptotic
approximations, V1

A and V1
B, as well as the initial wave function

density in arbitrary scale. The initial energy of the wavepacket
constitutes 59% of the barrier height. The probability for the
particle to be in the right well given by eq 24 obtained with the
asymptotic dynamics in the quadratic potential is shown on
Figure 2b. Unlike our first example where V (eq 22) has
quadratic potentials as exact asymptotes, to capture the QM
behavior for the quartic potential of eq 26 we need the basis of
�1,2 at least as large as four functions, Nb ) 4, mostly to account
for the effects of the steep wall on dynamics in the well. The
advantage of the quadratic functional form for V1

A is that the
trajectory dynamics of the Gaussians φ1,2 and, consequently,
evaluation of matrix elements are exact. Therefore, we have
the exact QM limit of the new procedure.

The semiclassical description of the same system consists of
the AQP dynamics in the asymptotic potentialsthe Morse

Figure 1. Dynamics in the double well potential with quadratic walls. (a) Potential (black solid line) and QM wave function density, |ψ(x,t)|2, at
t ) 0 (red solid), t ) 7.5 (green dash) and t ) 15 (blue dot-dash). (c) QM trajectories (solid black) and two sets of the AQP trajectories of the new
formulation (red and green dash). (b and d) QM and AQP probabilities of a system to be in the right well. On panels a and b ψ(x,0) is initially
centered at the bottom of the left well, q0

(1) ) x0
(1); on panels c and d ψ(x,0) is initially displaced.

P(t) ) ∫0

∞
|ψ(x, t)|2 dx (24)

ψ(x, t) ) ∑
j

cj(t) φj(x, t) (25)

V ) 14x4 - 20x2 + 50/7 (26)

V1
A )

k(x + q0)
2

2

V1
B ) D(exp(-z(x + q0)) - 1)2
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oscillator of V1
B, which is closer to the full potential in the well

region than V1
A, and a small basis for �1,2. Dynamics under the

influence of V1,2
B has most of the anharmonicity in the well built

into the time-dependence of φ1,2 as illustrated in Figure 2d.
Simple coordinate-independent prefactors (Nb ) 1, eq 25)
capture oscillations in the probabilities rather accurately. Nb )
2 gives agreement with the quantum result of about the same
quality as Nb ) 1. The AQP dynamics is accomplished as
described in ref57 using the balanced time-evolution equations
of p and r. The trajectories corresponding to φ1 are shown on
Figure 2c. Remarkably, for the center of the wavepacket the
difference between dynamics with V1

A and V1
B is not dramatic:

both show low amplitude oscillations. The large amplitude
oscillations in positions of trajectories on the fringes of φ1 are
the result of the stabilization terms, without which trajectories
decohere after t ) 5. The difference in the quality of the minimal
Nb ) 1 description for the two asymptotic potentials, however,
is qualitative. It should be also noted, that the total norm-
conservation expressed by eq 21 is not guaranteed in the
approximate implementation. In the case of Nb ) 1, normaliza-
tion given by eq 20 is conserved better than 1% at all times,
and the mean deviation from N ) 1 is 0.25%. For the basis
with linear functions, Nb ) 2, the maximum discrepancy in the
total normalization is 14% and the mean deviation is 4%. The
probabilities shown on Figure 2 are normalized, though this
operation does not make noticeable changes. Solution of eq 12
for a larger basis size with the AQP dynamics is unstable. Since
the error in normalization with Nb ) 1 is very small we conclude
that the approximate dynamics itself, which does not depend
on the basis size of � is rather accurate. Larger error for Nb )
2 and instability for Nb g 3 can be explained by the errors in
the matrix element evaluations given by eqs 18 and 19 amplified
in the higher moments of larger basis sets. In general, we believe
a combination of small basis set for � with the stabilized AQP
dynamics is appropriate for “semiclassical” systems. Neverthe-
less, the normalization conservation can be, in principle,
included into fitting of r and p in the AQP dynamics, providing
a connection between the basis set and trajectory parts of the

total wave function. This issue as well as multidimensional
applications will be investigated in the future.

IV. Conclusions

We have presented a new approach of describing tunneling
regime of the “double well” within the framework of ap-
proximate quantum trajectories. The central idea is the semiclas-
sical treatment of the semiclassical part of the problems
description of ZPE using the approximate quantum trajectories
to evolve wavepackets in the asymptotic potentials of reactants
and products consisting of single wells. The “hard” quantum
effect of tunneling between the wells is described with the small
basis set of complex amplitudes. The approach is somewhat
similar to the description of another “hard” QM effectss
nonadiabatic dynamics and interferencesdeveloped earlier.32,60

The QM limit of the new approach is well-defined and can be
reached in a straightforward manner by increasing the basis set
size combined with the Gaussian wavepacket evolution, though
it might become expensive for dynamics with strong interference
effects. In the semiclassical regime, the minimal basis combined
with the stabilized AQP in the anharmonic asymptotic potentials
gives a fairly accurate description of the probability oscillations
between the wells. The advantage of the mixed formulation is
that it is fully integrated with the trajectory description of
multidimensional systems. Thus, it will be practical for high
dimensional problems, such as proton transfer reaction in
condensed phase, where the basis can be used for just the
reaction coordinate and QM tunneling is expected to be
quenched by the interaction with the bath DoFs. This is the
direction of our current research.
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