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In this paper we present a theory to describe three-body reactions. Fragmentation processes are studied by
means of the Schrödinger equation in hyperspherical coordinates. The three-body wave function is written as
a sum of two terms. The first one defines the initial channel of the collision while the second one describes
the scattered wave, which contains all the information about the collision process. The dynamics is ruled by
an nonhomogeneous equation with a driven term related to the initial channel and to the three-body interactions.
A basis set of functions with outgoing behavior at large values of hyperradius is introduced as products of
angular and radial hyperspherical Sturmian functions. The scattered wave is expanded on this basis and the
nonhomogeneous equation is transformed into an algebraic problem that can be solved by standard matrix
methods. To be able to deal with general systems, discretization schemes are proposed to solve the angular
and radial Sturmian equations. This procedure allows these discrete functions to be connected with the
hyperquatization algorithm. Finally, the fragmentation transition amplitude is derived from the asymptotic
limit of the scattered wave function.

1. Introduction

The understanding of the dynamics of the three-body problem
is of fundamental importance for the atomic physics and
chemistry communities. Among all the possibilities, focus on
this topic recently shifted toward fragmentation or recombination
processes because they appear in many physical and chemical
reactions.1,2 In this report we address the theoretical treatment
of fragmentation and present a method to deal with these
problems.

A variety of ab initio time-independent methods have been
developed to study fragmentation problems along time. Some
of them have proven to be quite successful, such as the R-matrix,
the J-matrix, the Close-Coupling (including the Convergent
Close-Coupling), and the Exterior Complex Scaling (ECS).3-7

Even when some of these methods share some points with each
other, they differ substantially in the way the boundary
conditions are considered. The formulation of the ECS method
is specially interesting because (i) it concentrates efforts on
finding the wave function corresponding to the reaction process
and (ii) it places the attention over the asymptotic region where
all the particles are far from each other. In this region only
fragmentation channels contribute to the wave function, and the
asymptotes are represented by outgoing spherical waves. There,
the ECS rotates the coordinates to the complex plane producing

an exponential decaying wave function. The strength of the
exponential decay depends on the rotation angle, and for larger
angles stronger decay occurs. This fact is used to numerically
impose the boundary conditions; the wave function is set equal
to zero on a fixed radius on each coordinate. This is justified
for those regions where the exponentially decaying function can
be numerically considered zero.

Very recently our group8-12 introduced a spectral method that
shares some features with the ECS, in the sense that the
boundary conditions are imposed in the reaction region, where
all the particles are far from each other. Instead of introducing
complex rotation of the coordinates, we used Sturmian functions
(SF) with outgoing boundary conditions. These SF are solutions
of two-particle Schrödinger equations where the magnitude of
the potential is the eigenvalue. The outgoing boundary condi-
tions enforce the SF and the eigenvalues to be complex. The
solutions of the Schrödinger equation with a complex potential
have necessarily outgoing or incoming flux depending on the
sign of the imaginary part of the potential. Thus, the SF have
all different flux depending on the eigenvalue considered. The
flux can be associated to arbitrary short or long-range potential
as explained in refs 9-12. This is a systematic and physically
founded way to generate absorbing or emitting optical-like
potentials13-16 which re-create the flux at the boundaries. The
Sturmian wave equation to be solved can be defined to be as
similar as possible to the real problem under study.11,12,17 The
three-body Schrödinger equation is then transformed into a
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nonhomogeneous problem where the inhomogeneity is given
by the action of (H - E) on the initial channel wave function,
where H is the three-body Hamiltonian and E the energy of the
system. A configuration interaction scheme can be implemented
for the scattered wave function as a linear combination of
products of two-particle Sturmian functions. This allows the
Schrödinger equation to be transformed into an algebraic
problem that can be solved by standard matrix techniques. Our
proposal can be considered as a variant of the discrete variable
representation of the ECS method. Two fundamental issues
distinguish our methodology from the ECS: (i) we do not rotate
the coordinates and, more importantly, (ii) the basis set used is
founded on physical grounds. This produces a very substantial
reduction of the amount of computational resources needed to
solve a given problem.9,11,12

The method described before has been implemented for
systems having two light and one heavy particle.11,12 In this
report we extend it to general systems, by using mass weighted
hyperspherical coordinates suitable for a variety of systems with
different masses and interactions. The use of hyperspherical
coordinates facilitates the extraction of transition amplitudes
directly from the asymptotic behavior of the wave function. The
methods implemented in refs 10-12 need to be completely
reformulated. Separable functions in terms of electronic coor-
dinates are not separable in hyperspherical ones. Thus, a
different set of SF from those used in those papers is necessary.
In this paper we propose one way to introduce SF which are
separable in hyperspherical coordinates. Angular and radial
Sturmian functions are defined. The angular ones depend on
five angular coordinates while the radial depends on the hyper-
radius only. Different types of boundary conditions are set for
the radial SF. A numerical strategy which allows the solution
of almost any type of angular and radial potential is discussed.
Once the basis sets are defined, we apply them to solve the
three-body problem. The main aim of this report is to present
the general theory of the method; the application to concrete
physical problems will be soon published elsewhere.

The methodology presented here can be related to the
hyperquantization algorithm of Aquilanti and collaborators.18

This method, which has been successfully applied to study
different reaction problems,19,20 is based on a discrete repre-
sentation of the hyperspherical harmonics. This discretization
considerably simplifies the calculation because it avoids the
evaluation of difficult five dimensional integrals. However, in
the way the method was presented, the discretization used is
only valid for hyperspherical harmonics. It would be of interest
to extend it to include angular and radial potentials into the
basis function to increase the convergence rates of the wave
function expansions. The discretization scheme implemented
here is the generalization of the method used by Aquilanti and
collaborators to discretize the hyperspherical harmonics.

This paper is arranged as follows. In section 2 we present
the basics of the theoretical description of the Sturmian method
for the three-body problem in terms of hyperspherical coordi-
nates. We introduce a parametric separability of the Schrödinger
equation in these coordinates and derive the Sturmian functions
for the hyperangular and hyper-radial variables. In section 3
we develop a numerical approach to solve the algebraic
equations for the system. We also present the relationship
between our method and the hyperquantization algorithm of
Aquilanti. The theory is extended in section 4 to compute
scattering functions and cross sections for this problem. Finally,
we draw some conclusions and envision future directions of
this work.

Atomic units are used unless otherwise noted.

2. Generalized Hyperspherical Sturmian Theory

2.A. Hyperspherical Coordinates. Consider three particles
of masses m1, m2, and m3. The Hamiltonian of the system can
be written in terms of any of three pairs of Jacobi coordinates
rij,Rk,ij. As usual, it is useful to use mass-scaled Jacobi
coordinates xk and Xk

18 (see Figure 1)

for k ) 1, 2, 3 and i * j * k. The two-body reduced mass for
the ij pair of particles is µij ) mimj/(mi + mj), while the three-
body one is µ ) (mimjmk/(mi + mj + mk))1/2. The hyper-radius
F is then defined as

and is independent of the particular choice of k. The remaining
five hyperangular coordinates include the hyperangle

and the polar angles θxk
, φxk

, and θXk
, φXk

defining the orientations
x̂k and X̂k of the Jacobi vectors in the center-of-mass reference
frame. We will drop the subindex k in the following, so the
previous definitions allow us to write x ) F cos R and X ) F
sin R.

The kinetic energy operator takes the form

where Λ2 is the grand orbital angular momentum operator

where j and l denote the rotational and centrifugal angular
momentum operators. Here we are using the asymmetric
hyperangular parametrization.18

The Schrödinger equation for the system of particles to be
considered is

Figure 1. Jacobi coordinates for the three particles.
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where V describes the interaction potentials between the
particles, and we introduced the variable ω5 to represent in
compact form all five angular coordinates. The Sturmian
functions presented here are the solutions of eq 2 but constrained
by two-point boundary conditions on each coordinate. Following
our recent works on atomic systems structure9 and reaction
processes,12 our first aim is to construct a suitable basis set in
hyperspherical coordinates to expand the general solution of
the three-body Schrödinger equation. To this end we assume
the following specific forms for the interaction potentials

These two potentials will be in general solvable and represent
a physical problem similar to the real problem to be solved.
We note at this point that it would be possible to choose more
general potentials depending on the internal angle ϑ )
arccos(x̂ · X̂). However, the algebra would be more cumbersome,
and the introduction of this dependence at the basis level is not
strictly necessary. We split each interaction potential as

Without loss of generality, we assume that the potential V
includes long-range Coulomb interactions in the Jacobi-scaled
coordinates given by the charges Zx and ZX

while V2 is a general arbitrary, physically sound short-range
potential. For example, this potential could describe the
asymptotic initial state of an electron colliding with a hydrogenic
system. In this case the potentials considered allow to include
into the basis set the Coulomb interaction between the target-
electron and the projectile with the nucleus. We assume that U
depends only on the hyper-radius. The potential U1 has a
Coulomb tail U1 f -Z/F for large distances but which might
not be pure Coulombic at short ones, i.e., U1 ) -(Z/F) + U0(F)
with U0 a short-range potential. The potential U2(F), is a short-
range potential where its magnitude � has been conveniently
specified for our purposes. With the definitions given for the
potentials and the kinetic energy the Schrödinger eq 2 is

which is, clearly, nonseparable. Following Macek and Ovchin-
nikov,21 we will proceed to parametrically separate eq 4 as

where the hyper-radius F on the second term of (4) is replaced
by two different parameters rc and rV leading to potentials that
do not depend on F. This enables us to define two sets of
Sturmian functions, one associated to the hyper-radius F and
the other to the hyper-angle R.

2.B. Hyperangular Sturmian Functions. The parametric
separation splits the operator into an hyper-radial and angular
parts, allowing eq 5 to be broken up. Hence, we can construct
the following equation

which is the angular Sturmian eigenvalues equation for the
eigenfunctions Ω(ω5) and the eigenvalues λ. The parameters
rc and rV are assumed to be constants. The potentials C(R)
and V2(rV,R) of (6) depend only on R. Thus, a further adequate
factorization for Ω(ω5) is

where Yjmj
(x̂) and Ylml

(X̂) are spherical harmonics22 and ν
represents all the quantum numbers associated to the five
coordinates. The spherical harmonics do not depend on R,
and then the substitution of (7) into (6) leads to an additional
separation of the equation into a part depending only on the
hyperangle R and a part depending on the other hyperangular
coordinates

The function Hλjl(R)/(sin R cos R) are regular at R ) 0 and
π/2 when the two-point boundary conditions

are satisfied. The fulfilment of these conditions enforces the
discretization of the eigenvalues, which are labeled as λn.
Furthermore, because eq 8 and the boundary conditions (9)
are real valued, the eigenvalues λn are real too. In general,
analytic solution of eq 8 cannot be obtained due to the
presence of the potentials C(R) and V2(rV,R). Thus, a
numerical strategy should be implemented to solve (8), which
we will address in the following sections. The eigenfunctions
Hλnjl are orthogonal

(T + V - E)Ψ(F, ω5) ) 0 (2)

V ) V (F,R) + U(F) (3)

V (F,R) ) V1(F,R) + V2(F,R)

U(F) ) U1(F) + �U2(F)

V1(F,R) ) -
Zx

x
-

ZX

X
) -C(R)

F

C(R) )
Zx

cos R
+

ZX

sin R

[- 1
2µ

1

F5

∂

∂F(F5 ∂

∂F) + Λ2 + 2µFC(R) + 2µF2V2(F,R)

2µF2
+

U(F) - E]Ψ ) 0 (4)

[- 1
2µ

1

F5

∂

∂F(F5 ∂

∂F) + Λ2 + 2µrcC(R) + 2µrV
2V2(rV,R)

2µF2
+

U1(F) + �U2(F) - E]Φ ) 0 (5)

[Λ2 + 2µrcC(R) + 2µrV
2V2(rV,R)]Ω(ω5) )

λ(λ + 4)Ω(ω5) (6)

Ων(ω5) )
Hλjl(R)

sin R cos R
Yjmj

(x̂)Ylml
(X̂) (7)

[- d2

dR2
+ j(j + 1)

cos2 R
+ l(l + 1)

sin2 R
+ 2µrcC(R) +

2µγrV
2V2(rV,R)]Hλjl(R) ) (λ + 2)2Hλjl(R) (8)

Hλjl(0) ) 0 Hλjl(π
2 ) ) 0 (9)

∫ dRHλnjlHλmjl ) δλmλn
(10)
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and form a complete set of functions

The orthogonality and closure condition of Hλjl(R) allow us
to write the following formulas for Ων

where dω5 represents the five dimensional volume element
and δ(ω5 - ω5′) is the symbolic product of the delta functions
corresponding to all the five angular coordinates.

In the particular case in which rc ) rV ) 0, Hλnjl reduces
to

where 2F1(a,b,c,z) is the Gauss hypergeometric function22 and
Nλnjl is a normalization constant, and the separation constant
is defined as λn ) j + l + 2n, where n is zero or a positive
integer. The Gauss function can be related to the Jacobi
polynomial.18

2.C. Hyper-Radial Sturmian Functions. The parametric
separation and the eigenvalue equation defined for Ωa(ω5)
suggests also to factorize the full wave function Φ(F,ω5) as the
product of the radial and the angular functions S�,λ(F) and
Ωa(ω5), respectively

Inserting Φ(F,ω5) into eq 5 results in

Separating the radial and the angular parts, we end up with
the following equation for the hyper-radial function S�,λ(F)

This equation depends not only on the hyper-radius F but
also on the energy E, the angular eigenvalue λ, and �, which is
the magnitude of the potential U2. We can consider (13) as the
Sturmian equation for the eigenfunctions and their eigenvalues
�, while the energy E (either negative or positive) is kept fixed
as an external parameter.8-10 The potentials U1(F) and U2(F)

are referenced as the auxiliary and the generating potential,
respectively. Following,8,9 we introduce the reduced function

into (13) leading to the following equation for S�,λ(F)

This equation has the same form as those used in our previous
works, defining the two-body Sturmian problem in the radial
coordinate.8,9 Boundary conditions at two points are necessary
to define the Sturm-Liouville problem that defines the proper-
ties of the set of eigenvalues �m. The first one at the boundary
F ) 0 is

which ensures the regularity of S�,λ(F) at the origin where
divergences of the potentials might occur. The second condition
determines the behavior of the solution at large distance and
depends on the energy E. Negative energy values require an
exponentially decreasing behavior at large distances. An ad-
ditional logarithmic factor arises when long-range Coulomb
potentials are present on the equation. Assuming, e.g., that U1(F)
) -(Z/F) + U0(F) with U0 a short-range potential, the condition
to be satisfied by S�,λ at large distances is

Here K ) (2µ|E|)1/2. For positive energies there are three
possible asymptotic behaviors. We can enforce S�,λ(F) to have
incoming (-) or outgoing (+) wave boundary conditions with

for long-range potentials. Here K ) (2µE)1/2. The conditions
for short-range potentials U1(F) arise simply by setting Z ) 0
in (17) or (18) for negative or positive energies, respectively.
Alternatively, standing wave behavior at large distances can be
imposed setting

The conditions (16) and (17) are real-valued, as well as the
hyper-radial Sturmian equation. Thus, the spectrum decomposes
in real and discrete eigenvalues. The discretization of the
spectrum occurs due to the fact that the boundary condition (17)
is imposed at a finite value of F ) R. This is true for all the
possible energetic situations considered. The standing wave
boundary conditions (16) and (19) are also real as well as the

∑
m)0

∞

Hλmjl(R′)Hλmjl(R) ) δ(R - R′) (11)

∫ dω5Ωa'Ωa ) δaa'

∑
a

Ωa(ω5′)Ωa(ω5) ) δ(ω5 - ω5′)

Hλnjl(R)

sin R cos R
) Nλnjlcosj R sinl R2F1(-n, l + j + n +

2, l + 3
2

, sin2 R) (12)

Φ(F, ω5) ) S�,λ(F)Ωa(ω5)

S�,λ(F)
λ(λ + 4)

2µF2
Ω(ω5) + Ωa(ω5)(- 1

2µ
1

F5

∂

∂F(F5 ∂

∂F) +
U1(F) + �U2(F) - E)S�,λ(F) ) 0

[- 1
2µ

1
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∂

∂F(F5 ∂

∂F) + λ(λ + 4)

2µF2
+ U1(F) - E]S�,λ(F) )

-�U2(F)S�,λ(F) (13)

S�,λ(F) )
S�,λ(F)

F5/2
(14)

[- 1
2µ

d2

dF2
+

λ(λ + 4) - 15
4

2µF2
+ U1(F) - E]S�,λ )

�U2(F)S�,λ (15)

S�,λ(F ) 0) ) 0 (16)

[dS�,λ(x)

dx
+ (K - Z

K (x))S�,λ(x)]x)R
) 0, R f ∞

(17)

[dS�,λ(x)

dx
( i(K + Zµ

Kx)S�,λ(x)]x)R
) 0 R f ∞

(18)

S�,λ(R) ) 0, R f ∞ (19)
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Sturmian functions and eigenvalues. The situation is different
for the incoming and outgoing waves of positive energies. The
boundary conditions (18) are complex; the first-order solution
of this equation is satisfied by the eikonal wave exp((ikx +
(Zµ/K) ln Kx) that reduces to the usual plane wave for short-
range potentials. The combination of these functions with the
factor F-5/2 gives rise to sphericalsand distortedsspherical
waves boundary conditions. This type of behavior at the border
leads to complex Sturmian eigenfunctions and eigenvalues of
eq 15. It is well-known from the standard quantum theory,23

that the presence of an imaginary potential in the Schrödinger
equation produces solutions with incoming or outgoing flux at
large distances, directly associated with the magnitude of the
imaginary part of the potential. Thus, this method brings a
systematic and physically founded way to generate optical-like
absorbing and emitting potentials13-16 to be used as an alternative
to the complex dilation method.24 Moreover, our method
generates a complete set of potentials allowing the representation
of almost any arbitrary flux at the boundaries.

The hyper-radial eigenfunctions S�,λ form an orthogonal and
complete set such that

and

The full set of hyperspherical Sturmian functions satisfying eq
5 are then

where ν ) {j,mj,l,ml}. These functions depend parametrically
on rc and rV and on the charges Zx, ZX (which define the potential
C(R)), and on Z (related to the asymptotic Coulomb tail of U1).
These parameters might be used to determine the proper
asymptotic behavior for atomic or molecular structure calcula-
tions9 as well as for collisional processes.12 The basis function
Φ�iλnν(F,ω5) satisfy the following orthogonality and closure
relations

3. A Numerical Approach To Solve the Sturmian
Equations

3.A. Finite Differences in Uniform Lattices. The main
equations that we need to solve to define the basis functions
are the angular eq 8 and the radial eq 15. In general it is not
possible to find analytical solutions for general potentials
V1(rV,R), U1(F) and U2(F); therefore, a numerical strategy is
necessary. There are many numerical approaches that can be

efficiently implemented to solve one-dimensional second-order
ordinary differential equations like (8) or (15). We are going to
use a simple method which is highly efficient in numerical
resources and allows us to connect our Sturmians theory with
the hyperquantization algorithm of Aquilanti and collaborators.18

We first consider the angular-Sturmian equation (8). Follow-
ing our previous papers,9,10 we propose the discretization of the
wave function Hλnjl(R) in an uniform angular lattice Ri ) i ∆R
with 0 e Ri e (π/2) and ∆R ) (π/2NR)

In this section we will drop the subindexes λnjl for brevity, i.e.,
Hλnjl,i ) Hi. Within a finite-difference scheme, we can ap-
proximate the second-order derivative in eq 8 up to order
O(∆R2) by

Defining the tridiagonal matrix W as

for the off-diagonal elements, and

for diagonal elements, the second-order approximation version
of eq 8 has the matrix representation

were h are the solution vector with elements Hi for i ) 1, ...,
NR. The solutions Hλnjl(R) depend on the parameters rc and rV.
The boundary conditions given by (9), satisfied by the angular-
Sturmian functions, have to be imposed on its discrete coun-
terpart Hi, by selecting H-1 ) HNR+1

) 0. In this case, the discrete
spectrum is generated by the zeros of the characteristic
polynomial HλN

Rjl(λ) ) 0 at the point NR which are the
eigenvalues λn. Equation 23 can be solved by using standard
matrix diagonalization subroutines, such as Lapack package.25

The eigenfunctions of eq 23 constitute an orthogonal set with
respect to both Ri and n

These equations define the discrete analogues of the orthogonal-
ity and completeness relations (10) and (11).

∫ dFS�n,λU2(F)S�m,λ ) δ�m�n

∑
i

S�i,λ
(F′)U2S�i,λ

(F) ) δ(F - F′)

Φ�iλnν(F, ω5) )
S�i,λn

(F)

F5/2

Hλjl(R)

sin R cos R
Yjmj

(x̂)Ylml
(X̂)

∫ dVΦ�i'λmν′(F, ω5)U2(F)Φ�iλnν(F, ω5) ) δ�i�i'
δλnλn′

δνν′

(20)

∑
i,n,ν

Φ�iλnν(F′, ω5′)U2(F)Φ�iλnν(F, ω5) ) δ(F - F′)δ(ω5 - ω5′)

(21)

Hλnjl(Ri) ≡ Hλnjl,i i ) 0, 1, ..., NR

d2Hλnjl

dR2
) 1

∆R2
[Hi+1 - 2Hi + Hi-1] + O(∆R2)

[WR]i,i-1 ) [WR]i,i+1 ) - 1

∆R2

[WR]ii )
2

∆R2
+ j(j + 1)

cos2 Ri

+ l(l + 1)

sin2 Ri

+ 2µrcC(Ri) +

2µru
2V2(rV,Ri) (22)

WRh ) (λn + 2)2h (23)

∑
i

NR

Hλnjl,iHλmjl,i ) δnm (24)

∑
n

NR

Hλnjl,i'Hλnjl,i ) δii' (25)
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A similar procedure can be employed to solve the radial
equation (15). In this case we propose a discretization of the
Sturmian S:

in the radial lattice Fi ) i∆F, see refs9 and.10 The function Si is
then defined up to a given radius R ) NF∆F. The radial
recurrence relation obtained can be expressed in matrix form
as

where U2 is the diagonal matrix with elements [U2]ii ) U2(Fi).
The tridiagonal matrix WF has off-diagonal elements

while the diagonal elements are

The three-term recurrence relation is satisfied by the poly-
nomial Si which depends on the parameters λn and �. For states
with negative energy and those with positive energy and
standing wave boundary conditions, the polynomial Si must be
zero at the S-1 ) SNF ) 0. Even though solutions to eq 23 can
be obtained with the use of standard diagonalization routines,
the generalized eigenvalue eq 26 is much more difficult to solve.
In this case, the eigenvalues are obtained by means of iterative
algorithms,26 based on sequential orthogonal rotations of the
tridiagonal matrix. This procedure concentrates the computa-
tional effort on a given number of eigenvalues in increasing
order of magnitude. Calculation of the corresponding eigen-
vectors is performed through an inverse iteration algorithm27

or by a predictor-corrector-type method.
For positive energies and incoming or outgoing wave behavior

at large values of Fi we set the boundary condition (18).
Numerically, the fulfilment of those conditions is done by
making the replacement

in the last element of the matrix WF.10,9 The function S is the
solution of the asymptotic equation (18). The diagonalization
of (26) with WF replaced by (28) leads to the set of eigenvectors
s and the complex eigenvalues �i which fulfill the desired
boundary conditions. The method used here is efficient for the
treatment of scattering processes even when we have to deal
with non-Hermitic tridiagonal matrices like WF.10,12

The radial discretization on a grid of size NF gives a set
of NF vectors associated to NF eigenvalues. These vectors
satisfy the following orthogonality and closure relations

Note that in this case the orthogonality relation includes the
weight U2(Fi).

3.B. The Connection with the Hyperquantization Algo-
rithm. The connection with the hyperquantization algorithm of
Aquilanti and collaborators18 can now be easily established. Let
us suppose for the moment, that rc and rV are set equal to zero
in eq 8. In this case, the equation has analytical solutions Hλjl,
given by eq 12, related to the Jacobi polynomial, as described
in section 2.B. The finite-difference equation (23) (the coun-
terpart of eq 8) is solved to obtain the eigenvectors Hλnjl,i and
the eigenvalues λn. In Figure 2, we show one of the vectors
Hλnjl,i plotted against the analytic Hλjl. The numerical solutions
tend to the exact continuum ones in the limit of NR f ∞. The
results presented in the figure for n ) 9, j ) 2, l ) 1, λ ) j +
l + 2n ) 21 show that the convergence toward the exact
functions is surprisingly fast, even for such a big n number. In
the figure we present calculations performed with numerical
grids having 100, 50, and 25 angular points against the exact
function. As few as 25 points are enough to obtain a very
satisfactory representation of the exact function in the whole
range of R. When Coulomb potentials are included in the
calculations through the function C(R), similar behaviors are
observed. In Figure 3 we plotted the same function Hλnjl,i for Zx

) -1, ZX ) -1 and for rc ) 1 au and rc ) 10 au. Different
values of rc are plotted to show that the convergence rates are
not altered by the Coulomb interaction.

The connection between the differential equations satisfied
by hypergeometric polynomials and the finite-difference
equation satisfied by discrete variable polynomials was
established in chapter II of ref 28. In general, the differential
equation satisfied by a hypergeometric polynomial can be
transformed into a finite-difference equation as we did above.
This leads to a recurrence relation which is satisfied by a
higher order polynomial which depends on the discrete
variable. In ref 28, hypergeometric type polynomials are

S�,λ(Fi) ≡ Si, i ) 0, 1, ..., NF - 1

WFs ) -�U2s (26)

[WF]i,i-1 ) [WF]i,i+1 ) - 1
2µ

1

∆F2

[WF]ii )
1

µ∆F2
+

λn
NR(λn + 4) - 15

4

2µFi
2

+ U1(Fi) - E

(27)

[WF]NF,NF
f [WF]NF,NF

- 1
2µ

1

∆F2[S((NF + 1)∆F)

S(NF∆F) ]
(28)

∑
i

NF

S�n'λm,iU2(Fi)S�nλm,i ) δ�n�n'
(29)

∑
n

NF

S�nλm,i'U2(Fi)S�nλm,i ) δii' (30)

Figure 2. The vectors Hλnjl,i corresponding to rc ) 0 and rV ) 0 are
plotted against Hλjl of eq 8. The results presented are for j ) 2, l ) 1,
λ ) j + l + 2n ) 21. The calculations were performed with grids of
100 points, dash line, 50 points, squares, and 25 points, circles.
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discussed, but the theory explained is valid for general
polynomials for which analytic expression are unknown. This
is exactly what we are doing here, dealing with equations
whose solutions are orthogonal polynomials that do not
necessarily lead to hypergeometric functions. It is of great
physical and mathematical interest to study the solutions of
equations like (23), including Coulomb potentials. Aquilanti
and collaborators used their expertise on the theory of
orthogonal polynomials to recognize the connection we are
describing. Instead of the theory of differential equation, they
make use of a limiting relation for the Hahn polynomials18

Here Qn,	
δ,γ,X are defined in terms of the Hahn polynomials

Qn(	,δ,γ,X)28 by the relation Qn,	
δ,γ,X ) (w(	)πn)1/2Qn(	,δ,γ,X)

and where the discretization is established through the relation

In Aquilanti’s notation, 	 is the discrete variable, n the degree
of the polynomials, and both vary in the range 0 e n,	 e X,
with X being a positive integer. The normalization constant
Nn,δ,γ is given in ref 29, while the weight function w(	) and
the norm πn of the Hahn polynomials are given in ref 30.
Aquilanti implemented the discretization of the cos R into a
set of X points while we directly discretize the angular domain
R directly. However, to rewrite our expressions in terms of
Aquilanti’s is not difficult because for each value Ri there is
only one value of cos Ri in the angular range considered.
The method we are using allows the generalization of
Aquilanti’s procedure for general potentials included in the
angular equation. This topic is part of our current investiga-
tions which we will report elsewhere.

The representation of continuous functions in terms of
functions of discrete variable have also been applied to the radial
coordinates.31,32 The work of Aunola related to the Coulomb
problem shows that a known polynomial can be used to
represent it in a discrete form the two-body Coulomb problem
with angular momentum equal zero. The wave function for the

nth bound states is represented by an orthogonal Pollaczek
polynomial of order m. The radial coordinate is discretized on
a regular grid. When the number of points of the grid tends to
infinite, the discretized function tends to the exact bound state.
To the best of our knowledge, no contributions have been
reported for continuum states.

Aquilanti’s formulation for the hyperquantization algorithm
is then equivalent to ours. All the advantages of their method
apply to ours; moreover, we can extend them to other situations
where potentials like V1(rV,Ri) and/or C(Ri), are considered. In
the next sections we present the application of our method to
collisional problems, in which we modify our work recently
presented for spherical coordinates,12 adapted to the hyper-
spherical ones.

4. The Scattering Wave in Reaction Problems

In reaction problems, the wave function is usually splitted in
two terms

where Φ0(F,ω5) is the known initial state and the scattered wave
is represented by Ψsc(F,ω5). Substitution into (4) leads to the
inhomogeneous Schrödinger equation satisfied by Ψsc(F,ω5)

Typically, Φ0 can be written as a separable product of two
known functions of the Jacobi coordinates

and satisfies the separable Schrödinger equation

We assume, in the following, that the three particles are
distinguishable, then the symmetrization of the wave functions
is straightforward. The potential V0(x) is a short-range potential
which supports bound states φa(x) with quantum numbers a on
the Jacobi coordinate x. The plane wave eiK0 ·X represents an
incoming particle with initial momentum K0. This initial wave

Figure 3. Convergence of numerical hyperangular functions Hλn,j,l for j ) 2, l ) 1, n ) 9, and λn ) 2n + j + l ) 21, including the long-range
Coulomb interactions C(R) for different numerical grids: solid lines, 2500 points; dashed lines, 100 points; squares, 50 points; circles, 25 points.
The figures show different potential parameters: left, rc ) 1; right, rc ) 10.

LimXf∞(X - 2	
2 )1/2

Qn,	
δ,γ,X )

Nn,δ,γ cosδ R
2

sinγ R
2

Pn
δ,γ(cos R)

cos R ) X - 2	
X + 1

Ψ(F, ω5) ) Φ0(F, ω5) + Ψsc(F, ω5) (31)

(E - H)Ψsc ) (H - E)Φ0

Φ0(x, X) ) φ(x)eiK0 ·X

(T + V0(x) - E)Φ0 ) 0 (32)
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function can be expressed in terms of the hyperspherical
coordinates as follows

Here we assume that the bound state φa(x) has spherical
symmetry, 
n(F cos R) is the radial part of the bound state with
radial quantum number n, and jl(z) represents the spherical
Bessel function of order l.22 These are usual restrictions in the
case of collisions with atomic target; however, the method can
be easily extended for other reactive systems.

When the collision of the incoming particle with the bound
system takes place, it produces fragmentation among other
processes. The three particles evolve first under the influence
of the interacting potentials, but end up as free particles leaving
the reaction zone. In the case of dealing with Coulomb-like long-
range interaction, the free particle waves are multiplied by
distortion factors, known as the eikonal phases. Our method
sets the boundary conditions to the wave function on the
fragmentation region where only outgoing waves survive.

4.A. The Scattered Wave. The scattered state Ψsc is
expanded in terms of hyperspherical Sturmians, which already
account for the appropriate boundary conditions. We will restrict
ourselves to the following Schrödinger equation

This is a particular case of eq 4, where the long-range interaction
is suppressed; i.e., the charges Zx and ZX and the potential U1(F)
were set to zero. The potentials appearing in (33) are assumed
to be of short range. The function on the right-hand side
F (F,ω5) represents the application of the Hamiltonian on the
initial state

The scattered wave Ψsc is represented in terms of Sturmian basis
function (7) and (14) as follows

Inserting Ψsc into (33) results in the equation

The action of the radial and angular differential operators on
the basis functions needs to be evaluated. In a first step we use
eq 8 and replace the angular momentum operator by the
centrifugal barrier λn(λn + 4)/2µF2 and the angular potential
V2(rV,R) which depends on the parameter rV

The centrifugal barrier all together with the terms of the second
parentheses of the previous equation can be combined to form
the left-hand side of the radial Sturmian eq 13. Defining the
auxiliary potential U1 of (13) equal to the potential U2(F) and
using this equation we can rewrite (35) as follows

As can be seen, the Sturmian functions completely remove
the kinetic energy. It is convenient to define V2(rV,R) as V2(F,R)
with F evaluated at rV. In such a case, V2(F,R) is canceled by
(rV2/F2)V2(rV,R) around the point F ) rV. This point can always
be selected to increase the convergence of the expansion by
including in the angular basis set the relevant part of the
interaction potential. Projecting eq 36 from the left onto the
basis elements Si′,λn′Ωn′,ν′ we obtain

The orthogonality relation (20) was used to write the first
term of this equation. [rV2/F2]ii′ and [V2(rV,R)]n′,n involve only
radial and angular integrations, respectively, and they are
separable. [V2(rV,R)]i′,n′,i,n are the matrix elements of the interac-
tion potential, and the integration over all the coordinates has
to be performed. The function Fi′,n′,ν′, on the right-hand side,
are the projection of F(F,ω5) onto the basis functions Si′,λn′Ωn′,ν′.
The Sturmian functions presented in the previous sections
considerably simplify the problem of solving the Schrödinger
equation (33) and allow to transform it into an equivalent
algebraic matrix problem Wa ) F. This algebraic problem can
be easily solved using standard matrix techniques. The basis
set diagonalizes the kinetic energy and all the interactions which
depend on the hyper-radius. Thus, only the matrix elements of
the interaction potential are needed. The other ingredients for
the equation can be easily evaluated. For example, [rV2/F2]ii′
requires the integration over the hyper-radius, that can be
performed using Gauss-Legendre quadratures.

4.B. The Transition Amplitude. With the exact wave
function for the fragmentation problem, the transition amplitude
can be extracted straightforwardly. According to ref 33 the

Φ0(x, X) ) Φ0(F, ω5)

) 
n(F cos R)Yj0mj0
(x̂) ∑

l
∑

ml)-l

l

iljl(F sin R)Ylml
*(K̂0)Ylml

(X̂)
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2µ

1
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∂

∂F(F5 ∂
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2µF2
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F (F, ω5) (33)
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U0(F sin R))Φ0
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i,n,ν
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∑
i,n,ν
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2µF2
+

rV
2

F2
V2(rV,R))Ωn,ν +

Ωn,ν(E + 1
2µ
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F5
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∂F(F5 ∂

∂F) - U2(F))Si,λn
-

V2(F,R)Ωn,νSi,λn] ) F (F, ω5) (35)

∑
i,n,ν

ai,n,ν[�iU2(F) +
rV

2

F2
V2(rV,R) - V2(F,R)]Si,λn

Ωn,ν )

F (F, ω5) (36)

∑
i,n,ν

[�iδii'δn,n'δν,ν′ + [rV
2

F2 ]
ii'

[V2(rV,R)]n,n'δν,ν′ -
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asymptotic limit for large F for the scattering wave function is
given by

The radial functions S�i
(F)/F5/2, eq 14, behave at large F as the

outgoing spherical wave on (38).
Taking the asymptotic limit for F f ∞ of Ψsc, eq 34 results

In particular for F ) R the condition 18 is exactly satisfied and
then we can obtain the following expression from the expansion
for Ψsc

Thus, the following expression results for the transition amplitude:

5. Discussion and Conclusions

In a previous paper we introduced a method to calculate
three-body wave functions and transition matrices based on
Sturmian functions. The basis is defined in such a way that
its elements have incoming, outgoing, or standing wave
behavior at large distances. These functions are solutions of
Schrödinger-like wave equations where the interaction mag-
nitudes are the eigenvalues. The potentials included in the
Sturmian equations are arbitrary; however, they are chosen
as the interaction potential of the physical system under study.
The method presented in refs 9-12 was based on the use of
separable functions in the electronic coordinates. In this report
two main goals were achieved: (a) Sturmian functions for
hyperspherical coordinates with incoming, outgoing, and
standing wave asymptotic conditions were developed as well
as general angular-Sturmian functions depending on the
hyperangle were defined and evaluated and (b) it has been
shown that the method to obtain three-body wave functions
and transition amplitudes can be extended to general systems.

A general discussion about how to generate the hyperan-
gular and hyper-radial Sturmian functions was presented in
section 2.B. We first showed how to define the Sturmian
equation starting from the Schrödinger equation for the three-
body problem under study, under a parametric separation of
the wave equation. Hyperangular and hyper-radial Sturmian
functions can be properly defined after this approximate
separation. Different types of boundary conditions were
considered for different values of the energy, which gives
rise to different properties of the eigenvalue spectrum. Real
eigenvalues and eigenfunctions are obtained for negative
energies and also for positive energies and standing wave
boundary conditions. However, for the situation where
incoming or outgoing wave boundary conditions are required,

complex eigenvalues and functions are found. In all the cases
considered, the spectra are discrete due to the fact that the
boundary conditions were imposed at finite domains of
the hyper-radius. At this point it is interesting to note the
differences with the standard hyperspherical approach, see,
e.g., refs 35-37. In that case, first the hyperangular equation
is solved assuming that the hyper-radius is a parameter. This
gives rise to a set of F-dependent eigenvalues and their
corresponding basis elements. In the second step, these
eigenvalues are used to solve a set of coupled equations for
the coefficients of the wave function for the full Schrödinger
equation in that basis.

Our approach for reaction processes is based on an expansion
of the scattering wave function in terms of Sturmian functions
which have the correct boundary conditions at large distances.12

As was pointed out by Macek21 the use of Sturmian functions
is more appropriate than adiabatic-type theories to represent
continuum states.

A numerical technique to solve the angular and radial
Sturmians equations was developed, using discretized versions
of the Sturmians functions in uniform grids. For both the angular
and the radial case a set of orthogonal discrete polynomials were
obtained. These polynomials satisfy three-term recurrence
relation derived from the Sturmian equation using a difference
finite scheme as done in ref 28. For general systems, the so-
lutions are not hypergeometric polynomials. However, “free-
particle” angular Sturmians can be readly connected with the
hypergeometric Hahn polynomials. This allows us to show that
our method can be considered a generalization of the discreti-
zation method used by Aquilanti and collaborations.18

In section 3 we showed how to solve the three-body scattering
Schrödinger equation by using the Sturmian functions. We
showed that the Schrödinger equation can be transformed to an
algebraic problem where only the interaction potential matrix
elements are needed; see eq 37. We also showed how the
discrete Sturmian eigenfunction can be used to evaluate some
of them and that they reduce to one-dimensional numeric
integrals. A closed form expression for the transition amplitude
is given, eq 39, by studying the asymptotic form of the scattering
wave function. As we mentioned in the introduction, the main
aim of this report is to present the method with detail. However,
it should be mentioned that its application is straightforward.
Two main collision processes are being currently studied by
our group, the single and double ionization of atoms by electron-
impact and radiation absorption. Reports with the results
obtained will be published soon.

In summary, we have presented the theory of hyperspherical
Sturmian functions for general three-body problems. Application
of this method should be considered further to explore the ability
of this approach to deal with the variety of different systems
found nowadays in the atomic physics and chemistry literature.
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