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The vibrational bound states of the He,Net complex have been determined using a potential energy surface
previously published by Seong et al. [J. Chem. Phys. 2004, 120, 7456]. The calculation was performed by
sequential diagonalization—truncation techniques in a discrete variable representation using Radau hyper-
spherical coordinates. There are 52 bound levels. The ground state has an energy of 605.3 cm™! above the
absolute minimum and lies about half way to dissociation. The evaporation energy of one He atom is equal
to 866.1 cm™!. Only four levels have energies below the classical energy for dissociation, and all the other
48 states are bound by the zero-point energy of the HeNe™ fragment. The implications of the properties of
the eigenvalue spectrum and of the corresponding wave functions on the vibrational relaxation dynamics and

infrared spectra of HeyNe™ clusters is discussed.

Introduction

The HeyD™ cluster ions, where D is an atomic or molecular
dopant, are very interesting because they represent a simple
example of gas phase “solvation” of an ion, and they are
amenable to experimental study. They also constitute ideal
model systems for dynamical studies in a novel medium, helium
nanodroplets, which provide a homogeneous, superfluid, and
extremely cold environment for spectroscopic and dynamical
studies of molecular species. The final stage of many experi-
ments is the electron-impact ionization of the doped cluster.
This leads to a violent fragmentation of the droplet and a
distribution of HeyD*, n << N, that is surprisingly difficult to
predict even in the relatively simple case where the dopant is a
single rare gas atom.'” The relative stability of small mixed
rare gas cluster ions of the type He,Rg™ has been examined by
Murrell et al.,® Seong et al.,” and Brindle et al.®

The first element of this series, HeNe™, has been extensively
studied because of its relevance to the Ne™ ion mobility in
helium.’ Its electronic structure is particularly interesting since
the ionization energy of helium is only 2.99 eV higher than
that of neon. This difference is small enough to induce a partial
delocalization of the charge from the neon to the helium atom,
resulting in weak covalent bonding. For instance, with the
potentials used in the present work the (He—Ne)™" dissociation
energy is D, = 0.669 eV (5397 cm™!). Unexpectedly, the mass
spectra of the HeyNe*t species do not show any structure,
whereas the helium and argon ones do. Diffusion Monte Carlo
simulations® have shown that this absence of shell structure is
due to important zero-point effects resulting in very diffuse wave
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functions and a smooth variation of the incremental bonding
energy with the number of helium atoms.

The ion is also very interesting. It is the ionic core in the
HeyNe™ series, the additional helium atoms being mainly bound
by electrostatic interaction to this core. Its second helium is
bound by 0.127 eV (1026 cm™!). This value is relatively large
relative to pure electrostatic bonding and may be at least partially
responsible for the fact that fragments are more prevalent in
experimental data than in ref 8.

Ab initio calculations of Seong et al.” for the He,Ne™ complex
have yielded an asymmetric collinear (He—Ne—He)" geometry
with a small barrier between two equivalent minima. Because
of its practical interest, as well as its peculiar potential energy
surface, we have undertaken a study of its bound states which
could be useful for experiments trying to identify its presence
or its vibrational relaxation rates. Vibrational relaxation is
expected to play an important role in the dissociation of helium
droplets once the charge has been localized on the neon atom,
and the two main candidates to relax energy are HeNe' and
He,Ne™.

In this paper, we present the calculation of all vibrational
states of the He,Ne*t complex for total angular momentum zero.
The theoretical treatment of these types of wide amplitude floppy
systems relies heavily on the choice of internal coordinates.
Orthogonal coordinates are particularly useful because the
kinetic energy operators are easy to evaluate, and this facilitates
the calculation of the corresponding differential matrix elements.
This issue has been discussed in great detail by Aquilanti and
co-workers.!®!* The hyperspherical versions of these coordinates
are particularly interesting for systems such as He,Ne® with
two identical light atoms and a third heavier atom. In this work
we have used Radau hyperspherical coordinates.

The potential energy surface is given by a diatomics-in-
molecule (DIM) model based on ab initio calculations for
He,Ne™ and the best available potentials for He, and HeNe
dimers, as discussed in detail in ref 7. This potential has been
previously used for diffusion Monte Carlo calculations of
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Figure 1. Contour plots of the DIM potential energy surface of the
He,Ne™ complex in internal coordinates at the colinear = 180° and
bent O = 150°, 120°, and 90° geometries. Contours are spaced by 500
cm™, the lowest-energy contour being at 500 cm™'. The zero of energy
is chosen at the potential minimum.

HeyNe™ cluster stabilities.® The detailed description of the
potential energy surface is presented here for completeness.

The vibrational states with no rotation have been calculated
using sequential diagonalizations and truncations in a discrete
variable representation (DVR) (with hyperspherical Radau
coordinates). The resulting eigenvalues and wave functions are
discussed and analyzed.

Potential Energy Surface

The potential energy surface is very similar to that previously
reported by by Seong et al.” using the diatomics-in-molecule
(DIM) method. In Figure 1, contour plots in internal bond
coordinates are presented for different values of the bending
angle 6. As borne out by the most recent ab initio calculations,”**
the equilibrium geometry is colinear and asymmetric
(He—Ne—He)" (see Figure 1) with two minima corresponding
to one bond length of 1.55 A and the other one of 1.72 A. The
barrier between the two minima is at r; = r, = 1.62 A with a
height of 0.0018 eV (14.59 cm™!). Note that these values are
slightly different from those presented in ref 4 due to an error
in the program which has now been corrected. The bonding
energy is D, = 0.796384 eV (6423.28 cm™') with D, =
|[E(He,Net) — 2E(He) — E(Ne™)l, and the classical dissociation
energy for one He atom elimination is 0.127193 eV (1025.88
cm™ ).

Away from the colinear configuration (6 = 180°), the height
of the barrier separating the two equivalent minima increases.
This is apparent in Figure 1 where contour plots of the potential
for 6 = 150°, 120°, and 90° are presented (the barrier for 8 =
90° is between the 4500 and 5000 cm™! equipotentials). Figure
2 presents the variation of the potential energy along the
minimum energy path going from the equilibrium colinear
configuration (He—Ne—He)* (§ = 180°) to the colinear
asymmetric (He—He—Ne) © ( = 0°) configuration. As
observed in this figure, the potential function has also a very
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Figure 2. Minimum energy path of the DIM potential energy surface
of the He,Ne™ complex as a function of the valence angle 6. The zero
of energy is chosen at the potential minimum.
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Figure 3. Minimum energy path of the DIM potential energy surface
of the He,Ne™* complex as a function of the difference r;, — r, of bond
lengths in the colinear geometry (6 = 180°). The zero of energy is
chosen at the potential minimum, and the horizontal line includes the
zero-point energy of the HeNe™ fragment. Also shown is the ground
energy level of the He,Net complex, labeled E .

shallow local minimum (*13 cm™') at r;, = 1.44 A, =254
A, and 6 = 72°.

We have also represented the minimum energy path associ-
ated with the asymmetric bond coordinate ; — r; for the colinear
configuration @ = 180° (Figure 3) and for the bent geometries
0 = 150° and 6 = 120° (Figure 4). These figures clearly show
how the potential barrier between the two equivalent minima
increases and the well depth of these minima decreases as the
molecule bends. It is expected that this strong 6 dependence of
the potential energy surface will have a profound effect on the
structure of the vibrational energy levels (see below).

That the He,Ne™ potential energy surface calculations are very
sensitive to the basis set and correlation method employed was
discussed in some detail in ref 7. That study focused on the
details of the potential energy minima and the barrier between
them. For the CCSD(T) method using a triple-§ basis set with
full counter poise, CP, correction, the two bond lengths were
found to be 1.50 and 1.85 A, compared to 1.52 and 1.72 A
using the DIM method employed here. The total binding energy
was found to be 0.61 eV using the triple-{ basis with CP
correction: this increased to 0.717 eV using quadruple-§ but
no CP correction. These numbers compare to 0.796 eV for the
DIM potential. Finally, the transition state between the minima
has symmetric bond lengths of 1.63 A, triple-&, and 1.62 A,
DIM. The barrier height is 0.1 eV, triple-¢, 0.007 eV, quadruple-
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Figure 4. Minimum energy path of the DIM potential energy surface
of the He,Ne™* complex as a function of the difference r;, — r, of bond
lengths in the bent & = 150° (b) and & = 120° (c) geometries. The
zero of energy is chosen at the potential minimum.

¢, and 0.0018 DIM. So, the DIM potential slightly overestimates
the total bond energy, resulting in a shorter bond for the more
weakly bonded helium atom, and underestimates the barrier
height at the transition state. Note, however, that these differ-
ences are quite small with respect to the zero-point energy of
the ground vibrational state, reported later. Also, we have
considerable confidence in the portions of the potential energy
surface away from the potential minima since these are based
on diatomic potential energy curves that have been tested against
scattering and spectroscopy, as discussed in ref 7. We expect
that the essential features of the nuclear wave functions reported
below will survive future improvements in the potential energy
surface determination.

Methodology for the Calculation of Vibrational Bound
States

To calculate all the vibrational bound states of the He,Ne™
complex, we have used a truncation—diagonalization method
based on discrete variable representation (DVR) basis func-
tions.'>?3 These methods are currently routinely used to compute
energy eigenvalues and wave functions of floppy triatomic
molecules which undergo very large-amplitude vibrational
motions, as can be expected for a system such as He,Ne™. In
this work, we use these techniques to construct compact basis
functions expressed as linear combinations of DVR functions,
as developed by Light and co-workers!%**25 and by Tennyson
and co-workers.!326

The DVR-based methods are most conveniently used in
conjunction with orthogonal coordinates due to the simple form
of the kinetic energy operators, which facilitates the calculation
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of the corresponding differential matrix elements. In this work,
we have used Radau hyperspherical coordinates to calculate the
vibrational bound states of He,Ne'. These coordinates are
defined as follows*"?8

p=Vs+ s (1)
)
¢ = arctan| — 2)
S
515,
6 = arccos|— 3)
S18

where s; and s, are the mass-scaled Radau vectors which join
the so-called canonical point of the molecule with the end
atoms.?* The (pure) vibrational (J = 0) Hamiltonian of the
triatomic ABC molecule for these coordinates can be expressed
in the form?®

. r*[ o 1 1 o
H(p, ¢, 0) = T a—pz —

1 1 9 . ,0
it g ooyt ¢ sin 000 " Vog| T V02O @

where u = (mg(mame)*IM)*?; M = my + mg + mc; and the
volume element is given by dt = dpd¢d6 sin 6.

The first step in the successive truncation—diagonalization
method is the determination of the primitive DVR basis function
sets. These sets are obtained by diagonalizing the matrix of each
hyperspherical coordinate in a finite basis representation (FBR),
namely {F(p)}, {F'.(¢)}, and {F”,(0)}. The hyperspherical
DVR functions {D,(p)}, {D’4(p)}, and {D”y,(6)} are related
to the FBR functions by

NP

D,(p) = D RF(p) (5)
=1
Ny

Dy(@) = D R,F,(9) 6)
X m=1
Ny

"0(0) = DR F(0) )
n=1

The FBR functions used in this work are particle-in-a-box
functions for p and ¢ and Legendre polynomials for the bending
angle 0.

The second step of the method consists of determining the
two-dimensional (2D) contracted DVR basis set to be used in
the diagonalization of the total Hamiltonian matrix. The
vibrational coordinate that naturally defines the 2D basis set is,
in this case, the angle 6. Accordingly, we solve first the 2D
eigenvalue equation for the hyperspherical coordinates p and ¢
with 0 frozen at the discrete DVR points 6;. The 2D eigenvalue
equation is then
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It is solved by expressing the 2D wave functions 125 (p, ¢) as

linear combinations of the direct product of DVR basis functions
Dpp,dy’ 1.e.

N, Ny

Vinp®) = 2 X Cpo DD (@) ()

i=1 j=1

For each discrete value of the angle 6, this expansion is
truncated by retaining only those DVR-product basis functions
which satisfy the condition'®

V(pi’ d)" ek) < Vmax (10)

where V.« is a given potential energy cutoff. Thus, we select
a number N*P(0,) of two-dimensional DVR basis functions for
each angle 6. The energies E%5, and the expansion coefficients
C?,., of the 2D wave functions 70 (p, ¢) are determined by
diagonalizing the corresponding DVR Hamiltonian matrices.

In the third step of the method, we proceed by expanding
the three-dimensional wave functions in terms of the basis
functions formed by the products of the contracted 2D functions

Z0(p, ¢) and the angular DVR functions D”g,. Thus, we write

nby

Ny N2D

Yi2p. 4 0) = X D Coo o (09D (O) (1)

k=1 n=1
and the 3D Hamiltonian matrix elements are given by

-_ h_z " Li X
2u" % sin 696
1 a n . B
st 08_0|D 9k><1/)il;k|()02 Sll’l2 ¢ 0082 ¢) ll'l/)i]gl) +
D"y w2 VD" DY (12)

2D | £ 2D\ _ 2D
<D,,Gk,wn’ek,lHlDHOkwnﬁg - Enﬁkén,n’

The size of the three-dimensional basis set is then Y22 N*°(60,).
This basis is contracted in turn by retaining in expansion eq 11
only those functions with 2D energies EZ, below a second
energy cutoff ES", that is, by imposing the condition

Ep < ES" (13)

The three-dimensional vibrational wave functions are then given
by eq 11 with the double sum extended over the N°P pairs of
indexes k and n that satisfy eq 13. The coefficients C32, and
the energy eigenvalues are calculated by diagonalizing the three-

dimensional Hamiltonian matrix.

Results and Discussion

The bound vibrational states of the He,Net complex have
energies below 1471.42 cm™! measured from the bottom of the
well. This corresponds to the energy threshold for the expulsion
of the first He atom, which is the sum of the classical binding
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Figure 5. Contour plots of the DIM potential energy surface of the
He,Ne* complex in hyperpherical Radau coordinates at the colinear 6
= 180° and bent 6 = 150°, 120°, and 90° geometries. Contours are
spaced by 500 cm™!, the lowest-energy contour being at 500 cm™'.
The zero of energy is chosen at the potential minimum.

energy of the He atom (1025.88 cm™!) plus the vibrational
energy of the ground state of HeNe™, E,—, (HeNe™) = 445.54
cm™ 3! (see Figure 3).

In Figure 5 we present the bidimensional contour plots of
the DIM surface for He,Ne™ in hyperspherical Radau coordi-
nates (p, ¢) for bending angles 6 = 180°, 150°, 120°, and 90°.
As can be seen from the figure, these contour plots allow one
to fix quite naturally the limits of the quantization box providing
the DVR wave functions. In fact, these limits have been taken
to be the same for all values of the bending angle 6;. The ¢
coordinate plays the role of the asymmetric mode in the limit
of small amplitudes. The symmetry of the potential energy
surface with respect to the maximum of the barrier (located at
¢ = 45°) allows us to calculate separately the odd and even
states, thus reducing the numerical effort.

We have started by setting the box limits, p = [2, 6] A, o=
[0, 90]°, and the value of the cutoff V,,, for the energies of
bidimensional wave functions, according to the condition in eq
10, at 6000 cm ™!, very near the 3-body dissociation energy of
the complex (D, = 6423.28 cm™!). The number of basis
functions for each coordinate has been set such that (N,, Ny, No)
= (160,130,30), and the second cutoff ES" for the energies of
the 3-dimensional wave functions in eq 13 has been taken as
2500 cm™!, considerably above the threshold for dissociation
at 1471.42 cm™!. The results for the even symmetry levels are
presented in the second column of Table 1. A convergence study
with respect to the DVR parameters has been conducted, and
the results are presented in the other columns of Table 1.

We have first increased the upper limit py,. for p with all
the other DVR parameters fixed. Only those states very near
the dissociative limit are modified. For pp,x = 14 A, almost all
states are stabilized, and for py, = 18 A, the energy of all the
states is converged to the first decimal figure. The values are
given in the third column of Table 1. Using the interval [2,18]
A for the p coordinate, we have then increased selectively the
number of basis functions for each coordinate starting from their
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TABLE 1: Convergence of the Even Vibrational Energy
Levels (in cm™ ') of He,Ne" with Respect to the Parameters
of the Truncation—Diagonalization DVR Calculation

[2,6] [2,18] [2,18] [2,18]
(160,130,30)>  (160,130,30)  (160,130,40)  (160,130,40)

6000¢ 6000 6000 6200
n 25004 2500 2500 2500
1 605.3 605.3 605.3 605.3
2 919.5 919.5 919.5 919.4
3 992.2 992.2 992.2 992.2
4 1139.5 1139.4 1139.4 1139.4
5 1192.7 1192.7 1192.7 1192.7
6 1264.4 1264.3 1264.3 1264.3
7 1279.7 1279.7 1279.7 1279.6
8 1301.6 1301.6 1301.6 1301.6
9 1309.0 1308.9 1308.9 1308.9
10 1325.4 1325.4 1325.4 1325.4
11 1341.5 1341.5 1341.5 1341.5
12 1363.4 1363.4 1363.3 1362.8
13 1373.8 1373.8 1373.7 1373.2
14 1385.8 1385.8 1385.7 1384.8
15 1393.6 1393.5 1393.0 1389.0
16 1405.1 1405.0 1405.0 1404.9
17 1417.4 1417.2 1416.5 1411.2
18 1426.0 1425.7 1425.6 1425.2
19 1431.7 1431.0 1430.6 1428.3
20 1444.8 1442.5 1442.0 1437.4
21 1450.5 1448.6 1448.4 1445.3
22 1453.9 1453.1 1452.4 1449.9
23 1458.2 1454.5 1454.2 1452.3
24 1471.0 1458.4 1458.3 1457.3
25 1481.1 1468.6 1468.5 1466.8
26 1482.5 1469.4 1469.2 1467.1
27 1485.6 1472.3 1471.8 1468.5

“ [pmins pmax] (A) b (Nps N¢s NB) ¢ Vmax (Cm71)~ 4 Egut (Cm71)~

initial values (N,, Ny, No) = (160,130,30). The results show that
the energies are converged with respect to N, and N, but they
vary slightly, of the order of 0.5 cm™!, when Ny is increased up
to 40. Further test calculations showed that these results are
converged with respect to Ny. The energy levels using
(No, Ng, Ng) = (160,130,40) are thus presented in the fourth
column of Table 1. Finally, the convergence with respect to
the cutoff energies V.x and E5" has been studied. The results
are unchanged when ES" is increased, but they are still sensitive
to the value of V. Starting from n = 12 they decrease by an
amount of about 1—2 cm ™' when V. is increased to 6200 cm™'.
The results for this value of V,,,x are presented in the last column
of Table 1. Additional convergence tests were performed using
larger basis sets to further confirm the values given in the last
column of Table 1 and in Table 2 (even and odd states) to within
0.1 cm™.

In summary, we have determined all the bound levels of the
He,Ne™ complex with a convergence in energy of the order of
0.1 cm™' using (No, Ng, Ng) = (160,130,40) DVR primitive
functions for each vibrational mode and cutoff energies V.« =
6200 cm™!' and ES" = 2500 cm™!. These calculations have
required a total of 3803 and 3788 DVR tridimensional basis
functions for the even and odd parity states, respectively. We
have found that there are 52 bound levels, 27 even ones, and
25 odd ones. The converged energies for both even and odd
parities are collected in Table 2.

The ground state has an energy of 605.3 cm™' above the
absolute minimum, and so it lies about half way to dissociation.
It is interesting to note that only four levels (three even and
one odd) have energies below the classical energy for dissocia-
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TABLE 2: Vibrational Bound-State Energy Levels (in cm™!)
of the He,Ne™ Complex

n even levels n odd levels
1 605.3 1 763.0
2 919.4 2 1037.7
3 992.2 3 1086.8
4 1139.4 4 12114
5 1192.7 5 1256.9
6 1264.3 6 1296.1
7 1279.6 7 1315.9
8 1301.6 8 1333.9
9 1308.9 9 1347.2
10 13254 10 1362.1
11 1341.5 11 1374.8
12 1363.8 12 1382.6
13 1373.2 13 1396.3
14 1384.8 14 1404.9
15 1389.0 15 1418.5
16 1404.9 16 1422.5
17 1411.2 17 1433.9
18 1425.2 18 1437.6
19 1428.3 19 1445.5
20 1437.4 20 1450.3
21 1445.3 21 1456.7
22 1449.9 22 1461.4
23 1452.3 23 1463.6
24 1457.3 24 1468.3
25 1466.8 25 1470.7
26 1467.1

27 1468.5

tion (1025.9 cm™!). All the other 48 states are bound because
of the zero-point quantum energy of the HeNe™ fragment which
is 445.54 cm™'. The quantum result for the evaporation energy
of one He atom is then equal to 866.1 cm™!. This value is
obtained from the classical dissociation energy (1025.9 cm™),
the HeNe' zero-point energy (445.54 cm™"), and the energy of
the He,Ne™ ground level found in this work (605.3 cm™").

The contour plots in (p, ¢) of the probability density at the
equilibrium colinear configuration are presented in Figure 6 and
Figure 7 for the first six vibrational wave functions with even
and odd parities, respectively. Since the barrier between the two
equivalent asymmetric minima is very low (AV, = 14.59 cm™")
as compared with the zero-point vibrational energy (605.3 cm™"),
it is expected that the node structure of the wave functions will
be essentially the same as that of a single minimum potential.
This is indeed what is observed in Figure 6 and Figure 7 for n
=1, 2,4, 6, and the probability density at the barrier configu-
ration (¢ = 45°) is maximum for the even parity states and
zero for the odd parity states.

On the other hand, for n = 3 and 5 even parity states, the
nodal structure is typical of a double minima potential near or
just above the barrier: the maxima are localized closer to the
potential wells of Figure 5, and they connect above the barrier.
These states thus feel the barrier between the two equivalent
minima. Since the barrier height is very small at the equilibrium
colinear configuration § = 180° and it increases when 6
decreases, we deduce that these states correspond to a bending
excitation.

We now turn to the assignment of the vibrational levels. As
noted before, ¢ is the antisymmetric stretch in the limit of small
oscillations and p the symmetric stretch. By examining the nodes
of the wave functions in Figure 6 and Figure 7, the first excited
states with a single well pattern, 7, 3, 7, and ¥7, can be
assigned to overtones in the asymmetric mode: (0,0,1), (0,0,2),
(0,0,3), and (0,0,4) in the notation for triatomic vibrational levels.
The wave functions s and ¢ have a node along the p
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Figure 6. Contour plots of the probability density for the first six even
wave funcions of He,Ne" in hyperspherical Radau coordinates p and
¢ at the colinear (6 = 180°) geometry.
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Figure 7. Same as Figure 6 for the first six odd wavefuncions (squared)
of He,Ne™.

coordinate and therefore can be assigned to one quantum in
the symmetric stretch mode, (1,0,0) and (1,0,1), respectively.
The excited states with a double well pattern, 13 and 13, have
a node in the 6 coordinate (see Figure 8). Hence they are
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Figure 9. Same as Figure 8 for the 1, and 3 states.

assigned to (0, 2, 0) and (0, 2, 2). The 53, 1, and y5 states
are a little less straightforward to assign, presumably because
of mixing of excitations (Fermi resonances). As can be seen in
Figure 9, 1y, and 3 already have some bending excitation.
Hence, ¥, and 13 could correspond to a resonant pair (0,0,3)
and (0,2,1). This is also true for ¥; and 5 which can be
assigned as the resonance pair (0,2,3) and (0,0,5).

All these assignments are collected in Table 3. From the first
excitation in each mode, the frequencies for asymmetric stretch,
bend, and symmetric stretch would be 157.7, 386.9, and 659.0
cm™!, respectively. However, the asymmetric stretch frequency
decreases dramatically above v,; = 2 because of the floppiness
of the system. For the other modes, there are not enough
assigned excited levels to study their frequency evolution.
Indeed, the vibrational wave functions for higher excited states
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TABLE 3: Vibrational Frequencies (in cm™?!) for the First
Vibrational Bound States of the He,Ne" Complex

assignment

n (Us, Vb, Uy) frequency energy
1+ (0,0,0) 605.3
1- (0,0,1) 157.7 763.0
2+ (0,0,2) 314.1 919.4
3+ (0,2,0) 386.9 992.2
2— (0,0,3) 4324 1037.7
3— 0,2,1) 481.5 1086.8
4+ (0,0,4) 534.1 1139.4
5+ 0,2,2) 587.4 1192.7
4— 0,2,3) 606.1 1211.4
5— (0,0,5) 651.6 1256.9
6+ (1,0,0) 659.0 1264.3
6— (1,0,1) 690.8 1296.1

are more difficult to assign due to the extreme floppiness of the
system. They tend to extend toward the dissociative channels,
as can be seen in Figure 10 where the probability densities for
states n = 16 and 25 for the even parity and n = 17 and 22 for
the odd symmetry are represented as an example. It is interesting
to note that they contain a relatively low vibrational excitation
in the bending mode € and the symmetric stretch p.

Note that the symmetric stretch excitation is slightly more
than half of the first dissociation energy. This suggests that it
may be possible to record the spectrum of this mode, and others
that couple to it strongly, by infrared beam-depletion experiments.

Conclusions

We have determined all the bound vibrational levels of the
He,Ne* complex using a previously published potential energy
surface.” The calculation was performed using a truncation—
diagonalization method based on DVR basis functions in terms
of Radau hyperspherical coordinates. We have found 52 bound
levels, 27 even, and 25 odd parity. Only four of these states lie
below the classical dissociation limit, the 48 other states being
bound because of the zero-point energy of the HeNe™ fragment.
The ground state lies about half way to dissociation, 605.3 cm™!

7
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Figure 10. Contour plots of the probability density for the n = 16
and 25 even and n = 17 and 22 odd states of He,Ne™ in hyperspherical
Radau coordinates at the colinear (6 = 180°) geometry.
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above the absolute minimum, and the energy necessary to
dissociate one He atom has been determined to be 866.1 cm™'.

There is a high density of levels near the threshold (14 levels
within 25 cm™! of dissociation), and the corresponding wave
functions extend over long bond distances. This is because of
the long-range (charge-induced dipole) attractive interaction in
this system. It is therefore expected that the odd parity states
will show large dipole moments, making the infrared spectros-
copy of these species feasible.??> The high density of states near
dissociation and the wide amplitude vibrations of this system
will make vibrational relaxation very efficient even at low
temperatures. We conclude that the He,Ne™ core is the most
likely candidate for energy relaxation with the concomitant
ejection of He atoms in the ionization of Ne atoms embedded
in He clusters, once the charge has been localized on the Ne
atom. This will be of significance to interpret and possibly
predict the distribution of HeyD* fragments in the electron-
impact ionization of doped clusters.

The results presented in this work are converged to about
0.1 wavenumbers for the potential energy surface determined
by Seong et al.” The accuracy of the potential energy surface
was discussed above and in ref 7. Results for the potential energy
minimum were found to be quite sensitive to the basis set and
the extent of correlation employed. However, the long-range
parts of the potential are expected to be quite accurate since
they are based on the best available potentials for the constituent
diatomic interactions. Due to the high zero-point energy of the
ground state, the details of the potential energy minimum are
not expected to significantly influence the results presented here.
The calculations reported here are for angular momentum equal
to zero. While issues such as vibrational relaxation and cluster
fragmentation are not expected to be very sensitive to rotational
effects, the light mass of helium and the wide amplitude motions
of the vibrational states imply that the rotational spectra of this
ion will be quite interesting. Calculations for the rotational
excited states are underway.
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