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Complex tensor contraction expressions arise in accurate electronic structure models in quantum chemistry,
such as the coupled cluster method. This paper addresses two complementary aspects of performance
optimization of such tensor contraction expressions. Transformations using algebraic properties of commutativity
and associativity can be used to significantly decrease the number of arithmetic operations required for
evaluation of these expressions. The identification of common subexpressions among a set of tensor contraction
expressions can result in a reduction of the total number of operations required to evaluate the tensor
contractions. The first part of the paper describes an effective algorithm for operation minimization with
common subexpression identification and demonstrates its effectiveness on tensor contraction expressions
for coupled cluster equations. The second part of the paper highlights the importance of data layout
transformation in the optimization of tensor contraction computations on modern processors. A number of
considerations, such as minimization of cache misses and utilization of multimedia vector instructions, are
discussed. A library for efficient index permutation of multidimensional tensors is described, and experimental
performance data is provided that demonstrates its effectiveness.

Introduction

Users of current and emerging high-performance parallel
computers face major challenges to both performance and
productivity in the development of their scientific applications.
The manual development of accurate quantum chemistry models
typically can take an expert months to years of tedious effort
to develop and debug a high-performance implementation. One
approach to alleviate the burden on application developers is
the use of automatic code generation techniques to synthesize
efficient parallel programs from high-level specification of
computations expressed in a domain-specific language. The
Tensor Contraction Engine (TCE)1-3 effort resulted from a
collaboration between computer scientists and quantum chemists
to develop a framework for automated optimization of tensor
contraction expressions, which form the basis of many-body
and coupled cluster methods.4-7 In this paper, we describe two
complementary optimization approaches that were developed
for the TCE but that are available as independent software
components for use by developers of other computational
chemistry suites.

The first step in the TCE’s code synthesis process is the
transformation of input tensor contraction expressions into an
equivalent form with minimal operation count. Input equations
representing a collection of tensor contraction expressions
typically involve the summation of tens to hundreds of terms,
each involving the contraction of two or more tensors. Given a
single-term expression with several tensors to be contracted,

instead of a single nested loop structure to compute the result,
it is often much more efficient to use a sequence of pairwise
contractions of tensors, with explicit creation of temporary
intermediate tensors. This optimization problem can be viewed
as a generalization of the matrix chain multiplication problem.
However, although the matrix-chain optimization problem has
a polynomial time solution, the multitensor contraction problem
has been shown to be NP-hard:8 a combinatorial number of
possibilities for pairwise two-tensor contractions must be
considered. With tensor contraction expressions involving the
summation of tens to hundreds of terms, there are opportunities
for further reduction in computational cost by recognizing
common subexpressions in the sequence of pairwise two-tensor
contractions for computing the multitensor contraction terms.
Quantum chemists have addressed the operation optimization
problem for specific models,7,9 but to the best of our knowledge,
a general approach to optimization of arbitrary tensor contraction
expressions was not addressed prior to the TCE effort. In the
first part of this paper, we discuss a generalized treatment of
the operation minimization problem for tensor contraction
expressions.

The second part of the paper addresses an important issue
pertaining to achieving a high fraction of processor peak
performance when computing operation-minimized tensor con-
traction expressions. Achieving high performance on current
and emerging processors requires the generation of highly
optimized code that exploits the vector instruction set of the
machine (e.g., SSE, AVX, etc.), minimizes data movement costs
between memory and cache, and minimizes the number of
register loads/stores in loops. The current state-of-the-art in
compiler technology is unable to achieve anywhere close to
machine peak in compiling loop-level code representing a
multidimensional tensor contraction. Hence, the approach taken

† Part of the “Russell M. Pitzer Festschrift”.
* Corresponding author. E-mail: saday@cse.ohio-state.edu.
‡ The Ohio State University.
§ Louisiana State University.
⊥ Oak Ridge National Laboratory.
¶ University of Waterloo.

J. Phys. Chem. A 2009, 113, 12715–12723 12715

10.1021/jp9051215 CCC: $40.75  2009 American Chemical Society
Published on Web 09/28/2009



in quantum chemistry codes is to morph a tensor contraction
problem into a matrix multiplication problem and then use
highly tuned matrix multiplication libraries available for nearly
all systems. In general, this requires a layout transformation of
the tensors into a form in which all contracted indices of the
tensors are grouped together in the transformed view. Theoreti-
cally, the computational complexity of the data layout trans-
formation step is linear in the number of elements in the tensor,
whereas the computational complexity of the subsequent matrix
multiplication has a higher computational complexity. However,
in practice, the use of a straightforward loop code to perform
the layout transformation results in significant overhead. In the
second part of this paper, we discuss the development of an
efficient tensor layout transformation library.

The rest of the paper is organized as follows: The next section
elaborates on the operation minimization problem, followed by
a section that describes the algorithmic approach to operation
minimization. Experimental results that demonstrate its ef-
fectiveness are presented in the section after that. The following
section describes the layout transformation problem, summariz-
ing an approach (described in detail elsewhere10) to efficient
transposition of 2D arrays, and the generalization of the 2D
transposition routines to multidimensional tensor layout trans-
formation along with experimental results from incorporation
of the layout transformation routines into NWChem. We then
discuss related work in the section following that, leading to
the conclusion section.

Operation Minimization of Tensor Contraction
Expressions

A tensor contraction expression comprises a sum of a number
of terms, where each term represents the contraction of two or
more tensors. We first illustrate the issue of operation minimiza-
tion for a single term before addressing the issue of optimizing
across multiple terms. Consider the following tensor contraction
expression involving three tensorsst, f and sswith indices x
and z that have range V, and indices i and k that have range O.
Distinct ranges for different indices is a characteristic of the
quantum chemical methods of interest, where O and V cor-
respond to the number of occupied and virtual orbitals in the
representation of the molecule (typically, V . O). Computed
as a single nested loop computation, the number of arithmetic
operations needed would be 2O2V2.

However, by performing a two-step computation with an
intermediate, I, it is possible to compute the result using 4OV2

operations:

Another possibility using 4O2V computations, which is more
efficient when V > O (as is usually the case in quantum
chemistry calculations), is shown below:

The above example illustrates the problem of single-term
optimization, also called strength reduction: find an operation-
minimal sequence of two-tensor contractions to achieve a
multitensor contraction. Different orders of contraction can result
in very different operation costs; for the above example, if the
ratio of V/O is 10, there is an order of magnitude difference in
the number of arithmetic operations for the two choices.

With complex tensor contraction expressions involving a large
number of terms, if multiple occurrences of the same subex-
pression can be identified, it need be computed only once, stored
in an intermediate tensor, and used multiple times. Thus,
common subexpressions can be stored as intermediate results
that are used more than once in the overall computation. Manual
formulations of computational chemistry models often involve
the use of such intermediates. The class of quantum chemical
methods of interest, which include the coupled cluster singles
and doubles (CCSD) method,7,9 are most commonly formulated
using the molecular orbital basis (MO) integral tensors. How-
ever, the MO integrals are intermediates, derived from the more
fundamental atomic orbital basis (AO) integral tensors. Alternate
“AO-based” formulations of CCSD have been developed in
which the more fundamental AO integrals are used directly,
without fully forming the MO integrals.11 However, it is very
difficult to manually explore all possible formulations of this
type to find the one with minimal operation count, especially
since it can depend strongly on the characteristics of the
particular molecule being studied.

The challenge in identifying cost-effective common subex-
pressions (also referred to as common subexpression elimination,
or CSE) is the combinatorial explosion of the search space, since
single-term optimization of different product terms must be
treated in a coupled manner. The following simple example
illustrates the problem.

Suppose we have two MO-basis tensors, V and w, which can
be expressed as a transformation of the AO-basis tensor, a, in
two steps. Using single-term optimization to form tensor V, we
consider two possible sequences of binary contractions, as shown
below, both of which have the same (minimal) operation cost.
Extending the notation above, indices p and q represent AO
indices, which have range M ) O + V.

Sequence 1:

Sequence 2:

To generate tensor w, suppose that there is only one cost-
optimal sequence:
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Note that the first step in the formation of w uses the same
intermediate tensor f that appears in sequence 1 for V. Consider-
ing just the formation of V, either of the two sequences is
equivalent in cost. But one form uses a common subexpression
that is useful in computing the second MO-basis tensor, whereas
the other form does not. If sequence 1 is chosen for V, the total
cost of computing both V and w is 2OM2 + 2O2M + 2OVM.
On the other hand, the total cost is higher if sequence 2 is chosen
(4OM2 + 2O2M + 2OVM). The 2OM2 cost difference is
significant when M is large.

When a large number of terms exist in a tensor contraction
expression, there is a combinatorial explosion in the search space
if all possible equivalent-cost forms for each product term must
be compared with each other.

In the first part of the paper, we address the following
question: by developing an automatic operation minimization
procedure that is effective in identifying suitable common
subexpressions in tensor contraction expressions, can we
automatically find more efficient computational forms? For
example, with the coupled cluster equations, can we automati-
cally find AO-based forms by simply executing the operation
minimization procedure on the standard MO-based CCSD
equations, where occurrences of the MO integral terms are
explicitly expanded out in terms of AO integrals and integral
transformations?

Operation Minimization with Common Subexpression
Elimination

In this section, we describe the algorithm used to perform
operation minimization, which uses single-term optimization
together with common subexpression elimination (CSE). The
exponentially large space of possible single-term optimizations,
together with CSE, makes an exhaustive search approach
prohibitively expensive. So we use a two-step approach to apply
single-term optimization and CSE in tandem.

The algorithm is shown in Figure 2. It uses the single-term
optimization algorithm, which is broadly illustrated in Figure 1
and described in greater detail in our earlier work.12 It takes as
input a sequence of tensor contraction statements. Each state-
ment defines a tensor in terms of a sum of tensor contraction
expressions. The output is an optimized sequence of tensor
contraction statements involving only binary tensor contractions.
All intermediate tensors are explicitly defined.

The key idea is to determine the “binarization” (determination
of optimal sequence of two-tensor contractions) of more
expensive terms before the less expensive terms. The most
expensive terms contribute heavily to the overall operation cost
and potentially contain expensive subexpressions. Early iden-
tification of these expensive subexpressions can facilitate their
reuse in the computation of other expressions, reducing the
overall operation count.

The algorithm begins with the term set to be optimized as
the set of all the terms of the tensor contraction expressions on
the right-hand side of each statement. The set of intermediates
is initially empty. In each step of the iterative procedure, the
binarization for one term is determined. Single-term optimization
is applied to each term in the term set using the current set of
intermediates, and the most expensive term is chosen to be

“binarized” first. Among the set of optimal binarizations for
the chosen term, the one that maximally reduces the cost of the
remaining terms is chosen. Once the term and its binarizations
are decided upon, the set of intermediates is updated, and the
corresponding statements for the new intermediates are gener-
ated. The procedure continues until the term set is empty.

Evaluation of Operation Minimization

To illustrate the use of the automatic operation minimization
algorithm, we consider the tensor expressions for a closed-shell
CCSD T2 computation. Figure 3 shows the CCSD T2 equation,
including the computation of the MO integrals (denoted V) and
the expression for the double-excitation residual. We compare
the optimized forms generated in two different ways: (1)
with the conventional “separated” approach of first explicitly
forming the MO integrals from AO integrals and then using
the MO integrals for the CCSD T2 term and (2) using an
“integrated” form in which significant MO integrals in the CCSD
T2 equation are replaced by the expressions that produce them.
Although some MO integrals may appear more than once in
the T2 expression, the multiple expansion of such terms does
not result in any unnecessary duplication of computation because
of common subexpression elimination with the operation mini-
mization algorithm.

We study two scenarios for evaluation of the CCSD T2
expression: (1) the typical mode, in which iterations of the
residual calculation are performed with the t-amplitudes chang-
ing every iteration, but without change to the MO integrals
(because the transformation matrices to convert AO integrals
to MO integrals do not change), and (2) an orbital optimization
(Brueckner basis) scenario in which the AO-to-MO transforma-
tion matrices change from iteration to iteration; that is, the MO
integrals (if explicitly formed) must be recalculated for every
iteration.

Since the operation minimization algorithm uses specific
values for the number of occupied orbitals O and the number
of virtual orbitals V, the optimized expressions that are generated
could be different for different O and V values. The values for
O and V depend on the molecule and quality of the simulation,
but a typical range is 1 e V/O e 100. To provide concrete
comparisons, O was set to 10 and V values of 100, 500, and
1000 were used. Additional runs for O set to 100 and V values
of 1000, 5000, and 10 000 were also evaluated, but the overall
trends were similar, so that data is not presented here.

The standard CCSD computation proceeds through a number
of iterations in which the MO integrals remain unchanged. At
convergence, the amplitudes attain values such that the residual
is equal to zero, and this typically takes 10-50 iterations. In
some variants of CCSD, such as Brueckner basis orbital
optimization, the MO integrals also change at each iteration,
requiring the AO-to-MO transformation to be repeated. The
optimized tensor expressions for these two scenarios can be very
different. With the operation minimization system, all input
terms can be tagged as either stable (i.e., unchanging from
iteration to iteration) or volatile (i.e., changing every iteration).
In addition, an expected number of iterations can be provided
to the optimizer. The operation minimization algorithm seeks
to find a transformed form of the input tensor expression that
minimizes the total arithmetic cost for the expected number of
iterations.

Figure 4 shows the output generated by the integrated
optimization of the AO-to-MO transform and the CCSD T2
expression (for an expected number of iterations, T, of 10).
Seventeen new intermediates are generated, labeled using capital
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letters A-Q. Only 7 of the original 12 V integrals are explicitly
computed in the optimized form, whereas the expression using
the other V integrals has been transformed to use other
intermediates to reduce total operation cost.

Table 1 provides detailed information about the computational
complexity of the optimized expressions for the different cases

considered, showing the coefficients for the various higher-order
polynomial terms for the arithmetic cost (counting each floating
point addition or multiplication as one operation; we note that
this is different from the convention used in previous publica-
tions, such as ref 9, in which a multiply-add pair is counted as
one operation rather than two).

Figure 1. Single-term optimization algorithm with common subexpression elimination.

Figure 2. Global operation minimization algorithm.

Figure 3. Unoptimized input expressions for CCSD T2 and AO-to-MO transform.

Figure 4. Integrated optimization of CCSD T2 with AO-to-MO transforms.
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The first six columns in Table 1 correspond to the standard
CCSD model; the last six columns correspond to optimization for
the Brueckner CCSD model. Alternate columns, labeled “sep” and
“int”, provide the coefficients of cost terms for the resulting
expressions using separated and integrated optimization, respec-
tively. Considering the first two columns (for V ) 500), it is clear
that the optimized expressions are very different. Some table entries
have constant values, and others are scaled by T. A constant value
implies that the corresponding term is evaluated only once (for
example, the MO integrals in the expressions derived by separated
optimization), whereas the entries scaled by T are executed
repeatedly during every CCSD iteration. Since a single table is
used for displaying the polynomial complexity terms for different
expressions, we also have some zero entries when terms do not
apply to a particular optimized expression.

With separated optimization, the optimized form has several
contractions with computational complexity in the fifth power
of V/M (for V . O, M is very close to V) arising from the
explicit computation of the MO integrals. In contrast, integrated
optimization produces optimized expressions without any terms
involving the fifth power of V/M instead trading them for an
O(OM4) term that is computed T times (once every CCSD
iteration). When O × T is less than V, despite being recomputed
every iteration, such a term has lower cost than the one-time
explicit computation of the MO integrals. The last row of the
table shows the ratio of total arithmetic operation count using
the separated versus integrated optimization. For V ) 100, both
optimized expressions essentially have the same cost, but for
the higher values of V, it can be seen that the integrated
optimization produces a much more efficient form than inte-
grated optimization, with the benefit increasing as V increases.

The right half of Table 1 shows the computational complexity
terms for the optimized expressions for the Brueckner CCSD
model, in which the AO integral transformation must be performed
for every CCSD iteration. For both the separated approach and
the integrated approach, each term is therefore scaled by T. Again,
the optimized forms are clearly very different for separated versus
integrated optimization. Relative to the standard CCSD scenario,
for the Brueckner CCSD mode, the benefit of integrated optimiza-
tion over separated optimization is significantly higher.

So far, the comparisons of different optimized forms have all
been generated by the automated operation minimization algorithm.
But how effective is the automatic optimization when compared
with manually optimized formulations? To answer this question,
we generated an optimized version of just the CCSD T2 equations
and compared the complexity of the generated terms with a highly
optimized closed-shell CCSD T2 form developed by Scuseria et
al.9 The optimized form produced by the automatic minimizer is
shown in Figure 5. The computational complexity of the most
significant terms is 2O2V4 + 20O3V3 + 10O4V2 operations
(counting each floating-point addition or multiplication as a separate
operation). The manually optimized implementation from Scuseria
et al.9 is (1/2)O2V4 + 8O3V3 + 2O4V2 A close examination of the
optimized forms shows that the difference is mainly due to two
reasons. First, our compiler-generated expressions exploit anti-
symmetry but not another form of symmetry (“vertex” symmetry)
that is used in the optimized form from Scuseria et al.: Aij

ab ) Aji
ba.

The most significant contraction causing the O(O2V4) complexity
is essentially the same contraction in both optimized forms, but is
implemented by Scuseria et al. with one-fourth of the operation
count due to maximal exploitation of such symmetry. Second, a
close examination of the form of optimized equations in Scuseria
et al.9 demonstrates the need for more sophisticated intermediate
steps (e.g., one that involves adding and subtracting a term to an
intermediate term that significantly enhances overall possibility of
reduction in operation count). We are in the process of incorporating
vertex symmetry and enhancing the operation count minimization
capability of our compiler using more sophisticated steps.

Implementing Tensor Contractions using Tuned Matrix
Multiplication

Consider the following tensor contraction expression,

where all indices range over N, and a, b, and c are contraction
indices. The direct way to compute this would require O(N6)

TABLE 1: Coefficients of Leading Terms of Symbolic Cost Function; O ) 10, M ) V + O; (“sep” Denotes Separated
Optimization of CCSD T2 Expression and AO-to-MO Transform; “int” Denotes Integrated Optimization of CCSD T2 and
AO-to-MO Transform; T Denotes the Number of CCSD Iterations)

standard iteration Brueckner basis

V ) 100 V ) 500 V ) 1000 V ) 100 V ) 500 V ) 1000
leading terms of

symbolic cost function sep int sep int sep int sep int sep int sep int

VM4 2 0 2 0 2 0 2T 0 2T 0 2T 0
V2M3 2 0 2 0 2 0 2T 0 2T 0 2T 0
V3M2 2 0 2 0 2 0 2T 0 2T 0 2T 0
V4M 2 0 2 0 2 0 2T 0 2T 0 2T 0
O2M4 0 2T 0 2T 0 2T 0 2T 0 2T 0 2T
O2V4 2T 0 2T 0 2T 0 2T 0 2T 0 2T 0
OM4 2 2T + 4 2 2T + 4 2 2T + 4 2T 6T 2T 6T 2T 6T
OVM3 2 2 2 0 2 0 2T 0 2T 0 2T 0
OV2M2 4 0 2 0 2 0 2T 0 2T 0 2T 0
OV3M 4 0 4 0 4 0 4T 0 4T 0 4T 0
O3V3 20T 16T 20T 16T 20T 16T 22T 18T 22T 18T 22T 18T
O3V2M 0 0 0 0 0 0 0 0 0 2T 0 2T
OV4 2T 0 2T 0 2T 0 2T 0 2T 0 2T 0
O2M3 4 6T + 6 4 8T + 8 4 8T + 8 4T 14T 4T 14T 4T 14T
O2VM2 6 12T + 8 6 12T + 8 6 12T + 8 6T 18T 6T 18T 6T 18T
O2V2M 8 8T + 8 8 8T + 8 8 8T + 8 8T 16T 8T 16T 8T 16T
O2V3 10T 4T 10T 4T 10T 4T 14T 4T 14T 4T 14T 4T

reduction factor 1 2.46 4.24 2.51 13.75 28.46

E[i, j, k] ) ∑
a,b,c

A[a, b, c] B[a, i] C[b, j] D[c, k]

Tensor Contraction Expressions J. Phys. Chem. A, Vol. 113, No. 45, 2009 12719



arithmetic operations. However, as discussed in the first part of
the paper, algebraic transformations can be used to reduce the
number of operations to O(N4).

Each of the three contractions for the operation-optimized
form is essentially a generalized matrix multiplication. Since
highly tuned library generalized matrix multiplication (GEMM)
routines exist, it is attractive to translate the computation for
each 2-tensor contraction node into a call to GEMM if possible.
For the above 3-contraction example, the first contraction can
be implemented directly as a call to GEMM with A viewed as
an N2 × N rectangular matrix and D as an N × N matrix. The
second contraction, however, cannot be directly implemented
as a GEMM call because the contraction index b is the middle
index of T1. GEMM can be directly used only when summation
indices and nonsummation indices in the contraction can be
collected into two separate contiguous groups. However, T1 can
first be “reshaped” via explicit layout transformation; that is,
T1[a, b, k] f T1r[a, k, b]. GEMM can then be invoked with
the first operand, T1r, viewed as an N2 × N array and the second
input operand, C, as an N × N array. The result, which has the
index order [a, k, j], would also have to be reshaped to form
T2[a, j, k]. Considering the last contraction, it might seem that
some reshaping would be necessary to use GEMM. However,
GEMM allows one or both of its input operands to be
transposed. Thus, the contraction can be achieved by invoking
GEMM with B as the first operand, in transposed form, and
T2[a, j, k] as the second operand, with shape N × N2.

In general, a sequence of multidimensional tensor contractions
can be implemented using a sequence of GEMM calls, possibly
with some additional array-reordering operations interspersed.
Since the multiplication of two N × N matrices requires O(N3)
operations and reordering of a P × Q matrix requires only
O(PQ) data moves, it might seem that the overhead of the layout
transformation steps would be negligible relative to the time
for matrix multiplication. However, as shown in the next section,
a simple nested loop structure to perform the layout transposition

can result in significant overhead. The remaining sections of
this paper address the development of an efficient index
permutation library for tensors. The problem of efficient
transposition of 2D matrices is first addressed and is then used
as the core function in implementing generalized tensor layout
transformation.

Index Permutation Library for Tensors

In this section, we first present an overview of the problem
of efficient 2D matrix transposition (discussed in detail else-
where10) and then discuss its use in optimizing arbitrary index
permutations of multidimensional arrays. Consider the simple
double-nested loop in Figure 6. Although transposition might
seem such a straightforward operation, existing compilers are
unable to generate efficient code. For example, the program in
Figure 6 was compiled using the Intel C compiler with “-O3”
option. On an Intel Pentium 4 with a 533 MHz front side bus,
it achieved an average data transfer bandwidth of 90.3MB/s,
for single-precision arrays, with each dimension ranging from
3800 to 4200. This is only 4.4% of the sustained copy bandwidth
achieved on the machine by the STREAM memory bench-
mark.13

On modern architectures, the cache hierarchy, the memory
subsystem, and SIMD vector instructions (like SSE) are key
factors to performance of matrix transpose, and there is interplay
among them. Cache provides fast data and instruction buffers
to on-chip computation resources and is often organized into
multiple levels, including level 1 (L1) cache, level 2 (L2) cache,
and so on. A cache is organized as a set of cache blocks (lines)
whose typical sizes range from 16 bytes to 128 bytes. If a data
element has multiple accesses during its stay in cache, temporal
locality is exploited. If different elements within a cache line
are accessed, spatial locality is exploited. Translation lookaside
buffer (TLB) is a special CPU cache that memory management
hardware uses to improve virtual address translation speed.
Matrix transposition lacks temporal locality and has a large
cache footprint. The data access pattern for the code in Figure
6 involves row-wise access of B but column-wise access of A
in the inner loop. This results in poor spatial locality for A. If
the loops are interchanged, excellent spatial locality can be
obtained for A, but array B will now have poor spatial locality.
The strided access pattern for column-wise access can potentially
result in a large number of conflict misses in cache and TLB
misses.

Figure 5. CCSD T2 expression optimized separately from AO-to-MO transform.

T1[a, b, k] ) ∑
c

A[a, b, c] D[c, k]

T2[a, j, k] ) ∑
b

T1[a, b, k] C[b, j]

E[i, j, k] ) ∑
a

T2[a, j, k] B[a, i]

Figure 6. A simple implementation of matrix transposition.
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Processors have adopted multimedia extensions characterized
as single instruction multiple data (SIMD) units operating on
packed short vectors. Examples of these SIMD extensions
include SSE/SSE2/SSE3/SSE4 for Intel processors and VMX/
AltiVec for PowerPC processors. The effective use of SIMD
support can provide performance enhancement for matrix
transposition in several ways.

To illustrate the potential benefits of employing SIMD
extensions in memory bandwidth-bound computations, Figure
7 shows the performance difference for memory copy using
scalar versus SIMD instruction sets on an Intel Pentium 4 and
a PowerPC G5.

The reader is referred to a prior publication10 for details on
the issues to be addressed for efficient implementation of the
matrix transposition operation through explicit attention to
various architectural factors. A combination of offline analysis
and empirical search are used to determine the best choice of
optimization parameters. The empirical search is performed once
at library installation time and is similar to the ATLAS approach
to generating an efficient BLAS library.14,15 The code generator
takes as input the architectural parameters and generates multiple
versions of code optimized for different categories of problem
instances; at library invocation time, a dynamic search tree is
traversed to determine which version of the code is actually
executed.

The matrix transposition approach (presented elsewhere10) can
be used to optimize arbitrary index permutations of multidi-
mensional arrays. When going from 2D matrix transposition to
higher dimensions, several issues must be considered:

1. It is important to reduce the number of generated code
versions while optimizing for different permutations. Instead
of having n! code versions for all possible permutations of
n-dimensional arrays, we generate only n versions. By always
accessing the source array or the destination array in a fixed
order, we calculate the access stride of each loop into the other
array. In such a way, one code version handles (n - 1)!
permutations.

2. The decrease in dimension sizes with the increasing
dimensionality impairs the benefits from optimizations, such as
loop tiling. Due to the limited benefit of second-level tiling and
TLB tiling with reduced dimensions, we have only one level
of tiling when dimensionality n is larger than 3.

3. The index calculation overhead must be effectively
controlled to achieve high performance. Instead of relying on
compiler-generated code, we identify loop invariants and
generate efficient indexing code by strength reduction.16

Following the optimization procedure with the above changes,
we have developed a highly optimized index permutation library
for both PowerPC and x86 architectures. We demonstrate the
effectiveness of optimized index permutation operations by
employing them in NWChem,17 a widely used computational
chemistry suite.

In NWChem, two variants of index permutation operations
are used: without and with accumulation: (i) A′ ) permute(A,
p), where A is transformed to A′ using index permutation p,
and A′ ) A′ + c × permute(A, p), where A is permuted, scaled
by factor c and accumulated into A′.

Two representative computations are used in our evaluation:
(1) the triples correction in the CCSD(T) computation and (2)
the CCSDT computation. The experiments were conducted using
NWChem version 4.7 on the same Pentium 4 platform used in
the previous section. By replacing the original index permutation
code in NWChem with the optimized version, significant
performance improvements are obtained, as shown in Figures
8 and 9. We make the following observations:

1. The computation complexity of triples correction is
O(O3V4), whereas the index permutation cost of triples correction
is O(O3V3), which is mainly for symmetrization operations.
However, the index permutation was found to dominate the
computation of the triples correction. Our implementation offers
overall speedups of 2.27 and 2.58 for the triples correction,
respectively, for the two tested molecules. This improvement
essentially comes from the index permutation speedups of 3.35
and 3.53, respectively.

2. The computation complexity of CCSDT is O(O3V5); its
index permutation cost is only O(O3V3). The theoretical order
complexity might suggest that the index permutation cost would
be negligible; however, this is not the case, as seen from the
experimental results: overall speedups of 2.02 and 1.74,
respectively, are achieved for the two inputs.

Figure 7. Improvement from using SIMD in memory copy.

Figure 8. Normalized execution time of triples correction on a Pentium
4. Note: IP refers to index permutation.

Figure 9. Normalized execution time of CCSDT on a Pentium 4. Note:
IP refers to index permutation.
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Related Work

Common subexpression elimination is frequently used in
traditional optimizing compilers.16 Classical CSE techniques are
focused on identifying the opportunities for value reuse; in most
cases, such opportunities are rather limited, and they exist only
for scalars. In contrast, the CSE problem in our work considers
more complicated arithmetic structures and requires search for
profitable alternatives in a large space of possible choices for
value reuse. Algebraic properties (e.g., associativity) play a
central role in our approach, but they are typically ignored in
CSE techniques used in optimizing compilers.

Quantum chemists have proposed domain-specific heuristics
for strength reduction and factorization for specific forms of
tensor contraction expressions (e.g., for electronic structure
methods, such as the coupled cluster methods7,9,18). For example,
Scuseria et al.9 and Janssen and Schaefer18 developed a very
highly optimized formulation for closed-shell CCSD equations.
Common subexpression elimination is frequently employed in
the manual formulation of quantum chemical methods. However,
due to the complexity of the equations, it is prohibitively time-
consuming to explore manually the large set of alternative
formulations. With the help of the automated search techniques
proposed here, it becomes feasible to explore a much larger
space of possible formulations for operation minimization.
Janssen and Schaefer18 describe a common subexpression
elimination algorithm for tensor contractions but do not present
any experimental results.

Theoretical study and empirical evaluation of optimizing
matrix transposition with cache performance considerations were
conducted by Carter and Gatlin.19,20 The authors conclude that,
assuming conflict misses are unavoidable, it is impossible to
be both cache- and register-efficient and employ an in-cache
buffer. Other memory characteristics are not taken into account.
Zhang et al.21 focus on how to write an efficient bit-reversal
program with loop tiling and data padding. Different imple-
mentations of matrix transposition were investigated by Chat-
terjee et al.,22 with the conclusion that hierarchical nonlinear
layouts are inherently superior to the standard layouts for the
matrix transposition problem. We do not consider data padding
or noncanonical layouts as an option, since we focus on
generation of library routines that can be used with the standard
data layouts used by quantum chemistry software suites, such
as NWChem.

Several studies focus on how to generate or optimize
intraregister permutations. The generation of register-level
permutations is addressed by Kudriavtsev and Kogge23 for
optimizing data permutations at the instruction level, with a
focus on SSE instructions. Ren et al.24 present an optimization
framework to eliminate and merge SIMD data permutation
operations with a high-level abstraction. Both studies propagate
data organization along data-flow graphs and focus on reducing
intraregister permutations. We manually generate various ver-
sions of microkernels and empirically choose the best one.
However, the manual process need only be repeated once for
every vector instruction set. The limited number of vector
instruction sets allows this process to be applicable across a
wide range of processor architectures.

Empirical search employed in library generators, such as
ATLAS,14,15,25 has drawn great interest because of the complex-
ity of analytical modeling of optimal parameters for modern
architectures. However, empirical global search is often too
expensive to apply. Yotov et al.26 present a strategy employing
both model-driven analysis and empirical search to decide
optimization parameters in matrix multiplication. Chen et al.27

also present an approach to combining compiler models and
empirical search, using matrix multiplication and Jacobi relax-
ation as two examples. Our work is similar in spirit but is applied
to a computation that is bandwidth-limited and has no temporal
locality. Matrix transposition is similar to the level 1 BLAS
kernels optimized by Whaley and Whalley28 using an empirical
search-based approach, but the presence of strided memory
access in matrix transposition makes it harder to exploit spatial
locality.

Conclusions

This paper has addressed two complementary aspects of
performance optimization for tensor contraction expressions that
arise in many body methods in quantum chemistry: (1) algebraic
transformations to optimize the number of arithmetic operations,
and (2) efficient multidimensional tensor permutation to facilitate
effective use of tuned matrix multiplication libraries to perform
tensor contractions. The effectiveness of the developed opti-
mization approaches has been demonstrated using examples
from coupled cluster models.
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