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Hyperspherical harmonics for triatomic systems as functions of row-orthonormal hyperspherical coordinates,
(also called democratic hyperspherical harmonics) are obtained explicitly in terms of Jacobi polynomials and
trigonometeric functions. These harmonics are regular at the poles of the triatomic kinetic energy operator,
are complete, and are not highly oscillatory. They constitute an excellent basis set for calculating the local
hyperspherical surface functions in the strong interaction region of nuclear configuration space. This basis set
is, in addition, numerically very efficient and should permit benchmark-quality calculations of state-to-state
differential and integral cross sections for those systems. The approach used for their derivation is new and
should be applicable to systems of more than three atoms.

1. Introduction

Quantum reaction dynamics is an important and active field
whose state has been summarized in a number of reviews.!™
One of its main objectives is the calculation of state-to-state
differential cross sections of electronically adiabatic elementary
bimolecular reactions, as a function of scattering angle and
energy, using ab initio methods. This can be accomplished by
two complementary but distinct approaches. One is to solve the
nuclear motion time-dependent Schrodinger equation using an
initial wave packet covering a spread of relative translational
energies but only one rovibrational state of the reagents at a
time. The other is to solve the nuclear motion time-independent
Schrodinger equation for one total energy at a time, but including
all possible open rovibrational states of the reagents simulta-
neously. These two approaches have different computational
characteristics, and one or the other is chosen, depending on
the objectives of the calculation. They have been used exten-
sively for studying reactions in triatomic systems and, to a more
limited extent, tetraatomic systems. The latter are computation-
ally much more challenging because of the larger number of
degrees of freedom and quantum states involved.

In this paper, we focus attention on the time-independent
approach, and in particular the use of row-orthonormal hyper-
spherical harmonics (ROHH) for solving the corresponding
Schrodinger equation. The general theory has been described
previously.® It is based on the use of row-orthonormal hyper-
spherical coordinates (ROHC)’~° to describe the strong interac-
tion region of configuration space. These kinds of coordinates
have been labeled “democratic” by Whitten and Smith,'° as they
span that space “democratically”, without favoring any one
arrangement channel over another. This is an important property
for the description of chemical reactions among any subsets of
atoms of the system. For a system of N atoms, after the motion
of the center of mass is removed, the Hamiltonian depends on
a hyperradius p and 3N — 4 angles. A difficulty associated with
these angles is that the corresponding kinetic energy operator
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has angular poles for special configurations of the system, as is
generally the case for any system of angular coordinates. The
scattering wave function must behave regularly at those poles.
To achieve this property, we expand it in a basis set of local
hyperspherical surface functions (LHSF) which are eigenfunc-
tions of the system’s Hamiltonian at a fixed value of p, and of
the square J? of the total angular momentum operator J, of its
space-fixed z component Ji and of the operator 0-, associated
with the inversion .7 of the system through its center of mass.
The angular poles of this surface Hamiltonian are the same as
those of the total Hamiltonian. We now define the ¥ ROHH as
the eigenfunctions F of the grand canonical angular momentum
operator A and of additional operators that commute with it
and that include J?, Ji and Q. A’ is a function of all the
ROHC angles and also has the same angular poles as the
system’s Hamiltonian. The F harmonics are required to be
regular at those poles and constitute a complete set of linearly
independent functions of those angles. This regularity guarantees
that the LHSF obtained by expansion in the F set will have
this property, as will the scattering wave function obtained by
expansion in the LHSF. As a result, the ROHH play a very
important role in calculations using ROHC, for both reactive
and bound state problems. It should be noted that ROHC and
the associated harmonics can also be used in time-dependent
calculations.!!

A significant number of ab initio quantum-dynamical con-
verged state-to-state integral and differential cross sections of
triatomic systems have been performed using some version of
hyperspherical coordinates and a propagation approach to solve
the corresponding time-independent Schrodinger equation, a few
of which are referred to here.'?~% In addition, some bound state
calculations have been performed.?®?” In the latter, as well as
in some of these scattering calculations, ROHH were used.
However, no converged calculations of this kind have been
reported for tetraatomic systems so far. An important constraint
in the use of this methodology is the lack of explicit analytical
expressions for the corresponding ROHH, which are easy to
use and efficient to calculate. For triatomic systems, explicit
ROHH were derived for the total angular momentum quantum
number J equal to 0,2 1,2%° and 2.3 In addition, several
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approaches have been used for obtaining such ROHH for
arbitrary values of J and of the grand canonical angular
momentum quantum number 7, having those ease and efficiency
characteristics.*' * All of them almost achieve those charac-
teristics, but each has some shortcoming. Wolniewicz’s method?!
requires the numerical solution of an overdetermined set of
equations by a weighted least-squares method. Mukhtarova and
Efros’ method® is completely analytical, but the resulting
expressions for the ROHH involve cumbersome 4-fold sum-
mations. In addition, their approach seems to be limited to three-
particle systems. The completely analytical method of Wang
and Kuppermann,® based on the theory of harmonic polynomi-
als,’* uses a recursion relation that requires that, if a hyper-
spherical harmonic for a given J and n (which must satisfy the
condition 0 < J < n) are needed, the harmonics for all / < n
must be obtained at the same time whether needed or not. Since
the computational effort involved scales as n*, this makes the
method not be as efficient as desired, especially if the highest
value of J to be used in a calculation is significantly smaller
than the largest value of n required for convergence, as is
frequently the case for reactive scattering calculations. Another
approach, of Lepetit and co-workers,?” that uses basis function
expansions of the ROHH, is also partly numerical, and requires
eigen solutions.

In the present paper we describe a completely analytical
method to generate, for triatomic systems, ROHH that are
simultaneous eigenfunctions of the four operators 0‘:/, Kz, j,
and jzf defined above as well as of L, which is an internal
hyperangular momentum operator associated with one of the
internal hyperangles. These harmonics are linearly independent
and can be calculated, for any desired set of the corresponding
quantum numbers, without requiring the calculation of harmon-
ics for additional quantum numbers. This eliminates the inef-
ficiency of the recursion method mentioned in the previous
paragraph. In addition, this approach is generalizable to systems
of more than 3 particles. In section 2 we describe those operators
in greater detail and summarize the ROHC used and the
corresponding Hamiltonian,” and in section 3 we define the
associated hyperspherical harmonics. In section 4 we derive an
analytical expression for these harmonics. Some representative
results are presented in section 5, and a discussion is given in
section 6. Finally, a summary and conclusions are given in
section 7.

2. Coordinates and Kinetic Energy Operator

The ROHC used in this paper, as well as their properties,
have been described previously’® for N-particle systems, but
we summarize them below for the sake of completeness. We
consider the particular case of a system of three particles whose
mass-scaled A-arrangement-channel Jacobi vectors in a space-
fixed frame Ox*"y*z*" are r, i = 1, 2. The corresponding Jacobi
matrix is defined as

x(AZ)xgl)
sf 2 1
py = [ @2.1)
ZE'Z) Z;l)
The 6 ROHC

Vi = (p, O (2.2)

where O} represents the 5 body-fixed angles
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0 =, 0,0, (2.3)
are defined by the relation
p; = R(a,) pN(0) Q(9,) 2.4)

In this expression, a, = (a;, by, ¢;) are the Euler angles that
rotate the space-fixed frame into the principal-axes-of-inertia
body-fixed frame Oxy"z2. The quantity p is the usual hyper-
radius which, together with the two internal hyperangles 6 and
0, determine the internal configuration of the system. The R
in eq 2.4 is the proper orthogonal 3 x 3 matrix associated with
that rotation, and N(6) is a 3 x 3 diagonal matrix whose
diagonal elements are

N,,=sin@ N,,=0 N;;=cos0 (2.5)
Finally, Q(9;) is the 3 x 2 row-orthogonal matrix
cosd, sino,
Q) = 0 0 (2.6)
—sind; cosd,
The Euler angles a, have the usual ranges of definition

0=<a,c<2m 0=b, =m 2.7

To obtain a one-to-one correspondence between pji and the 6
ROHC (except for some special geometries), we limit the range
of 9, to

0=<9,<m (2.8)
and of 6 to
0=<0=<ua/M4 (2.9)
The latter results in
N,, = N|; = Ny (2.10)

The hyperangle 6 is related to the system’s principal moments
of inertia I,, I, and I5 by

I, = ,up2N332 = up* cos’ 6 (2.11)
I, = up’ (2.12)
I, = uplelz = ypz sin® 0 (2.13)

and, as a result of eq 2.10, are ordered according to
L=1=25L=0 (2.14)

In terms of these ROHC, the kinetic energy operator is given by
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2 ~2
VA 1 () + 2 (2.15)
2u 2up

where V2 is the system’s mass-scaled 6-dimensional Laplacian,
A? is the grand-canonical hyperangular momentum operator

R Ly 1y Ly L g
cos’ O cos“ 26 - sin” 6 cos” 26
R — 2320 15 i o4k (2.16)
cos” 26

f"p(p) is the hyperradial kinetic energy operator

R 19 50

T(p)=— 2 20" 9p

2.17)

and K and L are internal hyperangular momentum operators defined
by

>
Il
|:>v

)
ey (2.18)

and

~ _h 0
L= T 90, (2.19)

The J&, j;, and J% operators in eq 2.16 are the components
of the nuclear motion orbital angular momentum operator Jin
the body-fixed frame Ox’y"z"» and are explicit functions of the
Euler angles a;.’

A very important property of the ROHC is that each one of
the 7 terms in eq 2.16 as well as the f",,(p) of eq 2.17 are invariant
under a A — v change in Jacobi coordinates,’ called a kinematic
rotation.'3® This property is an additional justification for the
designation of “democratic” for these coordinates.

The grand-canonical hyperangular momentum operator of eq
2.16, and therefore the kinetic energy operator of eq 2.15, has
singularities at collinear configurations of the 3-particle system,
corresponding to & = 0, and at configurations for which the
two principal moments of inertia /; and I5 are equal, corre-
sponding to 6 = /4, which are prolate symmetric top
configurations. The collinear configuration poles can be taken
care of by a simple choice of 6 basis functions.!?> For many
collinearly-dominated triatomic systems, the symmetric top
singularity corresponds to high-energy regions of the potential
energy surface and does not pose special problems at low
energies. However, for noncollinearly-dominated triatomic
systems, this singularity is, in general, not located in such
regions and can result in convergence difficulties for the most
common quadrature or basis set expansion methods, including
DVR methods, even for low energies. In the present paper, we
develop a set of analytical basis functions which overcome these
problems, at both low and high energies.

3. Row-Orthonormal (Democratic) Hyperspherical
Harmonics

As described previously,® the five operators A%, J, J5, L,
and O; commute with each other. .7 is the operator which
inverts the system through its center of mass,
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and O, the associated operator which acts on functions of pj'.
Since 7 acts on the ROHC of eqs 2.2 and 2.3 according to

(ej(ai,bl,cl,p,e,él) = ((ﬂ + a)v) mOd 2ﬂ,ﬂ - bl’
(T — ¢;) mod 271,0,0,0,)  (3.2)

both 0 and 0 are unchanged under inversion. Let F"n‘n}, (@%)
be the simultaneous normalized eigenfunctions of those five
operators:

ny(ng + 4HRZFTE (@‘;f)
(3.3)

A2 annLnid Jd(@]if) _

j annLnJ (Obf) = JJ + 1)h2 HnnLid (sz)
3.4

ff InpLn/ (ng) — MthH"“L“J (@Ef) (35)
LF, (07) = LhF i, (8 (3.6)

0 Fl_InnLnJ @bf) _( 1) Fl_InnLnJ (Ozf) (37)

where d = 1, ..., D, and D is the number of linearly independent
F functions having the same values of the 5 quantum numbers
I1, nm, L, J, and M3 This notation differs from that of ref 33
as we have dropped the superscript D from F. Such a modified
notation is more convenient for the propose of the present paper.
These F functions are orthogonal with respect to I1, np, Ly, J,
and M, but not necessarily with respect to d. If desired, they
can be orthogonalized with respect to that index by a
Gram—Schmidt procedure. In either case, they are required to
be regular at the poles of A% Those quantum numbers are all
integers, satisfying the constraints

np=0 0=<J=ng (3.8)
—J=<M,=J —nyg=Ly=ng (3.9)
II1=0,1 (3.10)

with nyy and Ly having the same parity as I1. As has been proven
previously®® and will be proven by a different method in section
4.6, the degeneracy D depends on I, np, J, and Ly but is
independent of M, and an explicit expression for this depen-
dence will be given in eqs 4.81 and 4.82. The five operators
being considered are all independent of the choice of arrange-
ment channel coordinates A and, therefore, so are the corre-
sponding quantum numbers I1, np, J, M;, and Ly, as well as D.
The solution of eqs 3.3—3.7 can be written as



Hyperspherical Harmonics for Triatomic Systems
Tnplo] by
F 1yt ﬂMId(@A) —

NﬂnnLn‘jl oiLnd:

J
Dy 0, (a) G (6) (3.11)
=—J

Q=

where Nl is a real positive normalization constant.

Both the F and G functions of eq 3.11 are called row-
orthonormal (ROHH) or democratic (DHH) hyperspherical
harmonics. The presence of the Wigner rotation functions
DMQ (ay)* and of e’n% guarantees that eq 3.11 will satisfy
eqs 3. 4 3.7. Replacement into eq 3.3 results in a set of coupled
partial differential equations for the functions G. These equations
do not contain M,,** and therefore, the G (and as a result the
normalization constants N) are independent of that quantum
number. This independence is a consequence of the fact that
A? is invariant under both space and kinematic rotations. The
degeneracy D also represents the number of linearly independent
sets of functions GH"”L“gj 4» €ach set corresponding to a given
I1, np, Ly, and J and spélnned by the quantum number Q.
Although D depends on the parity quantum number I1, it does
not itself have parity I1. Regardless of whether ITis O or 1, D
can be an even or an odd integer (see section 4.6).

It should be noted that linear combinations the D
FH"“L“J (G) ) (d=1,2, ..., D) functions, for a given set of I1,
no, LH, J and M, quantum numbers, are also solutions of eqs
3.3—3.7. If a complete linearly independent set of such linear
combinations is used, and the resulting functions are normalized
using real positive normalization constants, we obtain a different
set F’H"“L“] (G)'jf) (d’=1, 2, ..., D) of normalized solutions to
those equatlons and therefore, such equations do not determine
the F functions uniquely. Nevertheless, the F and F” functions
are equivalent basis for expanding general functions of @'. This
matter will be revisited in section 5.4.

We associate to the G functions (which are non-normalized over
6 and can be complex), the real functions g and g defined by

gnnnLn é;_. y 0) = iU= Qa2 Gl‘[nnLn-éz J}d(g) (3.12)

and

HﬂnLnJ (0) H"HLH‘S HnHLHJ (0) (3 1 3)

An important property of the G, g, and g functions is their parity
with respect to the quantum number Q;,, which is given by®

GHnnLnJQ (0 = (— 1)H+J+Q,AGHnnLngjld(9)

(3.14)

and

—HHHLH]
8

(9) = (- 1)H+J—HnnLnJ (6) (3.15)

with a similar relation holding for the g functions. The volume
element associated with the body-fixed angular coordinates O} is

et = 4_1 sin 460 d6 do, sin b, da; db, dc; (3.16)
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Using a recursion relation approach and a symbolic algebra code,
we have previously**3® developed a method for obtaining, for a
given I1 and nyy, a complete set of linearly independent solutions
of eqs 3.3—3.7 for all possible values of J, M, and Ly satisfying
eqs 3.8—3.10. In the rest of this paper we will denote this particular
set of solutions as F;.. and the corresponding G that appear in eq
3.11 by Gy, the subscript standing for recursion. These G
functions are unique; ie., F H"HL”,JW Jd(@',{f) and N were
chosen in a specific way.

We will now introduce another particular complete set of F
functions having a degeneracy index of, rather than d. This
index is defined in eq 4.23, and the reason for this particular
choice will become apparent in section 4.3.

These new F H"“L“J (e° h ") functions also satisfy eqs 3.3—3.7
and can be put in the fgrm of eq 3.11, with d replaced by op.
This new expression defines the GH"“L“J (6) functions. We
will obtain, in eqs 4.76 and 4.69, an exp11c1t analytlcal expression
for these new G functions in terms of op. As a result, on
acquires characteristics of a fifth quantum number. The number
of allowed values of opy is the same as that of d in eq 3.11 and
is equal to D (I1, ny, J, Lyy). As will be shown in section 4.6
those allowed values of oy are given by eq 4.83. It is important
to notice that the angle 0 is invariant under the inversion opera-
tor .7 and therefore, the functions OyGH”“L“J H(t9),

Q
03", (@), and O:g""m, o,(0) are equal, rjlespec—
tively, to & " on( O “"“L”’ (0) and g, |, (6),
However, the superscipt IT in these functlons does not mean
that IT = 0, since II refers to the parity of the associated

TnpLo/ bf.
Frmem ((-),1) function under such inversion.

4. Analytical Derivation of the Row-Orthonormal
(Democratic) Hyperspherical Harmonics

4.1. Space-Fixed Hyperspherical Coordinates and Har-
monics. Let ¥, 609, ¢¥ (i = 1, 2) be the space-fixed polar
coordinates of the mass-scaled A-arrangement-channel Jacobi
coordinates r{ introduced in section 2. It is convenient to replace
the variables 74" and 7? by the hyperradius p and hyperangle
1, defined by the relations

rﬁ]) = psin, “4.1)
rf) = pcosn, “4.2)

and limited to the ranges
0=mn =a/2 “4.3)
Let

3= 0600067, (4.4)

designate the five space-fixed angles. The 6 coordinates p, O
are called the space-fixed hyperspherical coordinates. The
volume element associated with O is

des =
sin 0(1) d0(1) dqb“) sin 0(2) d6’(2> d¢(2) sin’ 7, cos’ 7, dn,
4.5)
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In terms of O, A” is given by

R 5 jar 2
AP =— ? isin2277,1i+l—+ 2
sin” 2y an;, o, sin’ n cos’ n
y 2 2
(4.6)

where ¥ (i = 1, 2) is the square of the angular momentum
operator associated with r{? and is given by

R 9 3 1
jor = _ singV—2— 4 —*
’ sin 6 86(’) g 30 sin® 6
=Ry
T

) Ny ay A ais a s N .
The six operators A%, J2, Jif, &V, %, and O, commute with
each other. Their simultaneous eigenfunctions <I>1H.’f,g£>JM’(®jf)are

called the space-fixed hyperspherical harmonics. They satisfy
A0S = npy(ny + HR D (O3) (4.8)

Paiin @) = JJ + DR*0,n (@)  (4.9)

Hogn™e;) = Mo e  (4.10)

Z‘(il)l¢nnn JM/(@ )

) L@ + DR M) @

ﬂ2>2<1>1;5'7,;)’M7(®;f) = 1PaP + 1)h2q>1;;’l;;)m'(®;f) (4.12)

0@ ™M@ = (— Do M(O)  (4.13)

The six quantum numbers I1, npy, J, My, 5, and I are all integers.
The first one satisfies eq 3.10, the next three satisty eq 3.8 and the
first of eq 3.9, and the last two are non-negative and satisfy the
triangle inequality

P — i1 <7< P+ 1R (4.14)

The eigen functions CIDIT([I')IIFZ)JM’(@ ;) are furthermore required to be

regular at the poles of all of those operators.
As is well-known,* the simultaneous solution of eqs 4.9—4.12
is

Yinia(0

511)152) (l) (l)’0(2) (2)) — Z C(l(l) 1(2),J m(l)

mgh

VAOL S Vi (0067 @15)

—m{’.M,) x

where Yl (,)(00) ¢(’)) (i = 1, 2) is the usual spherical harmon-
ics* and the C are the Clebsch—Gordan coefficients. Replacing

this result into eq 4.8 and using eq 4.13 leads to the expression*!#?
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My, sty —

CI)SL]:’;;) J(Ojl) =
I D (1) g 42

Nzu?z?n sin” 77/1 cos"” Y]wgtz) 0,".45.0.¢7) x

Pé’?‘] )+1/2,lﬁ2>+1/2)(cos 2n,)  (4.16)

where
& = (ny — ) = )2 4.17)

and PP is a Jacobi polynomial of order &;,.* In addition, ny
has, as stated after eq 3.10, the same parity as I1. Since &, must
be a non-negative integer, [ + [’ must also have that parity.
The normalization constant N};'flg‘z) is given by*!

N%{ﬁ_) =
{Z(nn + Dl(ng — L — )2 [(ng + £ + 1P)/2]! }“2

Cl(ng + Y — 1P + 3)21T[(ny; — £ + 1P + 3)/2]
(4.18)

Since the number of angular degrees of freedom in O3 is
five and since there are also five independent angular quantum
numbers namely nm, J, M, I, and [, the functions

?,Q)JM’(@ ) are nondegenerate and constitute a complete
ort onormal set of functions that span the @' space.

4.2. Relation between the Space-Fixed and Body-Fixed
Hyperspherical Harmonics. Let {®""™ (@)} be the set of

E:’[&,JM’(G) ;) functions for fixed I1, nr, J, and M, spanned by all
distinct pairs of &V, [ permitted by the triangle inequality eq 4.14.
The functions in this set are linearly independent and constitute a
set of simultaneous eigenfunctions of 7\2, jz’ jz, and (A);/ corre-
sponding to those four quantum numbers. Similarly, let
{F™Mi @)} be the set of normalized F'1 ﬁ“(e)g’f)
functions, defined at the end of section 3, for fixed values of the
same II, np, J, and M, quantum numbers and spanned by all
distinct Ly, o pairs with the Ly having the values given by the
second of eqs 3.9 and oy having the D values given by eq 4.83.
They are also linearly independent and constitute a complete
orthonormal set of simultaneous eigenfunctions of the same four
operators just mentioned with the same values of their four quantum
numbers. As a result, these two sets contain the same number of
functions and are related by a linear transformation according to

nn
Z Z ( Cﬂnnj)g}-{g}-[ FﬂnnLnJ (@ )

Ln:*nn,Z or1

DO =
4.19)

where the sum over Ly is in steps of 2 because of parity
considerations. In addition, if the F'"1, rI(@Ef) functions are
also required to be orthogonal with respect to the degeneracy oy
the transformation eq 4.19 is unitary.*

As shown in Appendix A, the C coefficients in the right-hand
side (ths) of eq 4.19 are independent of M, in spite of the fact
that this quantum number appears in both sides of that equation.
The @H?};{M’(G)if) functions are known and are explicitly given by
eq 4.16. From this knowledge, and the use of eq 4.19, we wish to
tnlng (@ ". This is equivalent to

determine all of the F
determining all of the GH"“LHE o (9) functions appearing in the
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or; counterpart of eq 3.11, and the associated normalization
constants. Such a procedure entails two steps. In the first we change
the angular variables @' appearing in the left-hand side (lhs) of
eq 4.19 to O}, The second involves putting the resulting ®(O3
in the form given by the rhs of eq 4.19, with F having the form
given by the rhs of the oy counterpart of eq 3.11. This approach
is appropriate whether or not the F' functions are orthogonal with
respect to oy;. This methodology requires, for given I, nyy, J, and
M;, that we consider all 1§, [ pairs simultaneously, and although
conceptually correct, it is algebraically laborious. An alternative
is to utilize the fact that the F functions in the rhs of eq 4.19 are
independent of [V and /2. Therefore, it may be possible to find a
special I, ﬁz) pair from which the F Y (@ ") and
GH"“L“J (@ ) for all allowed Ly, ogy can be determmed It is
shown 1n;sect10n 4.3 that such an optimal [V, {2 pair does indeed
exist and that, as a result, the necessary algebraic effort to determine
these F functions is greatly decreased. In section 4.5 we use this
approach to derive an explicit expression for the G functions.
4.3. Selection of an Optimal I, [[Y Quantum Number Pair.

Let us first define the op-independent F/ ,?,:’;&,Lnﬁ,, (@) functions by

Fnplnl
IR M,

f: — Z(Cﬂnnl)llé}-il(g{FﬂnnLnJ (O )
on

(4.20)

It is straightforward to verify that the F are also hyperspherical
harmonics, i.e., are simultaneous eigenfunctions of the five opera-
tors involved in eqs 3.3—3.7. Although the F functions are
normalized, the F are not. The latter can therefore be written in a
form similar to eq 3.11,

FH"HLI'IJ )

0 n
1HIR) M ILH g 2 DMQ (aﬂ)Ggll)l%Hé (0)

Q=
4.21)

where the normalization constant has been omitted. With the help
of the last two expressions, eq 4.19 can be rewritten as

Ing JM, sfy
q)zﬁnzﬁZ) (91) -

nry J
2 2 D g () Gt (0)

Ln:—nn,2 QMZ_J

4.22)

We now wish to carefully select a particular pair of values

of I{Y and I{, and the corresponding Q,ﬁ.)lﬁz) M1 and G};,I(Z,L"g SO

as to obtain from them a complete set of GH"“L“J

(which were defined in the last paragraph of sectlon 3). To this
effect we define the integer oy by

o functlons

o =12 — 1Y (4.23)

As stated after eq 4.17, I{" + [ has parity IT; as a result, oy
also has that parity. As will be shown in section 4.4, we may
restrict the values of oy to being non-negative. In addition, as
demonstrated at the end of section 4.6, these values are
independent of the choice of arrangement channel A.

Since [V, ¥, and oy are related by eq 4.23, let us consider
Y and o to be independent quantities and [ a function of
them. For a given II and J, replacement of eq 4.23 in eq 4.14
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furnishes the following constraints on o and {V:

oyl < J (4.24)

J — og

(D
l;» = D)

(4.25)

The equality sign in these two expressions can only hold if J and
o, or equivalently, J and I1, have the same parity. Therefore, the
minimum value that IV can have, for a given J, I, and oy
(regardless of the value of ny) is independent of A and is given by

J—oq+b
l (L op) = ———5—+ (4.26)
where
_ 1 - (—l)HrI _JO for J + ITeven

brin = 2 ~ 11 for J+ Modd (4.27)

The corresponding 2}, (also for a given J, I1, and ofy) is
J+oq+b

2 (M Jop) =10 + oy = —“2 sl (4.28)

and is also independent of A. For subsequent use we define Ly, as

— l(l) + l(z)

min min

(4.29)
and notice that it is independent of oy, has parity I, and is given by

J for J + Ileven
J+ 1 for J+ ITodd
(4.30)

Lmin(H’J) =J+ b]+n = {

In view of eq 4.23 and the fact that the &; of eq 4.17 is non-negative
we must have, for a given IT, Y and of,

> 2" + o 4.31)

Therefore, for a given /5" (and a given IT, J, and ory), the smallest ny
permitted is 2/Y + op. However, according to eq 3.8, all values of
nrp equal to or greater than J + b4y are permitted, regardless of the
value of V. As aresult, for a choice of £ not to exclude any permitted
values of nyy, it must satisfy

28" + oy =T+ by (4.32)
In view of eq 4.26 this relation furnishes
<1 (4.33)

Since 1), is the smallest value that /" can have (for a given IT, J,
and ory), the only value of £V satisfying this condition and eq 4.33
is [Y).. This means that to obtain the harmonics for all possible ny
from a single /4" and fixed J, I1, and oy, we must force that /5" to



15390 J. Phys. Chem. A, Vol. 113, No. 52, 2009

be the [}, of eq 4.26 and therefore the corresponding [{) to be the
IQ), of eq 4.28. The G functions that appear in the version of eqs
4.21 and 4.22 in which 1§, I? is replaced by [, IZ), will depend
only on I, nr, L, J, Q,, and or. We will label these functions
CTH"”L”J (9) ie.,

GHﬂnLnJ on(0) = }({?ggﬂé (0) (4.34)

and use a similar definition for the corresponding F _H”“L“j ((')Ef)

which, as those defined by eq 4.21, are non- normahzed yper-
spherical harmonics. It must be remembered that £L), and K3, depend
on I1, J, and or;. We will obtain an explicit expression for these G
functions in section 4.5.3. In addition, the allowed values of oy (a
subset of those satisfying eq 4.24 that lead to a complete set of
linearly independent F harmonics) are determined in section 4.6
and are given (as stated at the end of section 3) by eq 4.83. The
choice {Y = [}, and [P = [3), is therefore an optimal one.

4.4. Parity of G with Respect to Q 7, and oy. To simplify
the determination of the G "”L”J (9) functions of eq 4.34, it
is convenient to restrict the Values of Q,, and oy to non-negative
integers by relating the G for Q;, to that for —Q;, and G for opy
to that for —oy. The parity of the G with respect to Q 7, is the
same as that of the G functions of eq 3.14, with d replaced by
om1. Therefore, the G are either symmetric or antisymmetric with
respect to €, and it suffices to determine these functions for
Q= 0.

Let us now consider the C™" matrix defined by eqs 4.19
and A.1. The parity of G with respect to op stems from the
relation between the matrix elements (CH"“J)ZR f;{{ and
(CH"“j)gB W1, where 5V and I have been interchanged. As
shown in Appendlx B, that parity is given by

Gl_lnnLné2 (0) — (_ 1 )(nnfl+bj+n)/zannnl‘nl (0)
—oy

7, Q00
(4.35)

Therefore, the G are also either symmetric or antisymmetric
with respect to oy and it suffices to determine them for o >
0. As mentioned at the end of section 4.3, the range of this
index is given by eq 4.83.

4.5. Explicit Expression for the Body-Fixed Row-Or-
thonormal (Democratic) Hyperspherical Harmonics. Replac-
ing I, I by I}, I, in eq 4.22 and using the same change of
notation as in eq 4.34, we obtain

®Hnn.]M_](® )

Z 2 D], o (aA)GH"HLHQ @) (436)

Lp=—nn.2 Qj=—J

Noticing that the G in the rhs of this expression is independent
of M;, we are free to set M; = J to determine that function:

(DHnH{)Mj:J(GSf) —

2 2 anéADJQ ( l) GH”I'ILHJ (6) (4.37)

Lp=—ny,2 Q_[A__J

The lhs of this expression is a known function of @3 obtained
from eq 4.16 by setting in it M, = J, I{) = [, (I1,J,017), and
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1= I5hILJ,0m):

q)HnnJM_,:j(Gif) _
I 13 (1) (1) (2) (2)
Nl(l) ) sin™" 77, cos ’hYl,m 1(2) B X

Pélﬁnlx)n+l/2‘l(r‘%‘)"+l/2)(cos 277/1) (438)

with the corresponding &; of eq 4.17 being independent of 4
and given by

E=(ng — L,)/2 (4.39)

We now wish to change the variable @ in the lhs of eq
4.38 to O} and reexpress its rhs as a sum of products of e’'n%
and Do () functions. Once this is accomplished, identifying
the coefficients of these products in both sides of eq 4.37 will
give the desired explicit expression for GH”“L“J o, (6). This in
turn will furnish the explicit expression for the GH"“L% o0
(0) defined in the last paragraph of section 3.

4.5.1. Expression for Y,m 2, in Terms of ©Y. The l(’.‘f ,mj
that appear in the rhs of eq 438 can be obtained in terms of the
space-fixed polar angles by setting /{" = [{});, and [ = [, and
M; = J in eq 4.15. The corresponding Clebsch—Gordan
coefficients can be obtained explicitly with the help of eqs 4.26
and 4.28. The resulting expressions are

‘M=, 1) ) p2) (2N —
Yﬁ‘Jl(ZJ ( ( ,0( ¢( )_

min‘min

(2)
oL e) Vi O ¢y forJ + Ieven  (4.40)

YM=1 gD gD g2 42 —
[(UJ[(ZJ(O ¢ ’0 ¢ )

( l‘(‘%l)“ )llzylklu)n (1) (1)y i (2) (2)

BRVES lggn—l i )Y;m )t

( lirlli)" )1/2 i g1 (DY AR (2) 1(2)
1 (0385 Yo' 1(077.977)

T for J + IT odd

(4.41)

where [}, and [2), are functions of J, I1, and or;. We now change
from the space-fixed polar angles to the corresponding Cartesian
coordinates using the relations obtained from explicit expres-
sions for P} and Pl_:*

(t) (VM
+ iy
Yh(@(t) (z)) — Nl,l 5 (4.42)
T

and
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(l)( (i) + iy;i))l/l_]

Yj 71(9(1) ¢(l)) _(21/1)1/21\71 o (443)
n
where
2L, + Diyie
— o \L
N, =D { 472! (444)
and
2 for neven
|l = — e
n!! =nn — 2) {1 for nodd (4.45)

With the help of the relations between the space-fixed Cartesian coordinates and the complex 7;f functions® defined in Appendix
E by eqs E.1—E.6 we get

COE = 6

),Zi;_l(e(l) () \/l(_lN[ﬁl) u T;{'l)(?ﬂll =T, 1)151“ 1 s
(2ip sin 7"

Yg;; (02,62 = —\1® ﬁz)( T + T, (T + 1, )" (4.49)

2p cos )"

It should be noticed that the T;¥ are expressed in terms of the ROHC by eqs E.7—E.12 and therefore are of central importance for
the O to @Y coordinate transformation. Replacing eqs 4.46—4.49 in eqs 4.40 and 4.41 results in

_ Nn]U'n
Vit (03" ¢.00.057) = —— wx
0, (P pin e cos ) (4.50)
(TM -1, D (1, L+ T,_) for J + ITeven
(TlT, | - T,HTM)(TA} — 1, YWl o, R for J + TTodd
where
. L\ B 1 Yo for J + Ileven
n = p—
N Nl%')ng'z")"(h) (2) (%) for J + ITodd (4.51)
J

An explicit expression for (T} — Tl_})’ﬁ”(Tﬁ + Tl_})’ﬁﬂ in terms of the @Y angular variables is derived in Appendix E (see eq E.45).
In addition (T,{T;-} — T;-9T;}) can be expressed in those variables using eq E.7:

T 1, ' — T, °T,)) = —2\2 p* cos O sin 0( ll(al,bi,c,ﬁ- 2) D l(al,bl,c,ﬁ- 2)) (4.52)

With the help of eqs E.45 and 4.52, eq 4.50 can be written as
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Nn Jom:J Lz,

J
1 il J TIL,;n LT
— — 3 Y Do @), (0) (453)
(sin ) Me(cos )™ T 0 anm :

M=J ; (1 (D 2 2y —
Vi 02910591 =

In eq 4.50, the ths contains polynomials of degree I}}, + &), = Ly, in the T variables for both J + IT even and odd. Therefore, for
J + TI even, L}y, = L. However, for J + IT odd, the factor (T;9T;-1 — T;-9T;1) does not depend on J;, as can be seen from eq
4.52, and as a result, L}, = Lyin — 2. Therefore,

Liin = Lyin = 2bjn =J — by (4.54)
The summation index L’ has the same parity IT as Li;, and as Ly,(IT,J). The function Pani"ng,,oH(g) is
pHL'“i“Lvéugn(G) _ Uéz;zgzgg;gjii)(/é+an—bJ+n)/2hLminL'£2!A(9) (4.55)
where
rAw(slzja(JiLl)/z)(e) for J -+ Ileven
LuninL'J QD2 6 sin 0 -1 (J-1-L
e N e U R Y S e OF (4.56)
2727 — 1) o
U= Q)0 —Q, — DA TP for J + TTodd
\

does not depend on oy and the U and A(6) are given by eqs E.44 and E.38, respectively. In view of eq E.36 and the remark after
eq E.37,if in eq 4.56 1Q2,, — 1l or 1, + 1l exceed J — 1 the corresponding A(6) functions are set equal to zero, by convention. For
example, for J = 1, the functions A1Y"72(9) and A"97L72(0), which result from Q,, = 0 and %1, respectively, vanish. Equations
4.53, 4.55, and 4.56 furnish sin'), 7, cos'®, 1, Vi, as a function of the body-fixed angles ©Y', as desired. A useful particular case
is IT = oy = 0, for which Ly, Liy,, and L’ are all even. Replacing, in eq E.44, I{) = [ and m by (J — o — by + 1)/2 and (Ll
— L)/2, respectively, and considering the remark made after that equation, we conclude that the corresponding U vanishes if (Li,

— L’)/2 is odd. As a result, the only nonzero pmmi"w (0) functions are those for which L’ is restricted to the values

QJZUH
L'=—Ll,, —Lyy+4 ...L, — 4L, (4.57)

Let us now define Ly, by

_[4 for o =0
L,jrl = {2 for g >0 (4.58)
In terms of it, the step size 2 in eq 4.53 can be replaced by L,,, resulting in
M=1 o) (1) g@ 42) Ny Lo vy 1L
=, _ 1 min:
Vi 0.0, = —— =2 Y Dl e @)p™ L0 459)
(Sln 77/1) m‘“(COS nﬂ) " Ll:_LﬁlinvLUH le:_J : g

4.5.2. Expression for P12 +(12)(cos 2q,) in Terms of 0 and d;. To obtain the dependence of 7; on @ and 0, we first
equate the middle part of eq A.4 with eq 2.4 and use eqs 2.5 and 2.6. The result is

12) K1 . o
e sin O cos 0, sinHsino,

=i v |=pNOQW) =p| 0 0 (4.60)
J@ —sin O sin d; cos O cos
YAR)

We now calculate the quantity #?? — r{? obtained first from the second term of this expression and then from its fourth term.
Identifying the two results and using eqs 4.1 and 4.2 we obtain

cos 21, = —cos 26 cos 20, 4.61)

Using this expression, the Jacobi polynomial in the rhs of eq 4.38 becomes Pmn"+(1/2bin>+(12)(—cos 2 cos 20;). The §; dependence
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of this expression does not have a structure convenient for writing the rhs of eq 4.38 in the form of the rhs of eq 4.37. Such a form
was, however, obtained in Appendix D by using appropriate Jacobi polynomial properties derived in Appendix C and is given in eqs
D.18—D.21. Setting n = & = (n;y — Lyin)/2 in those equations results in

(_1)("H—Lmin)/2(n + o + l)ylfﬁl)ny 111~ Liin _
P(gzgg,.ﬂ/z),(zgfnﬂ/z)(_COS 26 cos 26,) = — ;I nrl — 2 eleS;Jr.Izlerll)(e)
2’ln—Lmin +1 y( a H);( a a + 1(2? + 1)| L==ny+tLuminLogy
(Uﬂ ) 2 2 min
(4.62)
where the summation index L is even and
on ng — Ly, — 2v + ILI o)
Vimax (U ) 4 "M (g — 20+ ot 2)
(2)
Sui(©) = cos™*(20) D Lnin PURIL) (cos 40)
U=Unmin,2 ng —v+og+2 (1/4) (=L, —20—ILI)
og +1
(4.63)
The values of v, and v, are given by
_ (— 1 \(an—Lyin—ILI/2 —L_.. — IL)/2
- 1 —(1 _ 0 for (ng min )/2 even (4.64)
e 2 1 for (ng — L, — ILD/2 odd
and
] ng — L, — LI
Umax — MIN{ Oy — 4, ) (4.65)

where a is zero (one) if o and (n;; — Ly, — ILI1)/2 have the same (opposite) parity. The summation step size L,y of eq 4.62 was
defined in eq 4.58.
4.5.3. Expression for GH""L"{ZJ gn(0). We now insert eqs 4.53 and 4.62 into eq 4.38 and furthermore define Ly by
p

Ly=L+L (4.66)

Since, as stated after eqs 4.54 and 4.62, L’ has parity IT and L is even, Ly has parity I1. Changing the summation over L in the
resulting expression to a summation over Ly and changing the order of the summations over L” and Ly, we get

e ;
B = KIS e S Dl ) S ) @)
Ly=—nf*.Loy, Q=—J ‘
where
Il ) (nrr—Linin)/2 (2)
N — N5 g + o + D! (4.68)
o nn—L, nn + on N — On (2) ’
2" (g + 1! ) ! > + [+ 1)
is independent of Ly and
Z’max
AnpLid _ LyinL J,
S O = 2 P L O) ST (0) (4.69)
L,=Lr,ninsLUH

In analogy to the remarks made at the end of section 3, the superscript I1 on the lhs of eq 4.69 does not indicate the parity of the
& functions; it refers instead to the parity of the @' function of eq 4.67 under inversion of the system through its center of mass.
The summation limits Ly, and L., in eq 4.69 are given by
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Z;nm = max(—L,,, Ly — ng + L) (4.70)
and
Z‘r,nax = IIllIl(me, LH + ng — Lmin) (471)

These limits differ from those of eqs 4.53 and 4.54 because of
the change in the order of the summations mentioned after eq
4.66. In view of eqs 4.54, 4.57, and 4.66, the Ly in eqs 4.67
and 4.69 is restricted to the values

Ly = L™ —Ly™ + L, . —Lj™ + 2L, .
Ly~ = 2L, LR — L, LF™  (472)

UH’
where

LM = — L+ L =ng—2b,y  (473)

If, however, this restriction is ignored, eqs 4.67 (with L, = 2)
and 4.69 are still correct, since the . ()n”“L“] (6)) functlons
for nonallowed values of Ly vanish. It shoulﬁ be noted that
pHL'“"‘L'_L”J (0) differs from & Abwinl o, (0) only by a
proportlonahty constant that is 1ndependent of €2,, but depends
on I, Ly, J, and op.

We now identify the rhs of eqs 4.67 and 4.37. In view of the
remark after eq 4.73, the summations over Ly in both those rhs
are equivalent. Taking into account the orthonormality relations
of the ¢ and D,JMJ= JQj;(a;v) functions, that identification results
in

GHﬂnLnJ (9) = Nt/ (H"“L“‘éz o 0) (4.74)

Since, as mentioned after eq 4.34, the by FH””L“,JWJUH(@?) are

non-normalized hyperspherical harmonics, the functions obtained
from them by replacing G by .¢’are also non-normalized hyper-
spherical harmonics. The latter can be normalized with the help
of a real positive constant,* resulting in the desired harmonics:

InLn/
FHmln
MJOH

@) =

NHnHLl'IJ anlS z D Q (al) GHVIHLHQ 0 (0) (4'75)

H

Q) =-
where
GHﬂnLnsj_zjlon(G) = (H"“Lné 01_[(0) (4.76)

These F harmonics are valid for all M, satisfying the first of eq
3.9, even though they were derived from the @ functions of eq
4.37 where we set M; = J. In addition, eqs 4.76 and 4.69 give the
desired explicit expression for the GH"“L“J (9) democratic
harmonics for all possible values of the 6 mdrces that appear in
them, in spite of the fact that they were obtained using only a single
allowed &, I? pair for each value of or, namely [, 2. These
F harmonics can be orthogonalized with respect to o by a
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Gram—Schmidt or some other orthogonalization procedure. The
structure of eq 4.69 is relatively simple. In it .¢’is expressed as a
single sum of products of two functions of 6, pm“““” (0) and

S(J‘f,_“) 1(0). The first, given by eqs 4.55 and 456 1nvolves
trlgonometnc functions, and the second, given by eq 4.63, involves
Jacobi polynomials. Efficient codes for these functions are available.
Associated with the complex GH"“L“J (0) functions, we define
the g _H”“L“J o, (0) and gH”“L“J] (9) real functions in analogy
with egs 3. 12 and 3.13 but with d replaced by om.

It is interesting to note that, setting x = cos 6 and y = sin 6 and
using the identity x* + y? = 1, these G, g, and g functions can be
expressed as homogeneous polynomials of these two variables. This
is the form in which their recursion method counterparts were
obtained and is useful for comparing the latter with the present
results. Such comparisons are made in section 5.

4.6. Allowed Values of the oy Index for the Linearly
Independent FH”"L" (@ f). As a consequence of eq 4.24,
the statement after eq 455 and eq 4.27 we conclude that the
allowed values of o, for a given IT and J, are

=~ = by~ — b)) + 2, d — by — 2,

J=b,y (477

However, not all of these lead to linearly independent
FH"“L”J (G) ) functions. Indeed, from eqs 435 and
4.74— 476 F“"“LH’ (9 " and F'mtnt ((9 " differ at
most by a sign, and therefore, for the Fn"”L”J ((') ) set of
functions to be linearly independent, it is necessary (but not
sufficient) that oy be limited to the range

o =ILT+2, ... — by (4.78)

We shall now show that only a subset of these oy result in
linearly independent FH”“L“' (@bf) Indeed, from eqs 4.78
and 4.76 and a careful an analgzsr}s of the oy dependence of eqs
4.69, 4.55, 4.56, and 4.63 leads to the conclusion that the G are
polynomials in oy whose degree ¢ depends only on I1, ny, Ly,
and J. Furthermore, the parity of ¢ is given by

(— l)q(nﬂnsLnJ) = (- 1)(ﬂn—f+hj+n)/2 4.79)

and all powers of oy that appear in those polynomials have the
same parity as g. Therefore, if g(I1,nn,Ln,J) is even (odd), only
even (odd) powers of op occur in G. In addition, the number of
terms in these polynomials is (¢/2) + 1 for g even and [(g — 1)/2]
+ 1 for g odd. Since, for a given degree ¢, the number D of linearly
independent polynomials of parity (—1)? equals the number of their
terms, we get, with help of eq 4.78, the important expression

1
DI1Lng,J,Ly) = Z[Zq(H,nH,LH,J) +
(=D 3] (4.80)

If D = 0, the corresponding set of quantum numbers I1, nry, J, Ly
is not allowed; i.e., the associated F H”“L“J (@ ,1) harmonic
vanishes for all possible M, and or. The parlty of D is not
necessarily that of I1 and depends on all four quantum numbers
I1, npy, Li, and J. The values of the degeneracy D that result from

eq 4.80 are, with [a] meaning the integer part of a,
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(a) for J + IT even,ie.,b;+ =0

[(J + 2)/2] for (ng — ILgl)/2 even and >J
IV + D/2] for (ng — ILyl)/2 odd and >J
DLnno L) = ¢y — Lyl + 4)/4] for 1Lyl = Ing — 211 (4.81)
[(ng — J + 2)/2] for Lyl <2J — ny
(b) for ng + J odd, i.e., by =1
[J/2] for (ng — ILyl)/2 even and >J
_ IV + D/2] for (ng — ILgl)/2 odd and >J
DALl L) = (o = 1Ll + 2)/4] for Lyl = Ing — 2J1 (4.82)
[(ng — J + 1)/2] for Ll <2J — ny
As a result, the values of ory that lead to functions Fn"”L“J (G) %), which are linearly independent are
_[0,2,...,2D(ILng,J,Ly) — 2 for I1 =0
on = {1,3, w0 2Dy S L) = 1 for T1 =1 (483)

Equations 4.81 and 4.82 agree with the results of Table 1 of Wolniewicz®!' derived by a completely different method based on
counting the number of linearly independent solutions of a set of €, -coupled ordinary differential equations satisfied by the
GH””L”QJ UH(G). As mentioned after eq 3.10, D(I,npy,J,Ln) is independent of the choice of arrangement channel coordinates A and,
thereforef so are the allowed values of or given by eq 4.83.

5. Representative Results
5.1. Hyperspherical Harmonics for J = 0. The simplest way to obtain the J = 0 harmonics is to set J = 0 in eq 4.38 and to perform
the derivation of eqs 4.69 and 4.76 for this particular case only, following the procedure described in section 4.5. However, to test the
correctness of those two equations, it is more appropriate to start with the expression for .& H”“L“] (0) for general J, and set J/ = 0 in it.
For this particular case, the F function of eq 4.75 is invariant under inversion of the system through its center of mass. As a result,
= 0 and eqs 4.81 and 4.83 furnish D = 1 and o = 0, respectively. In addition, n and Ly must both be even, and in view of
eqs 4.58, 4.72, and 4.73, (np — |Lpl)/4 must be a non-negative integer. For a given nyy, |ILpl is limited to the values

iy
Lyl =ng —dm  m=0.1,..| (5.1)

Furthermore, from eqs 4.70 and 4.71 we get Livin = Liax = 0, so that the sum in the rhs of eq 4.69 has a single term, yielding, due
to eq 4.76,

T=0npLJ=0 H=0npLnJ=0
G " HQJZ=OUH=0(9) = 9 " HQ _Oanzo(e) 5.2)
= ‘min— =0 = = *
— 0 S 0)
Use of eqs 4.55, 4.56, E.44, E.38, and 4.63 results in
Gy = cot o 20P0 (cos 40 653

which depends on Ly through ILpl only. In view of the definition of gn"“L“] glven toward the end of section 4.5.3, this g is, in

this J = 0 case, the same as the G of eq 5.3, and agrees with the correspondlng recursion method result.>* In particular, in Table 2
we present, among others, the g for / = 0 and ny = 4 (which are the & of that table for these particular J and ny). These expressions
were obtained from eq 5.3 by introducing variables x = cos 6 and y = sin 6 and agree with those of Table 3 of ref 33.

5.2. Hyperspherical Harmonics for J = 1. For J = 1, eqs 4.81 and 4.82 give D = 1 for both I1 = 0 (/ + IT odd) and IT = 1
(J + IT even). The corresponding values of oy, obtained from eq 4.83, are oy = 0 for I1 = 0 and oy = 1 for I1 = 1. Since there
is only one value of oy for each of these two parities, neither of the corresponding F functions of eq 4.75 is degenerate with respect
to the set of indices I1, np, Ly, J, and M,. Let us determine the g functions for these two parities separately.

(a) I1=0,o0=0

For this case Ly and nyy are even, and for a given npy the values of Ly are restricted, due to eqs 4.58, 4.72, and 4.73, to
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TABLE 1: Principal-Axes-of-Inertia Hyperspherical Harmonics % for J = 2 and np = 2, 3*

nr J L th h”ﬂl‘ﬂfg_u" nr J L th hnnl‘ﬂé”c
2 2 -2 0 (2/3)12(2x% + y?) 2 2 2 2 y?

2 2 -2 1 2xy 3 2 1 0 0

2 2 -2 2 y? 3 2 1 1 —x%y

2 2 0 0 —(2/3)12(2x* — ¥?) 3 2 1 2 xy*4

2 2 0 1 0 3 2 —1 0 0

2 2 0 2 y? 3 2 -1 1 X%y

2 2 2 0 (2/3)12(2x* + ¥%) 3 2 -1 2 xy*

2 2 2 1 —2xy

“x and y are cos 0 and sin 0, respectively. * The functions for €;, < 0 can be obtained from the Q;, > 0 functions using eq 3.15 with d
replaced by op. ¢ h is related to g and g by eqs 5.12, 5.13, 5.18, 5.19, and 5.9, and g is related to G by eq 3.12 with d replaced by o. “In
Table 2 of ref 33 there was a minus sign in this term due to a typographical error that is corrected here.

TABLE 2: Principal-Axes-of-Inertia Hyperspherical Harmonics k and g for ng = 4¢

J LH leb kALl-[%2 " cd J LH leb k4L“£2 » cd
0 4 0 2 — P2 3 0 0 0
0 0 0 xt = 6x?y? + y* 4 4 4 y*
1 2 1 xy(2 — yH) 4 4 3 242123
1 2 0 0 4 4 2 2y%(6x% + yH)I7'?
2 4 2 V2 — ) 4 4 1 20/7) Pxy(di + 3y?)
2 4 1 —2x0y(2 = 2 4 4 0 (2135)2(8x* + 2422 + 3y%)
2 4 0 —@B3)A(=24 + 2 + yh 4 2 4 ¥
2 2 2 YH(=T7x> + 3y?) 4 2 3 212yy3
2 2 1 — 4y + 2 4 2 2 24712
2 2 0 61202x* — Tty + yh) 4 2 1 ST xy(d2 — 3y2)
3 2 3 X 4 2 0 (2135)2(=8x* + 3y
3 2 2 2213122y 4 0 4 ¥
3 2 1 xy(4x® + yH/15'72 4 0 3 0
3 2 0 0 4 0 2 2(—222 + y?)
3 0 3 xy° 4 0 1 0
3 0 2 0 4 0 0 (2135)2(8x* — 8x2 + 3y%)
3 0 1 —xy(4x* — y»)15'
J Ln M %, J Ln Nz
0 4 1 3 2 1
0 0 1 3 0 2
1 2 1 4 4 1
2 4 8 4 2 2
2 2 —192 4 0 -2
J Ln Q, S, a= J Ln Q) G, 0=
2 0 0 (2/3)2(— 23 + 92 + ) 2 0 0 (213)2(—25" + 92 + b
2 0 1 —70/3xy(x* — ¥?) 2 0 1 70/3xy(x> — y?)
2 0 2 YA(—=9x* + %) 2 0 2 YA(—9x* + y?)
J Ly Q,, Y10, 0n=0 J L Q, 8, 0=
2 0 0 0 2 0 0 (213)2(— 2 + 922 + Y2
2 0 1 —5xy(x* — y?) 2 0 1 0
2 0 2 0 2 0 2 Y(—9x* + y»)/2

“x and y are cos @ and sin 6, respectively. * The functions for Q;, < 0 can be obtained from the Q,, > 0 functions using eq 3.15 with d
replaced by om. © The IT = 0 superscript was omitted from the k for simplicity. ¢ g is related to k and .7/ by eqs 5.9 and 5.21 and to G by eq
3.12 with d replaced by ory.

ng — 2
Lyl = (ng — 2) — 4m m=0,1,.., [—] (5.4)

and the corresponding g are given by

—I1=0npLpJ=1 _ (~1I=0npLpJ=1 =I1=0npLpJ=1
8 Qon=0 A o= Qj,0n=0 (5.5)
where
=TT=0nLpJ/=1 _ : ILpy/2! (1ILry/21)
g Q,0=0 = IQJlI sin 0 cos 0 cos 20P(nn,2,|,‘nl),4(cos 40) (5.6)

and
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=ongr=1 Mt 2 + 1Lyl
3 A

(5.7)

In the third and fourth lines of the left column of Table 2 we present the k for np =4, J =1, Ly = 2, Q;, = 0, 1 after introducing
variables x = cos 6 and y = sin 6. These k are related to g by eq 5.21 of section 5.4. They agree with their recursion method
counterparts g of Table 3 of ref 33 as expected.

®II=1o00=1

The values of Ly and npy are odd, and for a given nyy, Ly is restricted, also due to eqs 4.58, 4.72, and 4.73, to the values

Ly =ng —2m m=0,1,..,ng (5.8)

In analogy to eq 5.5, let us express the corresponding g as

gl () = 1t gt () (5.9)

where ./7is independent of &,,. This relation is also adopted for arbitrary II, np, L, J, 2/, and on. We get

[ + 3 + 1Ly — 18 cos™™™ "2 20P( MY | (cos 46) +

(ny + 1+ 1Ly + 1)) cos 2 20PN L (cos40)  for m = 0,2, ..ny — 1

=H:1nnLnJ:1 —
§ Q, o=l ()

Q 1L +1172 LILg+1172
(ng 3+ 1Ly + 1) cos™™ 2 20P(00 VD (cos 46) +
(ny + 1+ 1Ly — 1 cos™™ 2 20P( 0D | (cos 40)  for m = 1,3, .. n
\ (5.10)

and

yol=tanlnd=1 - _ 1 (5.11)

The ¢+ in eq 5.10 are given by eqs E.9—E.12. It should be noted that, in these expressions, and in those of section 5.3, we have
adopted the convention that for n < 0, P*#(x) = 0. These J = 1 g functions agree with those obtained previously.>*

5.3. Hyperspherical Harmonics for J = 2. For I1 = 0 eqs 4.81 and 4.83 result in D = 2 and oy = 0, 2. Therefore, the
corresponding F harmonics of eq 4.75 are doubly degenerate with respect to I1, np, Ly, J, and M; as long as the corresponding
GH”“LHQ UH(H) do not vanish for all Q;, for either of the two values of o and, in addition, constitute two linearly independent sets
of functions scanned by €,,. For IT =1, eqs 4.82 and 4.83 give D = 1 and oy = 1, and the corresponding harmonics are nondegenerate.
Let us consider these two parities separately.

(@Il=0,o0=0,2

The values of np and Ly are even for both opy.

For o1 = 0, the allowed values of Ly obtained from eqs 4.58, 4.72, and 4.73 are the same as for / = 0 and are given by eq 5.1.
Equations 4.69 and 4.76 have two terms only, and the corresponding g and ./ defined by eq 5.9 are

=I1=0npLJ=2 _
g () =
A

12, (O)ny + 2 + ILy — 21) cos™ 2 20PN D (cos 46) (5.12)
177G, (O)ny + 2 + gy + 21) cos™ 2 260P(5 D o (cos 46))

and

(=om=2 _ 2 ol

= J (5.13)

where the & were defined in eq 4.56. Some of the & are given in Table 1.
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For o = 2, eqs 4.58, 4.72, and 4.73, furnish the following allowed values of L:
Ly =ng —2m m=0,1,2, .., ng (5.14)

From eqs 4.76, 4.69, and 3.12 (with d replaced by or) we obtain g, which together with eq 5.9 furnishes g and .1

’h22§z,l(9)(nn +2 4 1Ly = 20) cos™™ 2 20[(nyy + Dy + 1Ly — 21 + 6)

P E%}Lf)l(]n;z—vg)—mn—zl)(cos 40) + (np + 3)(nyg + 1Ly — 21 = 2)P 2%}"(‘)1(7,1;2_'/2)_an_2|)(¢08 401+
hz_zéz,l(e)(nn + 2+ ILy + 21) cos™™ 2 20[(nyy + D(ny + 1Ly + 21 + 6) X

P 230 aa(cos 40) + (g + 3)(ngy + Ly + 21 = P22, ) (cos 40)]
for m=0,2, .., ng

=H:lnnLnJ:2 p—
8 Q; o :2(0) =9
e 217 (O)(n + 2 + ILgl) cos ™ 20[(ny + D(ng + 1Lyl + )P, (cos 46) +

(ngy + 3 + 1Lyl — 2P0y y(cos 40)] + 2ny + 4)[/12‘23%(9) X
(np + 4 + Iy + 20 (ng + 1Ly + 21) cos™ 22 20PHITY L (cos 46) +
h22§2a(0)(nn + 4+ 1Ly = 2Dy + 1Ly — 21) cos™ 22 20PF 2D ) (cos 46)]

for m=1,3,..,ng—1

(5.15)

(T=0nnln/=2 3

=2 16(ng + 1)(ng + 2)(ng + 3) (5-16)

Equations 5.12 and 5.15 agree with expressions obtained previously.’**>33 For ny > 2 and ILgl # ny the §H=0””L“£2=120H=0(0) and

§”=°””L“{;{, _»(6) do not vanish for all ;, and constitute two sets of linearly independent functions scanned by €2,,. Therefore, the
7,01

corresponding F HZO”“L“J:,Z\,, o (@l,{f) are doubly degenerate. This conclusion agrees with the results of Zickendraht,*® Wolniewicz,’!

and Mukhtarova, and Efros.”” Those equations also show that for n; = Ly = 2 the corresponding F harmonics are nondegenerate
. . . =[=0ng=2L/=2 =[=0n=2L/=2
with respect to I, npy, Ly, J, and M,. The reason is that the ratio g 1 HQ, =2 n “an

€2, and equal to the ratio of the two quantities Ug:gg;g @row” (defined by eq E.44) for oy = 0 and 2, respectively. As a result, the

corresponding F harmonics are linearly dependent.
b)) II=1,0o0=1
For this case, the values of ny, o, and J + II are odd. Equations 4.58, 4.72, and 4.73 yield the following allowed values of Lp:

—o 1s a constant independent of

Lp=ng—2—2m m=0,1,2,..,nq5 — 2 (5.17)
The associated g functions and ./ obtained as described for the IT = 0, oy = 2 case are

f(ng + 5+ ILg — 1)y + 1 + Ly — 1I)h31§2_u(0) cos 12 20pHn D, (cos 40) +
(np + 3+ 1Ly + 1)y = 1+ 1Ly + 1A g (0) cos™ 1 20

o i Pl U2, siy(cos40) for m = 0,2, ..., (ny — 3)
=[I=1npLJ= _
8 S o =1(0) =
e (np + 5 + 1Ly + 1)y + 1+ Ly + IDE'G, (0) cos™™ 2 20PHI D L (cos 46) +
(n + 3+ 1Ly — )y — 1+ 1Ly — 1DAG (0) cos™™ 226 x
A

2,IL—11/2 —
P U3 y(cos40) for m=1,3,..,ny — 2

u (5.18)

and

‘,AHZIHHLHJ:Z — 1

o=l - 16(711-[ + 2) (519)
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The h values for J = 2 and np = 3 are given in Table 1.
Equation 5.18 agrees with the results of Mukhtarova and Efros.*?
Therefore, we are in complete agreement with those authors
for all the J = 2 cases we tested. It should be noted that their
hyperspherical coordinates, principal axes of inertia, and Wigner
rotation functions are different from those in the present paper,
and this agreement takes this difference into account.*

5.4. Hyperspherical Harmonics for ny = 4. For nonde-
generate F functions, the results of the present paper and those
of the recursion method®® should be the same, if both are
normalized in the same way. However, for the degenerate cases,
they should be related by linear combinations, according to

TnpLnJ Z TnpLnJd r[nnLnJ
F Mjan - B ‘71'1 rec Id(G) )

(5.20)

We have verified the correctness of these predictions for some
nrr = 4 harmonics. For the nondegenerate cases, g(6) is related
to g by eq 5.9. However, when transforming from 6 to x = cos
0, y = sin 0, additional Q,-independent factors appear, and it
becomes convenient to write g as

=T=0np=4LpJ 0
8 Q JAUH( )

— ./anonn=4Ln{7HkH=OHH=4L”J (x,y)

jSo’n

(5.21)

k(x,y) and .7/ are given, for these nondegenerate cases, in the
top two sections of Table 2, and k(x,y) are identical to their
recursion relation method counterparts, given in Table 3 of ref
33, where similar Q, -independent factors also were omitted.
The third and fourth sections of that table give the g for J = 2
and Ly = 0 obtained using the recursion and the present paper
methods, respectively. The corresponding F harmonics are
doubly degenerate and are related by eq 5.20 with the corre-
sponding B*%! coefficients given in Table 3 (the IT = 0
superscript having been omitted for simplicity) for three cases:
(a) the F functions are neither normalized (i.e., the normalization
coefficients N "“L”J and N "“L”(J, in eqs 3.11, for Fy., and
4.75, for the present paper F, resgectively, were omitted) nor
orthogonal with respect to either oy or d; (b) these functions
are normalized but still not orthogonal with respect to op; and
d; and (c) they are normalized and orthogonal with respect to
both oy and d. The fact that a relation of the type of eq 5.20 is
valid is an additional check of the equivalence of the G and F
functions obtained by both methods and of their correctness.
In conclusion, there is complete agreement between the ny =
4 g harmonics obtained from the present method and those
obtained from the recursion relation method.

6. Discussion

Hyperspherical harmonics in space-fixed hyperspherical
coordinates for N-particle systems can be derived analytically
in a straightforward manner, as demonstrated for the 4-particle
case.**2 These harmonics are, however, different for different
arrangement channels (i.e., are not “democratic”’) and are useful
mainly in the weak interaction regions of configuration space,
where the system has separated into pairs of noninteracting
clusters. In the strong interaction region, where any pair of
particles can interact with each other, the body-fixed ROHH
(i.e., democratic) are much more useful. However, these
harmonics, for general N-particle systems, are still unknown.
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TABLE 3: B%%_

on
d 0 2
(a) For Non-normalized F
1 3/28 1/8
2 —3/28 1/8
(b) For Normalized F
1 (19/70)2 (19/6)'2
2 —(19/70)'* (19/6)'2
(¢) For Orthonormalized F
1 (35/38)'2 (3/38)'2
2 —(3/38)'2 (35/38)'

In the present paper we reported a new method for the
analytical determination of democratic hyperspherical harmonics
for 3-particle systems. The expression for the resulting harmon-
ics (eqs 4.75, 4.76, 4.69, 4.63, and 4.55) involve independent
single index sums and are significantly simpler than the
Mukharova and Efros expression® (their eqs 19, 20, 23, and
24) that involve 4-fold sums. We have checked random sets of
harmonics, involving nondegenerate and degenerate ones, and
verified that our harmonics agree with theirs. We also derived
analytically the degeneracy of our harmonics and found them
to be in agreement with those of Wolniewicz,>!' which were
obtained by a completely independent method. We have written
an efficient Fortran program that calculates our harmonics.

In the approach used for the derivation of the 3-particle
ROHH, we started with the corresponding space-fixed harmonics
given by eq 4.16 and then transformed the space-fixed hyper-
spherical coordinates to democratic body-fixed coordinates. This
approach is applicable to systems of more than 4 particles. The
4-particle version of eq 4.16 is known,*'**? and a similar method
for transforming it from space-fixed to body-fixed coordinates
can be used to obtain explicit analytical expressions for the
4-particle ROHH. If this approach is successful, the resulting
harmonics could be very useful for reactive scattering calcula-
tions of 4-atom systems.

7. Summary and Conclusions

We have developed a new general procedure for deriving
hyperspherical harmonics for triatomic systems and used it to obtain
explicit analytical expressions for these harmonics in the body-
fixed row-orthonomal hyperspherical coordinates (ROHC). These
harmonics have been programmed using efficient numerical
methods. Their degeneracy was also obtained analytically. These
functions are attractive candidates for benchmark-quality state-to-
state reactive scattering calculations. The procedure used to obtain
them is generalizable to systems of more than three atoms.

Acknowledgment. The present work was strongly influenced
by the pioneering research of Vincenzo Aquilanti on hyper-
spherical coordinates, hyperspherical harmonics, and their use
in reactive scattering.

Appendix A. Proof that C"n/ is Independent of M,

Equation 4.19 can be expressed in matrix form as

¢Hnn\]M‘[(®if) — CHnnJFHnHJM/(@;)f) (Al)

where d)n"”JM’(ij) and Fn"”JM’(GEf) are column vectors
whose elements are respectively the functions of the sets
{®"M(@)} and {F"™™M(@%)}, defined in the beging of
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section 4.2, and C™ is a square matrix whose rows and
columns are spanned by the pairs of indices /5", I¥ and Ly, oy,
respectively. This matrix may contain some zeroes, since not
all Ly, dF functions need contribute to a given ", [P ®
function. However, the determinant of this matrix does not
vanish and the square of its absolute values is 1 if the F functions
are required to be orthonormal with respect to oy;. We wish to
show that, in spite of the fact that the quantum number M,,
associated with the space-fixed J. angular momentum operator,
appears on both sides of eqs 4.19 and A.1, the C"™"/ matrix
does not depend on M. Since the functions @EZ'E{M’(@“) in the
lhs of the first of those equations are orthonormal but the
FH”“L“] (@ ") in its rhs need not be, it is more convenient to
prove thant CH”“" = (C™n/)"! is independent of M; and,
therefore, so is C™"n’/, Indeed, the corresponding elements are
given by

(CH”HJ %])gz) — ( H"l‘lJMI(O

InpLpJ bf
Z(,l)](?) m n (91 ))

(A2)

The variables @ and OY', defined by egs 4.4 and 2.3 and which
appear in the lhs and rhs of eq 4.19, respectively, span the same
angular configuration space and therefore are related to each
other. The integration variable in the scalar product of eq A.2
can be chosen to be either @3 or O}, whichever is more
convenient. Expressing the space fixed CDE,',I}&{M’ in terms of its

body-fixed counterparts o i lﬁz), we have
. J .
OEMO3) = D Dy, (a) OO (A3)
k=—J

The symbol O} stands for the four body-fixed polar angles 85",
¢iV and 02, ¢1® of ri) and r¥ in the principal axes of inertia
frame. This relation permits us to write eq 2.1 in the form

1(2) 1(1)

f ]2 [1
]2 ]1

@) 1) () 1(1) 1(1)

cos ¢, r;’sin cos ¢;

= R(a,) rf) sin 01(2) sin 1(2) D sin 67" sin ¢}

r(z) cos 01(2) 0[(1>

SlIl

COS
(A4)

where X7, yA? and Z{? (i = 1, 2) are the Cartesian coordinates of
r) in that frame. As a result of eqs A4, 2.4, 4.1, and 4.2 we
conclude that ®}f depends on 6 and 6 only. Therefore, substituting
eq 3.11 (with d replaced by op) and eq A.3 into eq A.2 and
choosing @Y as the integration variable in its rhs results in

J

In R IIn
() = el > (D), (@), Dy o (@), X
Q k== g
((I)I;r)llggk(e,ég)s eiLn()AGl—InnLnsJ_zjlon(9))&% (AS)

where the two palrs of indices Ly, oy and [, I span the rows
and columns of """/ , respectively. The orthonormality property

Wang and Kuppermann

of the D functions,

(Dyyx(a).Dy g (@), =5 Jg’f 37+ 1%, (A.6)

is independent of M. Replacing eq A.6 into eq A.5 leads to

(TR Tt 87
Lpon m2J + 1
J
Y, @00, TG, 0, (AT)

Q,=—J

which is therefore also independent of M, QED. This independence
is related to the rotational invariance of space.

Appendix B. Parity of the G Hyperspherical Harmonics
with Respect to oy

The GH””L“J (9) one-dimensonal hyperspherical harmonics

and the assomated Fn"”L”J ((') ) five-dimensional harmonics
have been defined in eq 4] :}»14 and the statement immediately
following it. To determine the values of oy that lead to a complete
set of linearly independent F harmonics, it is useful to consider
the relation between GH”“LHJ o,(0) and GH"“L“j o, (0), given
by eq B.19. This relation, derlved in section B.2 of th1s appendix,
is based on the connection between the /51 and I ¥V elements
of the matrix C"", defined by eqs 4.19 and A.1, derived in section
B.1 below.

B.1. Relation between (C'"™)[! and (C™™)1

For the reason given at the beginning of Appendix A, it is more
convenient to initially consider the matrix C"n/ = (C™n/)~! Let
us, in the ths of eq A.2, chose @Y as the integration variable and
use the corresponding volume element in the scalar product integral.
The @E?}}) ’ function in that expression is a simultaneous eigen-
function of J2, J.s, lﬁm and [2? and is related to the simultaneous

eigenfunctions @t 1 ¢ iz, lﬁ]sf, 122 and if}f, by

mhl)m&b
DO =
rlsD 1@
Y CA IR Ty M )™ ni,ﬁnfiza’)(@) (B.1)
migh,mye)

where the C are Clebsch—Gordan coefficients. The
Mnpl) 1P 41,42
m’il)mlﬁz)

(Oif) are given explicitly by

Mnpld 12 sty AIIn /o (1) (1) 2 (2) (2)
P nm,ﬁmn,y)(@;,) - Qlﬁ”ll%)(nl) Ylm,ﬁl) 0 YIWIIE{Z) )
(B.2)
where
I1n —
ngl)ll;Z)(n/l) -

N,WQ) sin” 17,1 cos”’ mng>+(1/2)’lﬁ2)+(1/2))( cos 217;) (B.3)

with &, Njgjft, and P having been defined by egs 4.17 and 4.18
and the statement after eq 4.17, respectively. Replacement of eqs
B.1 and B.2 in eq A.2 results in
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~IIn 1)72) n
CVE = (Y CUPE TmymioM,) Qi ()

mgh,my2)

Y’ﬁ” (0(1) (1)) Y’SZ) (9(2) (2)) FﬂnnLn!

mygl) me)

[03(©@)) (B4

The integration variable in eq B.4 and in all scalar products of
Appendix B is chosen to be @§. An analogous expression for

(CH"“J)L " (with & and I interchanged) is valid. Interchanging
1Y and lﬁ?) in eq A.2 results in

@R = (@l e P,

10}(©@})])  (B.5)

where <I)1 1y YM s given by expressions analogous to eqs B.2 and
B.3 with the pairs of indices &, myp, and I, myp switched, but
the variables in eq B.2 unchanged. The expression for Q};{;ﬂ)
(17,) is -

vl
Qlﬁzﬁ',;'n(m) =
NEZ:ZIEU sin”’ 7, cos”’ mP gf)ﬂl/z)’lﬁl)+(1/2))(COS 2n,) (B.6)

Using eqs C.4 and 4.18, we get

Q) = (— DN, sin®(T = ) x
coslﬁl)(% — nl)Pgmr(1/2)‘152)+(1/2))(—cos 21,) B.7)

With the help of the variable

, T
=5 (B3)
we can rewrite eq B.7 as
Qiin) = (= D¥Qi 7)) (B.9)

Due to the remarks after eq B.5 and using eqs B.8 and B.9, we
can rewrite eq B.5 as

=TT\ IQ6D 3
@V =N CUPE Tamymy M)(— 1) x

mygh,mygh
Hn 2
zﬁnf;z)(m) Y’jll;z)(e(l) d’(l)) x
Yllil;”@(z) ) Fmtad ﬁn[(_)gf(@if)]) (B.10)

We now change integration variables @3 = (64", {0,096 .1,
to integration variables @3 = (02, ¢2,05",¢{",17%) and then drop
the prime in the dummy variable @' to get an expression analogous
to eq B.10 with 8P, ¢ replaced by 6%, ¢V and vice versa and
5 replaced by 7,. Use, in the resulting equation, of the symmetry
relation between Clebsch—Gordan coefficients*’

D4 y2)—
CUPE Tmgmiy M) = (=" A D 1myg mioM,)

(B.11)
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yields
(CHnnJ 132)13) =(— 1)(1/2)(1¢1>+1§'> D o

Z CUPID Famyy i M) (= 1) Q)i (17;) X

m,ﬁl)mlﬁw
5D (1) (D VI n2) )N lnplnd bf st
Y]m,al)(e ) Ylm,ﬁz)(e ¢;u ) Frecn nMJaH[Oll (Ojl )])
(B.12)

Comparison of this expression with eq B.4 and use of eq 4.17
results in

(Cnnnj)lﬁ’)ls” = (— 1)(1/2)(nn+1gl)+1ﬁ2>)—J(CHnnJ)15')152>

Lon Lo

(B.13)

where the exponent of (—1)is an integer because ny and 15 + [
have the same parity, as pointed out after eq 4.17. Equation B.13

indicates that (CH"”J 2 lﬁ) and (CH"”] lﬁ 1; differ at most by a
sign.

From the relation (B.13) between (CH"HJ lﬁ >15 "and (CH”“J
we wish to obtain an analogous relation between (Cr["“j)lﬁ W) d
(Ctmt 12”5&”. To that efffect we define the matrix (C’H”“J)

as the one whose Lnd, I{PIP element is given by the lhs of eq
B.13, i.e.,

I )1§2>

( C,nnnj)ls?)lg}) _

Lnon

( CHnnJ )lﬁl e

Loy

(B.14)

As a result, eq B.13 can be written in matrix form as

(C/Hnn] — ((‘:Hnnl)annJ (B15)

InpJ .

where q is the square diagonal matrix defined by

Tnp\IP6Y _
( & )Ln(jn

(_ l)(1/2)(nn+/,&‘ +HIP)— J(Slﬁ"lﬁz)

Lyon

(B.16)

Taking the inverse of eq B.15, utilizing the fact that qH"“Jequals

its inverse and using the definition of Clim! given at the
beginning of this section results in

Tnp\L _ (1/2)(npHD+HP)—J  (~Tnp\ L
(CTym = (— )t iy

(B.17)

This expression will now used to obtain the relation between
G‘“"“L“’ o (0) and GG,
7,01

o, (0) and GG,

. ~XnnLpJ
B.2. Relation between G o, - u"n(a)

Interchanging /" and [ in eq 4.20 shows that the relation
between Fi/, C9) and Figifim, (03" is the same as between
(CH"“])ILRZ?, and (CH"“J)ILRfﬂ Similarly, interchanging those
two quantum numbers in eq 4.21 shows that the relation between
Giis"o,(0) and G (6) is the same as between the corre-
spondlng F and therefore as between the corresponding C'n/
matrix elements. As a result, using eq B.17 we get
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n n D 2) n
Gy, (0) = (- 1)1 B = JG};,Z;% (©) (B.18)

This expression is valid for any /", I{ pair, and in particular for the [, and [&), of eqs 4.26 and 4.28. Interchanging [{), and I3,
in eq 4.34 and using eqs 4.26 and 4.28 finally results in

GﬂnnLnéz J;On(g) _ (_1)(1/2)(;1n J+bj+n)GHnnLn£2 " 6) (B.19)

Appendix C. Some Relevant Properties of Jacobi Polynomials

In this appendix we give some properties of Jacobi polynomials that will be used in Appendices D and E. A formula expressing
explicitly Jacobi polynomials of any degree and order in terms of one special kind of Jacobi polynomial having two equal superscripts
is given by*

PPy = a (Jlr Z ﬁ) ) kioA(ﬁ OPID(x) (C.1)
where
(@), =a(a + )=(a+n—1) (C2)
and

(-1 o — Bl + o+ B), (1 +28)(1 + 26 + 2k)
(n = I+ 28),00,(1 + B,

ABO = (C.3)

It should be remembered that, whenever n is a non-negative integer, o and 3 are real numbers greater than —1. Since Jacobi polynomials
have the symmetry property:*°

Pi&,ﬁ)(x) — (_ l)npilﬁ,(l)(_x) (C4)

we get, replacing eq C.1 into eq C.4

=D +p)
(0B) 1y — n B pBH_
PO = T p, kZOAnk PIP(—x) (C5)
In addition, eq C.4 furnishes
PP (—x) = (= 1)'PPP(x) (C.6)
Inserting eq C.6 into eq C.5 leads to
=n'a +
PPy = 2( D ABDOPED () (C.7)
a+a+m”0

Let us now change from summation index k to X’ = n — k and then drop the prime in the k’. We get

P:laﬁ)()() — m Z ‘/Vil(;ﬂ)Pr({f /Z)(x) (CS)

n k=0

where
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(o« — B (1 + o+ By, (1 +2B),_,(1 + 28+ 2n — 2k)

Wb = C9
nk k(1 =+ 2B), (1 + Bk €9
Defining o by
=f-a (C.10)
eqs C.8 and C.9 lead to
I+a+o0), «
P00 = T e o & W P (C.11)
n k=0
where
(—o)[(1 + 20 + 0),, (1 + 20 + 20), (1 + 20 + 20 + 2n — 2k)
W((l ato) _ K 2n—k nk (C.12)
nk N k(1 + 20 + 20)y, (1 + o+ 0), )
From eq C.2, we know that
(@),
@ =(a+ k), fork < n (C.13)
k
With the help of eqs C.13 and C.12, eq C.11 can be rewritten as
" L(—ol+2aa+o0o+n), (1+oa+o+n—k), —
PECoy = Y T raram— (1 + 20 + 20 + 2n — 2P (x)
k=0 . n+1
(C.14)
If o is a positive integer, (—0), has the property
L)km for k<o
(=0 =3 (0 — k)! (C.15)
0 for k>0

Inserting eq C.15 into eq C.14 leads, for such values of o, to

mintio) (3 (— 11 + 20+ 0 + n), (1 + o+ 0 +n — k)
(oto), N — 9 n—k ko — (a+o,0+0)
Pt k; (k) S TEE ran— (1 + 20 + 20 + 2n — 2k)P 7% (x)
(C.16)
This expression is also valid for o = 0.
Appendix D. Expansion of P{**®(—cos 20 cos 26;) in Terms of el/%
We can write P{% ®(—cos 260 cos 20,) as®
k I'Qo + k + m + 1)(—cos 20 cos 26, — 1)"
POD(—cos 20 cos 20,) = kT & D (k ) 2 (D.1)
KTQo + k+ 1) = \m 2"[(+ m + 1)
Replacing in eq D.1 cos 26; by (e*°* + ¢ 12°1)/2 and grouping the terms with the same power of ¢?% leads to
1 k
(oL,00) — i240;
P*%(—c0s 2008 20,) = 1o T e D, e (6) (D.2)

==k



15404 J. Phys. Chem. A, Vol. 113, No. 52, 2009 Wang and Kuppermann

where
k P \TQa + k + p + DPEPA0) cos’ 20
O ="y |p— 14l p" r (D.3)
a2\ 2 pl4
and”!
0 for jodd
IV — d 1\
P7(0) (A DTG+ y + 1) for jeven D.4)
2GID)TGR +y + 1)
As a result, k — Igl must be even for f§,(6) not to vanish. We now define the non-negative integer r by
k—lgl =2r (D.5)

Changing, in eq D.3, the summation index from p to p = (p — lgl)/2 and using eq D.4 with y = o« + 2p + Igl and j = 2r — 2p, we
get

_ (_ 1y(_ cos26\s 1 CQo+2r+2lgl +2p+ 1) [ cos’ 20)1”
T ®) ( 4)( ) T@r+ ot lgl+ Doy z(p)([_? FIghTr+p+a+ig+ D\ 4 (D-6)

Using the duplication formula of I' functions™
I'(2z) = Q) 25’1z + 1/2) (D.7)
and choosing z = o + r + Igl + p + '/,, we obtain

FQa + 2r + 2igl + 2p + 1) = (n) 22 24P+ r+ 1gl + p+ 1/2) T+ r+ gl +p+ 1)  (D.8)

Replacing eq D.8 in eq D.6 results in

f{21r+lqllql(9) _( 1) g 20F(2r + OLr-:- lgl + 1) 2(p)r(a +r+lgl +p+ 1/2), cosd — 1Y (D.9)

Ve PT(E + Igl + 1)

We know, however, that>°

P(rlql,afl/2)(_cos 40) = 0s 460 — 1Y (D.10)

I'(r+lgl +1) (p)r((x+r+|q|+p+1/2),
r'’l(r + a + Igl + 1/2) 2T@E + gl + 1)

Substitution of eq D.10 in eq D.9 results in

(—1)12°°TQ2r + o + Igl + 1) T(a + r + Igl + 1/2) cos? 20P "> D(cos 46)
Al + Igl + 1)

fgr+lqllql(9) = (D.11)

It is interesting to notice that the 6 dependence in eq D.3 involving a sum of powers of cos 26 has become, in eq D.11, the single
product of cos 26 by a Jacobi polynomial of cos 46. This very important property is responsible for the appearance of such
polynomials in eqs D.19 below and 4.63 and therefore in the .¢"harmonics of eq 4.69. Equations D.2 and D.11 now yield

o 2k
(—D'Tk + o + 1)22 D((k + 1LV2 + D/2 + ) oy (021 5 g pla=121022)

(0La) — e
P (Feos 20 cos 20) aTQa + k+ 1) 1S5 T +I1L2D2+ 1) (k—iz2iy2 (08 40) (D.12)

where L is an even integer given by
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With the help of eq D.12, eq C.16 can be rewritten as

)1122(1+20 2n

P&t~ cos 20 cos 20;) = 2 - o 2 ’Lérﬁl‘,’zf)(G) (D.14)
JT L=—2n2
where
e\ (DY 4 20+ 0+ m), T — v+ o+ o+ 1)

—(0.0) _ IL/2I
Sy (6) = cos™(20) Z ( )F((n 22+ DIQa+20+n—p+ 1)
(1 fototn- BT — 7+ IL21+ 12 + o+ o)1 + 2a + 20 + 21 — 2k) -
(1+ 20+ 20 +n — ), PGy (cos40)  (D.15)

with 7 having the same parity as n — ILI/2 and

el
SR Sl Gl ) S (D.16)

min 2

1= (=1 ILI2—0
7, = min(n, o,n — ILI/2) = min(n —ILI/2, 0 — f) (D.17)

Since eq C.16 is valid for non-negative integer o and since of, as stated after eq 4.23 and proven in section 4.6, can also be
restricted to being a non-negative integer, we are free to chose o = oyy in eq D.14. Let us also choose o0 = [{}), + '/, and oL + 0 =
13, + /5, where [{}), and [, are defined in eqs 4.26 and 4.28. With these choices, eq D.14 becomes

(—1'2n + 215, + DUR! it o
22n(0' + D + /2 ) + D 5+ ! 2 sy (@) (D.18)
I I - L=—-2n2

min min

(1) (2)
P;l|n|n+(1/2)’lm|n+(1/2))(_COS 20 cos 26/1) —

where

21’l - 2?/ + |L| (2)
(OH) 4 + lmln

v l(z)
sIm(g) = cos™(26) 2

min (D.19)
=2 (2 -7+ 2@ +2

@n — 20 + 212, + 2)PURED | (cos 46)

min
min

og +1

The J dependence of s{15m(0) stems from the corresponding dependence of [(Z),. For or; = 0, we have I{}), = I@},, and with the help
of eq D.12, eq D.18 can, in this case, be written as

1\ (2) 1(2) | 2n
(—1)'@n + 215 + DU z trgon=0 ) (D.20)
2% + 12)(n + 202 + 1)1, it '
min min + L=—2n4

(2) (2)
Pf’llmm+(1/2)»lmm+(1/2))(_cos 20 cos 251) —

with
2}1 + |L| + (2)
= min (2)
S00) = cos'20) 4 o Pl (©05 46) (D:21)

Therefore, s§;/1=%(6) is reduced to a single term, and the summation index L in eq D.20 varies in steps of 4 instead of the steps of
2 in eq D.18.
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Appendix E. Calculation of (T, — T,_ )"} — ,_)*’

In the present appendix we express the quantlty (T — Ty l)lL )(TM - T, l)lﬁl in the terms of the ROHC of eq 2.2. The resulting

relation is needed to transform the sin’ ™ 75 COS i n Ylm ;Tz{ (6),0D,09,¢%)) function of the space-fixed angular variables O,
which appears in eq 4.38, to the body fixed variables O}

The six complex coordinates T;f (j = —1, 1; k = —1, 0, —1) are defined in terms of the six space-fixed Cartesian coordinates x{,
¥, 2 (i = 1, 2) by the inverse of the relations®

)= - i(TA} — T, - T, + T, (E.1)
W= ( Ty =Ty + Ty + T (E-2)
4= ‘V—Z(TM 70D (E3)

XD = %(Tl% T+ T - T, (E.4)
v =- i(Ti} + T+ T+ T (E.5)
== V—zml + 7,0 (E.6)

They can be written in terms of the ROHC as

TJ/{J* = pe —im/2 1]() lej(el;f) (E7)
where
‘ 1
T(0)) = Y D} (aybyc;+2)E(0) (E.8)
p=-—1
tji] = sin @ (E.9)
0 _ [~
) = jV2cos 0 (E.10)
k=-1,0,1 (E.1D)
j=-11 (E.12)

Equations E.1—E.12 provide a translation dictionary between the 6 space-fixed Cartesian coordinates just mentioned and the 6
ROHC p, OY. To calculate (T} — T,-D“" (T3} + T, we will need, in view of eq E.7, expressions for (7)) where w is a
non-negative integer. From eq E.8 we have

(tl]) {Dlo(al,bl,cl—i-n/Z) sin 0 + Dlo(al,bﬂ,cl+n/2)]\/2 cos 0 + Dl \(a;,b;c;+/2) sin 6} (E.13)

Using the expression for a power of a trinomial we obtain

@)’ = Y (u ;Vz u3){D}0(aA,bl,cl+n/2) sin 0}1{D! (a;.b;.c,+7/2)]\2 cos 0}*(D!_ (a;.b;.c;+7/2) sin 0} (E.14)

ujusus

where
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(“1 Z‘Vz ”3) - #z:uz' E.15)
with
w=u + u, + u, (E.16)
According to the Clebsch—Gordan series®
Jith
@, (@b ) D o, (d:b,c) = ; lCQL]ZJ smymom,+m,) C(jjy); R, R2,Q,+Q,) D +m29 +,(@.b.) (E.17)
1=
This expression, together with induction over u; and u,, yields
{D}l(ai,bl,cl+zr/2)}"‘ =D, (al,bl,cl—i-r[/Z) (E.18)
{Di,l(al,b,l,c,1+n/2)}“3 =D, (a;,by,c;+m/2) (E.19)
and
_ Qu)!!t 12
{\/ED{O(aA,bi,c/l—i-zt/Z)}“2 = (m) Dzzo(al,bl,clﬁLﬂ/Z) (E.20)
Inserting eqs E.17—E.19 into eq E.14, we get
Lyw w Quy!! 2 u u u - ity u
(T;;)" = u%} (”1 i, ”3)(m) D, (@,b;.c;+7I2)D, o(a;.by.¢,+7/2) D, (ay,b;.c;+7/2)(sin 0)" 7 (j cos )™ (E.21)
Defining the quantity
Q= u — u, (E.22)
we can, from eq E.16, obtain the relations
u, = w+ Q; —uy/2 (E.23)
and
u, = w — Q) — u,y)/2 (E.24)
With the help of eq E.18, and a change of summation indices from u, u; to Q;, eq E.21 can be written as
()" 2 D)jg (a;.by.c; /AT (6) (E.25)
Q=—w
where 0 < ;] < w and
Ao = [ lQl(g!v(V;Vv - lglm]m S vt w9 oo o
' 1= tnin2 2 2

(E.26)
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= (m

Uypin = > (E.27)

(A quantity A‘(gwl") (0) with m > 0 and which reduces, for m = 0, to eq E.26 will be defined later by eq E.38.) Equation E.26 can be
simplified to ’

A=

sin” O(w)!,F,| — T 5 ot for w— 1Q,leven
or W — I8
_ 12
{w — 1Q,D!(w + 1€2;,)!12w) !} (E.28)
o 2 2R _w+|Qll—l_w—|QlI—1§' 2)
2j sin” 0 cos O(w™ — Q;°) 2F1( D) ’ 2 picot 0 for w — 1€, odd

{w = 1Q,1 — DI(w + 1,1 — D!I2w)!1}"?

\

where ,F) is the hypergeometric function.”® When evaluating A%"~"(0)AB="(0) in a computer program, we can use either eq

E.26 or, instead, a recursion relation with respect to €; obtained from it and given by

Q;2/A5"=(0) = sin O[\(w + Q)(w — Q; + DAG"T(O) —w — Q)(w + Q, + DAGITYO)]  (E29)

Using eqs E.7—E.12, 7}_; (@) can be rewritten as

7} (05 = 730} — Diy(a,b;.c;+7/2)2\2 cos 0 (E.30)
This expression yields
p—m m N m NNDT . r
@) )" = 2(r ) (1,1 (@) (= Dly(az by, +7u/2)2\2 cos ) (E31)
r=0

Inserting eqs E.25, with w = [; — r, and eq E.20 into eq E.31 results in

Li—r

-m m N m -r il —rm=1 r
@ =YY (r)Df;,,gl(al,bl,cﬁmzmgg; 0)(0)D,O(al,bl,cl+n/2)(
r=0 Q)=—(;,—r)

2!

o .
G- o) CUesO)

(E.32)
We know that
_ 1[G @I+ Q2L — 2012012
C(l/l VVIA,Q)'O Q/l) - r'{ (ll — = Ql)'(ll — o+ Ql)‘(ZZA)' (E33)
With the help of this expression and eq E.17, eq E.32 can be written as
m L—r
—m m m i
@) @ =Y Y (r )DZQA(aA,bA,cﬁ-n/Z)0&23)(0) (E.34)
r=0 QK:*(ZX*r)
where
; S (L, — QUL + QN2 — 2n! 1~
(rlz) — AGlL—rm=0) _ r
Oig,(0) = Aig, ™ 7(0)(—4 cos 0) { 07— Q)0 —r ¥ o) (E.35)

Inverting, in eq E.34, the order of the two summations, we obtain
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I

@) @)= Y Digapbue A O) (E.36)
Q=1
where
min(m,l;—1Q,])
AfPO) = Y (r) () (E.37)

r=0

for 1€, < [, and zero othrewise. Inserting eq E.35 into eq E.37 leads to

o)
AT () = (L — QU + Qe " o sin”~ (2 cos )" (E38)
2 Q21! = v(zl -Q, - v)|(11 +Q, — v)' '
2 ’ 2 '
where
e 4, — N(—2)
L _

G Z& Y (E.39)
Foax = MIN(U—u,, 0 L —1Q,1,m) (E.40)

with u,y;, given by the rhs of eq E.27 with w replaced by /;. On the other hand, we know, from the expression for the power of a
binomial, that

m 12 m m
(1) — 1, YT, + 1, ) = 2 UL, ) T E41
m=0
where
L=1"+ 1 (E.42)
and
min(m,15") (1) (2)
Uﬁl)]ﬁm _ 2 (_l)lil)r(l}; )(mll_ r) (E.43)

r=max(0,m—I{)

This quantity can be rewritten, for [{) < [?, as>

(D™ (=2"PE M) for m < 1V

i = |2 PO ) for K0 <m =2 (E.44)
(_Z)IA_anXl—_n?Z)’m_&l))(O) for m> 122)

It can be seen, using eq D.4, that for 1§ = (2, U,*"” vanishes for m odd. With the help of egs E.7, E.8, and E.36, eq E.41 can be
rewritten as

A A
1 N 1 NP2 _ N\ ill2 iL'o 17 D) () —1)7/2 4 (1 (1L, —LH/2
(T — T/I—I)E (T + Tl—l)ﬁ = (pi)7e™™ 2 e Z Dijq (a;,0;,¢:) U?}A—ﬁm/zel( o AI(QAI(A 26)  (E45)
L'=—1,2 Q,=—1

This important expression is used in section 4.5.1 to obtain sin’ fin 71 oS 5 7 Yo ’ff’l}) (OD,p51,09,¢9) in the body-fixed variables
O (see eq 4.53).
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