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The kinetic dependencies of radical generation and recombination during shearing under high pressure
of an organic polycrystalline compound, arylindandione dimer, were investigated using modified EPR
spectroscopy. The radicals were created as a result of dimer splitting at shear deformation. A statistical
model of brittle crushing and a semiphenomenological theory of radical kinetics were proposed. The
theory describes well the functional dependence of EPR spectral parameters on the shearing angle.
shear rate, and pressure, as well as on shearing by impact. Comparison with experimental data enabled
us 1o determine the parameters of the radical kinetics: grain dimensions, muliplicity of grains sphit
during shearing, radical density on the grain surface, and the radical surface diffusion rate constant.
The work reveals the broad capabilities of the EPR method in investigiting microscopic parameters of

destruction of solids by mechanical stresses.

In our previous paper (/), experimental
results from a study of the kinetic dependen-
cies of radical generation and recombination
during shcaring of an organic polycrystalline
compound, arylindandione dimer {2), were
presented. Shearing was created under pres-
sure directly in a modified spectrometer res-
onator; EPR spectra were registered along
with shearing. The shapes of the kinetic
curves of radical generation and recombina-
tion for various parameters of mechanical
influence, pressure (P), shear angle (¢}, and
rate (w), were described.

The present work gives a theoretical inter-
pretation of the observed dependencies. As
is evident from a previous investigation (3),
a radical is formed during the splitting of
a dimer. Our main assumption is that the
splitting of the dimer takes place during the
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formation of a new surface in the process
of brittle crushing of a molecular crystal.
Radicals appear on different sides of newly
formed crazes. Figure 1 (4) illustrates the
structure of dimers. During shearing the
C,-C, weak bond (splitting energy of 18
kcal/mole) (3) breaks. This cncrgy is compa-
rable with the van der Waals energy of mo-
lecular interactions in crystals (3). Thus,
there are many directions of microscopic
inner tension interactions, at which the
probable displacement of molecules com-
petes with the splitting of a dimer. There-
fore, each newly formed surface 1s charac-
terized by an initial density #n, of newly
appearing paramagnetic centers (PC), i.e.,
radicals. The n, value depends on the direc-
tion of the newly formed surface in relation
to the crystalline axis.
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FiG. 1. Formula of the arylindandione dimer.

Model of Shearing

The disappearance of radicals is deter-
mined by their recombination. Since, as a
rule, recombination is a nonactivational pro-
cess, the limiting stage of the whole process
becomes the delivery of radicals to each
other. This takes place as the result of (a)
their diffusion on the surface of a grain or
(b) forced mixing. This mixing takes place
during contacts between surfaces of adjoin-
ing grains, which are displaced by shearing.
Thus, for a quantitative description of the
kinetics of radical generation and recombi-
nation, it is necessary to determine the de-
pendence of the formation of a new surface
during brittle crystal crushing at the moment
of action of shearing tensions.

Such a simple statistical mean model of
brittle crushing during shearing under pres-
sure on Bridgman’s anvils is given in (5).
Let us try to remember the main features of
this model. A powder compressed with a
sufficiently high force is a rigid system inca-
pable of changing its shape. Motion of such a
medium due to shearing tensions is feasible
only by the system’s grains being crushed.
This statement is obvious for brittle destrict-
ible (crushable) materials and is true for
quite large grains, which always contain nu-
cleation defects giving rise, at a certain ten-
sion, to major crazes that split the grain,
Grains of smaller dimensions begin to slip.

At those grain dimensions at which sam-
ple deformation is linked to destruction, the
order of shearing, when a single act of de-
struction of all grains takes place, can be
conjectured for simpie reasoning.
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When a system consisting of parallel lay-
ers of grains is considered, the relative shift
of one layer against another can take place
only under the condition that all grains of
the given layer are destroyed. Thus, the
fragments will move and the entire layer will
be displaced for the distance of

Ar=08 Xr, (D

where r is the size of the grainand B < 1 is
a smooth function of y. It is easy to notice
that, during a single episode of destruction
of all the particles in all the layers, the linear
shear of the extreme lavers is equal to
B x h(Fig. 2), where A is the sample height
and the tangent of the shear angle equals 3.

tg Ap = Ap. (2)

The rotation angle ¢ of Bridgman’s anvil
during a single act of destruction of all the
grains is also approximately Ap = .

It can be assumed, to some degree of ap-
proximation, that on the average a grain is
split into two parts. The mean linear grain
dimension depends on the /th index number
of its destruction,

x 2(711‘3Xi)
=, X exp[—(0.23 x ], (3)

Fi=rF

where r, is the initial grain radius.

Let us connect grain size with the rota-
tional angle of the anvil. Note that by chang-
ing / by a unit we can write Ai = Ap/f8. Since
the number of grains destroyed is i 3 1, the
discrete function {(A¢) can be replaced by a
continuous one, and then we get

di = de/B(r, ). 4)

ah

[~

Fi1G. 2. Schematic representation of the action of
shearing tensions.
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Obviously, the 8 function increases with the
reduction of r. Let us now write it in the
form of a polynomial function,

Blr) = B, X (rfr), (5)

where @ = 0 and must be determined from
experiment, 8 is constant, and r, is the ra-
dius of the grain, which cannot be destroyed
at the given pressure. Substituting (3) and
(5) in (4), we get

ditde = ry/B.
X r, x expl -(0.23 x a x Ol, (6)

from which

i = 1/(0.23 X @)
X 1In(0.23 X &/B, X ryfr, X @). (7)

After replacing (7) in (3}, the equation

() = rp(0.23 X a/B.
% "()'I"c)iuﬂ % ‘P_”a (8)

can be written.

Statistical Theory of Contact Destruction

Until now a strict statistical mathematical
theory of contact destruction was absent.
However, it is known that the major crack,
which leads to destruction, is generated on
certain types of defects in tension zones.
The density of such defects (o) on a newly
formed splitting surface is a property of a
material.

Let us establish that

r. = (dma)” 2 9

is the radius of a grain which contains on the
average only onc defect.

The destruction of a single grain is step-
wise. We define W, as the probability that
grains appearing in the ith splitting do not
contain any defects on their surface:

W, = expl—(4mri, X o)]

= expl—(r,_JraP. (10)

Thus, our task is to find the total surface of
grains, S,, which have appeared by the ith
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splitting and, since 7 is linked to ¢ (see 7),
then it is also necessary to find S(g).

The chain of events can be reconstructed
as follows. We keep our attention fixed on
the number of grains, assuming that each
grain splits in half.

N; is the number of grains after the ith
splitting. Then

N, = 2No(1 = W) + 2N, W, = N| + 2N, W,

N, = 2NI(1 — W,) + 2N W, = N} + 2N} W,

N, =2N/_ (1 - W)+ 2N/_|W,
where Nj = 2N _ (1 — W,).

The total number of grains after the i th split-
ting is

N, = NO[T ﬁ (1 - W,
£=1

i k=1
+E?MHU—Mﬂ(m
k=1 =0

Here the first addend in the square brackets
gives the number of grains with r; radius;
the kth addend in the summation gives the
number of grains remaining intact after the
kth splitting.

The surface increment after the ith split-
ting is equal to

AS = §, x 2¥*
i—1
x [T =Wy x @7 - 1n2!?
k=1
i—1

=0.19 x §, x 270 x [T (1 = W) (12)
k=1

It is evident from relations (12) and (8) that
unti r < r_,

S() = Sy x exp(0.23/). a»
Replacing (7) in (13) we find
S(e) = Sy % [1 + 0.23ar/(B.rae]"e.  (14)
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FIG. 3. Theoretical dependence of grain surface § on splitting number / (a) and shearing angle ¢ (b).

Figure 3 shows the dependence of S(iyand
S(¢). In this illustration, the counting starts
from i, or ¢, which corresponds tor; = r..
The combination of expressions (7), (10),
and (12) enables us to obtain the increment
rate of the developing surface with a rotation
angle of dS/de.

Note that the o parameter is the pressure
function ¢(P) and is an increasing function
of P, 1.e.,

daldP = (. (15)
This means that
dS(P, o)/dP = 10. (15a)

Since in experimental conditions the charac-
teristic rates of macroscopic shear (w =<
3 x 10 sec) are markedly lower than the
velocity of sound in the sample, then the
size of a newly appearing surface is only a
function of the rotational angle ¢ = wt.

Kinetic Equation of Generation and
Recombination of Radicals

As mentioned before, as a rule, on the
newly formed splitting surface paramagnetic
centers (PC) otherwise known as radical

centers, appear. Their mean densily can
be denoted as ny. The disappearance ofa rad-
ical is the result of recombination. The deliv-
eryof radicals toeach other becomes the lim-
iting factor of this recombination, as well as
for the majority of reactions in solids. Ac-
cording to the proposed model two mecha-
nisms of delivery are feasible: (a)thermoacti-
vated radical diffusion on the grain surface
and (b) forced mixing, which is connected
with the relative displacement of adjoining
grain surfaces under external shearing
forces.

The PC concentration is a function of two
times, r(t’, 1y, where t' is the generation time
and ¢ is the time of observation. Thus, we are
investigating the concentration of PC aver-
aged over the ensembie of grains generated
atthe ' moment. The formal kinetic equation
can be written in the following form:

an(t’, t)

T = _KD x Hz(f',f)
— K () x nt’, ) x m(¢) (16)
fn(z',;) X dSidi’ % di’
) = -* (17)

5
”([’, [') - nO.
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In these equations K, is the recombina-
tion diffusion rate constant connected with
the radical surface diffusion constant. In the
case of two-dimensional diffusion (6),

Ky = 4aD/{In(Dt/a®)], (18)

where D is the diffusion coefficient, « is
the characteristic reactive size of the radical
(the recombination size), and K, is the kine-
matic recombination constant due to me-
chanical mixing. This is the probability of
radical interaction with another radical as
the result of mixing or the surface sweep
in seconds by the radical at forced grain
movement due to shearing. It is estimated
as
K,=a XV,

where V_, is the relative rate of motion of
two adjoining grains. For a grain located at
R distance from the center of the anvil, we
have

Via = @ X R X rle)/h, (19)

where # is the height of the sample tablet.
For the general case of arbitrary geometry
of mixing,

K,=axVVXre=awx Sw. (19)

Since one given grain comes into contact
with grains of various generations (with gen-
eration times t'), then'in the kinematic addi-
tive of the kinetic equation (16) the PC den-
sity averaged over generation time 7(¢#) is
included.

An experimentally registered value is

N =7a(n x S -

the total number of PC at a given moment
of time . Because our primary task is the
extraction of introduced model parameters
from experimental dala, i is necessary to
find ways of resolving Eq. (16) in analytical
form. Multiplying both parts of (16) by
dS/dt' and integrating over t' between 0

293

and 7, we get

alt)
dr

d(ln S)}

{lno Al x =

— Kpr¥n) — K, (Onk(0). (20

The first term on the right-hand side is re-
sponsible for radical generation, while the
two others are responsible for radical re-
combination. For quite small grains, during
radical diffusion over different edges of
surfaces from various generations, the prob-
ability of radical diffusional collision with
another radical of the same generation might
become lower than the probability of colli-
sions withradicals of other, younger genera-
tions. Accordingly, the diffusional term of
relation (16) most likely has the form of a
kinematic expression, i.e., Kpn(t', $)n().
Therefore, in the last term of Eq. (20) witha
fairly well developed splitting surface (large
number of generations), n%(¢) can be re-
placed by 7%#). Finally, we come up with
the kinematic equation

dr(ldt = {[n, — 7()] x d(In S)/dt}
—aHN[Kp — K, (0], (20a)

where S(1), Kp, and K, are set by relations
(14), (16), and (19).

Equation (20a) is related to a type of gen-
eral Riccati equation and, unfortunately,
cannot be resolved in analytical form. In the
experiment (/), during shearing by impact,
an ‘“‘instant’” sharp increase in the number
of PC right after the blow is observed. Such
a value of N is not seen during siow sample
destruction. The rotation of the anvil by a
final angle (==10°) at impact load is a quick
process (=107" sec). The newly generated
PC did not have enough time for recombina-
tion, since characteristic times (K, X n,) "
and (K x np)~! are significantly greater.
The observed peak on the kinetic curve indi-
cates that n, is considerably greater than
n(t), which appears during slow destruction.
This means that quadratic recombination of
radicals (second term in Eq. (20a)) leads to
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a quasi-steady change of n(¢). For the quasi-
steady solution of Eq. (20a) to be fairly accu-
rate it is necessary that the characteristic
time of radical diffusion recombination
(Kp X ng)~! be noticeably smaller than the
characteristic time of the development of a
new surface,

(Kp x #g) = d(In §)/dt. 2n

The lower limit for Kp x n,, estimated
from impact experiments, is approximately
3 x 1077 sec, and according 10 (14) at w =
3 x 1077 sec™! (0.1 deg/min), d(In 5)/dt =
10~% sec™!. Thus, the condition of a quasi-
steady process (21) is achieved, which
means that the PC concentration observed

at these shear rates (w),
n(t) <€ n,. (22)

Then from (20a) and taking into account
(22) we get

(n, x d(In S)/dt)'”
Ky + Km(f)]m

nir) = (23)

This solution will be used for the interpre-
tation of the experimental results. It should
be noted, once again, that the smaller value
of w, the more accurate is this relation.

Statistical Picture of Shearing

From (23) and (19a) we can obtain

oy _ lng x dUn S)/de % w]'?
il¢) [Kp + Sole) X w]”

(24)

The value of the observed signal is I(p) =
C % N(g), where C is a constant; i.e.,

ey = C % [n, x S{p) % d(in SYdy
x w][Kp + Sye) ¥ wl'? (24a)

(Sy(p), see (19a)). At small w, when K &
w X Sy(p), we have

1) ~ o', (25)
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Fi1G, 4. Dependence of initial slope of radical concen-
tration on shearing rate @ (1).

Figure 4 shows the plot for the depen-
dence of initial slope of experimental f(w)-
values on w'” (1). Evidently, a good coinci-
dence with the theoretical dependence (25}
is achieved.

By comparing the experimentally regis-
tered linear dependence of I{g) at small
¢ (¢ = @) with relation (24a) it is ¢asy to
find that at ¢ < ¢,

S(e) ~ ¢, (26)

from which it can be established that o = 3
(by comparing (26) with (14)).
Introducing this value for e into (7) we get

e=65x v ! x[expl®is xH—-11, 27
where the parameter
v=rd/(8, X r). (28)

Using relation (27) and the plot of S(/) from
Fig. 3a, the plot of S(p) and /{p, w) depen-
dence can be drawn, where ¢ is measured
in units of critical angle ¢,

. =65 x v~ X exp(0.15 x i),

in (24a). We assume that o is small, hence
Solede <€ Kp. The plots of S(¢) and f{¢, w)
are presented in Figs. 3band 5, respectively.
Comparing the angle at which the signal
reaches a maximum, ¢, = 0.9¢,, with the
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FiG. 5. Dependence of radical concentration on
shearing angel ¢ (theoretical, solid line; experimental,
dotted linej.

experimental result, ¢,,, = 70°(at w = 0.45
deg/min), we get ¢ = 1.3. The parameter
v ¢an be obtained from the comparison of
theoretical and expenimental curves f(p)
and I(§) (Fig. 3):
v =10, (29)
Hence, according to (27) we find i, =
10 = 12, i.e., 10 splittings of sample grains
take place before destruction ceases. Ac-
cording to (3), r./ry = 10, and from the defi-
nition of » (formula (28)), we get 8. = 1;
i.e., the displacement of grains with r_radius
during destruction is of the order of grain
size. Thus, we have determined all the pa-
rameters that define the statistical picture of
fragile destruction.

Microscopic Parameters of Radical
Processes at Shearing

Finally, we need to estimate the micro-
scopic parameters characterizing radicals:
ny, Ky, ry, ., theinitial and final grain sizes,
and the total surface of grains, §;. Absolute
values of N(¢) must be used. Plots 5(/) and
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S5(¢) show the values
Sy = SIS, x 2% = 1/10 x SG)/S,,
£l@) = 1710 X S(g)/S,.

Hence, according to (24a),

N(g) = K5 x §,/10
x g X [fle) % dfide X w)/

11+ sy(¢) x w/KplH'?. (30)

The s,(¢) = a X R/h x r(g) value can
be connected (linked) with f(¢). Evidently,
from the relation for sample volume the fol-
lowing equation can be written:

1) = 3ViS(e)

= 3VII0 % Syle) X f(@)). (3D

Hence,

.5'()(‘.0) =3xaxXR
X V(10 X h %X 53) X F ' ()

and (32)

Nig) = 10 x §; x {lny, X K}
X @ X fle) X (dfideN/I1 + clf ()7,

where

¢c=3xaxXRxYVY

Now we see that the number of radicals
observed depends on two parameters,

Y = ny X Si/Kpand ¥, = §, x Ky,

which can be determined from the compari-
son of N{g} (formula (32)) with experimental
results. These two parameters contain three
unknown values: r,, §,, and K. The exper-
imental dependence N(f) after shearing due
to impact (1) can serve as the third condi-
tion. In this case, the characteristic diffu-
sional time of radical annihilation will be

Tar = (Kp X ng) ™"

Thus, using the values for N(#) at low
and small angles, the dependence of ¢,
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and w, and the value of 7, we get

Y, = (ny- SYKp)'
= N(g)/(10 x &' X [f(e) X f'(g)]717?
Y7'= (8§ X Kp) ' =hllaX R XV Xw)
T4 = (Kp X mg) ™1 (34)

The values of ny, ;. and K}, can be deter-
mined from Eq. (34). Substituting the exper-

imental parameters, N(¢) = 10'%, h =3 x
10 %cm, R=3x 10cm™!, w=>2x
1073 sec™, & = 1007 ¢m, V = 1073

cm ?, T = 10sec, flg) =05, f =1
we come up with

(SyX Kp)~'=1.6%10"and Kp=(10X n,)~".

Consequently, r, == 107% ¢cm. Therefore, we
have the following values of main micro-
scopic parameters of radical processes at
shearing: n, = 10" cm™?, K, = 107!
cm’/sec, Sy =6 x 102, r,=10""cm, r, =
1075 ¢m. All these values have reasonable
physical meanings.

(R Rl
1.20

1.10

1.00 i\\:\

R
o

090

0.80

KR
Ll T

o

8.50

070

e,

060

iV

N

10.00
Int

.50
70 780

8.00 800 950

FiG. 6. Anamorphosae of radical recombination ki-
netic curves in coordinate [R)/[R] ., — Inrafter shear-
ing by one and the same angle ¢ = 45° and at various
pressures: €, 6 kbar; A, 8.7 kbar; £, 11.6 kbar. For
convenience of illustration the curves are separated
from each other on the ordinate axis by 0.1 (1.
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FiG. 7. Dependence of shear angle ¢y, , at which the
kinetic curve passes through the maximum on shear
rate w: O, theory; A, experiment (P = 8.7 kbar) (1).

Qualitative Interpretation of Experimental
Kinetic Curves at Shearing

The K, value, the radical surface diffu-
sion rate constant, should not depend on
pressure. This is confirmed by anamor-
phoses of radical recombination kinetic
curves after shear by one and the same angle
(45°) registered at various pressures {Fig. 6).
Note that the anamorphoses are identical to
each other. Consequently, the mechanism
of surface diffusion does not change with a
twofold increase in pressure from 6 to 11.6
kbar.

From relation (32} the dependence ¢,
{w) can be obtained. Hence de,/der > 0.
This coincides with experimental data at
C = 1. However, the maximum theoretical
value of Ag,, is approximately 25%, which
is markedly lower than the experimentally
observed 100% increase {Fig. 7). A greatest
error arising from the interpretation of ex-
perimental results is due to the fact that we
deal with the mean values, disregarding the
dispersion in the sizes of newly generated
grains.

Moreover, at those stages of destruction
where for each grain the number of radicals
is close to a unit, the recombination due to
diffusion is sharply reduced and cannot be
described in terms of averaged diffusional
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Fi1G. 8. Experimental dependence of relative radical
concentration [R]/[R],., on time of observation 7 {( =
B.7 kbar}. Curve C was obtained without stopping the
shearing, A and B were obtained after shearing had
stopped. In all cases, w = 1.8 deg/min.

investigation. Figure 8 shows the kinetic
curves of A and B radicals shortly after the
ending of shear due to pressure and with the
starting point of recombination correspond-
ing to {RI/IR],. = 0.8 on the common ki-
netic curve C. It is evident that after a quick
initial recombination, these curves enter a
plateau. In the beginning, the B curve
“‘takes over’” recombination that corres-
ponds to the C curve, and finally slows
down. The AR difference between the ordi-
nates of slow echanging parts of B and C
curves corrcsponds to the amount of grains
with a single radical. The absenee of shear-
ing at w = 0 excludes radical cxchange be-
tween grains. Since diffusional input into
recombination in limits of the grain becomes
ineffective, this plateau can be seen at the
very large ¢ usually observed in experi-
ments.

When the starting point is located on the
initial part of the C curve, then a kinetic
curve A with a significantly deeper recombi-
nation can be seen. Since the cracking num-
ber i of grains at small shear angles and times
is also small, i < i,, the mean size of the
grain is still significantly greater than r,. In
the limit of such a large grain the kinetics of
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recombination, determined by radical sur-
face diffusion, can be quite fast. This may
account for the substantially “‘deeper™ ki-
netic transformation of the A curve in com-
parison with the B curve. As a result, the
plateau of curve A rises far less over the
level of B, 3R << AR. Thus, a greater number
of quite small grains (with one radical) cor-
responds more closely to curve B than to
curve A. This seems reasonable, since the
mcan grain size in this case is far from r,.
For B the curve of grain size distribution r,
narrows, and its center of mass is displaced
toward smallcr r values. More accurate the-
oretical assumptions are in need of signifi-
cantly more precise experimental data. Both
will be developed in the future.

Conclusion

Thus: 1. Kinetic dependencies of radical
generation and recombination are demon-
strated on the example of an organic poly-
crystal. The radicals are formed in result of
dimer splitting during shearing under high
pressure. Experiments were conducted at
various pressures, shear rates, and shear
angles, as well as during shearing caused by
impact.

2. A statistical model of brittle crushing
and a semiphenomenological theory of radi-
cal kinetics are proposed. The theory ex-
plains well the functional dependencies of
EPR signal parameters on rotational angle,
angular velocity, and pressure. Comparison
with experimental data enabled us to deter-
mine the value of the main statistical and
microscopic parameters of crystalline brittle
crushing and the kinetics of radical pro-
cesses at shearing under pressure; n, = 10"
cm™?, Kp=10""cm¥/sec, S,=6 x 10°,
ii=10, ry=10" cm, r.=10"°cm.

This work demonstrates the wide range
of capabilities of the EPR method for the
investigation of microscopic destruction pa-
rameters.
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