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The 5’Fe Mossbauer Isomer Shift in Microdoped Monoxides
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Comparison of the room-temperature Mossbauer isomer shifts (1.8.} of the Fe?” and Fe'* daughter
states of the “Co-microdoped monoxides MO with M = Mg, Ca, Mn, Co, Ni, or Cu have been
correlated with high-pressure data for M = Co and a-Fe,0;. Any empirical relationship relating the
1.S. to the mean iron valence {m) relative to 10~% sec that is applicable to iron oxides with a large
iron-atom cencentration needs to modified for microdoped samples where the Co-0 bond length does
not have its normal equilibrium value and the counter cations introduce an inductive effect. A nearly
linear dependence of the 1.S. on bond length is found for bond lengths near their normal value: 4(1.5.)/
d(Co-0) ~ 1.08 (mm/sec)/A for the STFel* daughter and 0.83 (mm/sec)/A for the ¥Fe*t daughter.
Covalent Fe—O o-bonding is increased—and hence, the LS. is decreased—either by bending of
the 180° Fe—O~Fe bond from 180° toward 90° or by introducing more electropositive counter cations
M in the 180° Fe—O-M bonds. Application to ¥Co microdoped copper oxides indicates that the
Co*™* redox couple tends to lie in the narrow energy range between the Cu**"* and Cu’** redox

couples.  © 1993 Academic Press, Ing.

Introduction

An empirical relationship for the room-
temperature isomer shift (1.S.) with respect
to c-Fe of high-spin 'Fe in octahedral (V])
and tetrahedral (IV) oxygen coordination in
an oxide has been proposed (/) for iron ox-
ides containing a high concentration of iron
atoms:

LS.(V]) =
LS.(IV)

(2.85-0.85{m) =
== (2.6-0.8(m) =

0.1) mm/sec
0.1) mm/sec,

where 2 = (m) = 3 is the mean formal va-
lence of the iron on a time scale ¢ > 107%
sec.

Whereas the monoxides MO with M =
Mg, Ca, Mn, Co, and Ni crystallize in the
rocksalt structure, CuO exhibits a coopera-

tive Jahn—Teller distortion to monoclinic (2)
in which each Cu atom is coordinated to
four oxygen at a Cu-O bond length of 1.95
Aand two oxygenat2.78 A. Shah and Gupta
(3) have observed a *"Fe room-temperature
[.§8. = 0.359(4) mm/sec in CuO with 0.5 at.%
Fe substituted for Cu. In accordance with
Eq. (1} this value is typical for Fe?* in sixfold
coordination; it appears to be a little too
high for Fe** in fourfold coordination. Since
the Fe**"* redox level is known to be at a
higher energy than the Cu®**2* redox couple
in oxides (4), the electron-transfer reaction

Fel* + Cu’* — Fe’t + Cu* (2)

stabilizes Fe'* in CuQ: Fe, so a measured
I.S. typical for Fe* brings no particular sur-
prise.

On the other hand, Mossbauer emission
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studies (5-8) of CuO(¥Co) show several
components of varying intensities. The prin-
cipal component has a reported room-tem-
perature [.S. of 0.68 = 1.5. = 0.75 mm/sec
(we disregard an early report, 5, of 0.44 mm/
sec). A satellite component has an isomer
shift in the range 0.2 = 1.S. = 0.31 mm/sec.
Impurity phases are reported with isomer
shifts of 0.95 mm/sec (Ref. 5} and 0.31(8)
mm/sec {Ref. 8). The principal component
is due to a *’Fe?* daughter, and the satellite
at0.2-0.31 mm/secis from a *Fe*" daughter
ion. However, an 1.5, = 0.68(2) mm/sec lies
midway between the values predicted for
Fe** and Fe’* from Eq. (1), which raises a
question about the general applicability of
Eq. (1). Moreover, the results have led to
a disagreement in the literature (3, 6-8) as
to whether Co is present as Co** or Co’' in
microdoped CuQO(*’Co).

Discussion

The Mdssbauer isomer shift between the
source A and an absorber B is proporticonal
to the difference in s-electron density at the
nucleus,

LS. ~ (['a@F - Fgp@P). ()

Whereas the reference species, metallic o-
Fe, contains 4s electrons, Fe cations in an
““‘ionic compound see a 45 contribution only
by virtue of electron back transfer to the Fe-
45 orbitals via covalent mixing. Although
covalent electron back transfer to empty 3d
orbitals increases the screening of the core
s electrons from the nuclear charge, the re-
sulting decrease in [“y(0){* from this cause
is weaker than the increase from the 4s con-
tribution (9). It follows qualitatively that the
weaker the covalent bonding, the larger the
1.S. with respect to a-Fe. Consequently, an
Fe?* ion has a larger I.S. than an Fe*t ion,
and a high-spin configuration has a larger
1.5, than a low-spin configuration. It also
follows that the 1.8, for a given formal va-
lence and anion (X) coordiqation should in-

crease with the mean Fe-X bond length. In
addition, bending of an Fe—-X-Fe¢ bond from
180° toward 90° would increase the covalent
character of the o-bonding; bending reduces
the competition of the two cations for the
same p, orbital. Moreover, if an iron atom
has unlike near-neighbor cations, then the
character of the M—-X bonding in a 180°
Fe—X-M bond will influence the strength of
the covalent component to the Fe~X bond-
ing via the inductive effect. Equation (1) is
therefore applicable only where the mean
Fe-0O bond length approaches its atmo-
spheric-pressure equilibrium value and any
inductive effect does not alter the covalent
component of the Fe—X bond significantly
from what is found in an Fe—X-Fe¢ bond. In
a microdoped sample, both the mean Fe-O
bond length and the inductive effect may
deviate significantly from their values iniron
oxides; in this case it is necessary to recog-
nize the limitation of Eq. (1), which is based
on iron oxides having a high iron concen-
tration.

In order to demonstrate the influence on
I.S. of both a changing Fe—O bond length
and the inductive effect, we plot in Fig, [
the observed (6-8, 10-16)} room-tempera-
ture isomer shifts for the ¥Fe’* and ¥Fe**
components of the microdoped monoxides
MO(’Co) versus the room-temperature
M~-0 bond length in the rocksalt structures
(M = Mg, Ca, Mn, Co, Ni) and versus the
short Cu-0O bond length in CuO. At room
temperature, only N10 is antiferromagnetic
with a small exchange-strictive distortion to
rhombohedra! symmetry, and this distortion
does notinfluence the I.S. We do not include
the 1.S. for the ¥Fe?* and *’Fe** compo-
nents of Fe _;O determined from Mdéss-
bauer absorption spectroscopy (/7-20) for
these reasons: (1) difficulties in fitting the
data have resulted in a wide spread of re-
ported values, (2) electron transfer between
the octahedral-site Fe3* and Fe** ions, al-
though slow relative to the 10°% sec time
scale of the Mossbauer experiment, does
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reduce the Fe®* and enhances the Fe’* val-
ues, and (3) there is no good measure of
the tetrahedral-site bond length. The isomer
shifts of the principal component of the
room-temperature 7’ Fe Mossbauer emission
spectra from MO(¥Co) with M = Mg, Ca,
Mn, Co, or Ni are found to be in good
agreement with Eq. (1} for 1.S. (V1) and
{m} = 2, whereas the observed L.S. of the
principal component for CuO(¥’Co) would
seem to imply, according to Eq. (l), an
{m) = 2.5

In order to obtain a measure of the influ-
ence of the bond-length change alone on
1.S., we turn again to published data; high-
pressure Mossbauer (/6, 21) and X-ray dif-
fraction (22, 23) data are available for CoO
and a-Fe,;0;. In Fig. 1 we plot the depen-
dence of the L.S. of the “"Fe** room-temper-
ature daughter of CoO(*’Co) versus the
Co—-0 bond length as calculated from the
independent high-pressure measurements.
We calcuiate a slope d(1.5.)/d(Co-0) =
+1.08 (mm/sec)/A and plot a dashed line
with this slope through the CoO(*’Co) data
in Fig. 1. The corundum structure of «-
Fe,0; contains Fe in distorted octahedral
sites; pairs of Fe'* ions share common octa-
hedral faces, and the electrosiatic repulsive
force between them repels each iron toward
the octahedral-site face opposite the one
that is shared. Consequently, two Fe-0O
bond lengths (1.96 and 2.09 A) are found at
room temperature and atmospheric pres-
sure. In Fig. 1 we plot the dependence of
the 1.S. for ’Fe** on the shorter of the Fe-0O
bond lengths as calculated from the indepen-
dent high-pressure measurements. The «-
Fe,0, structure is stable to 90 GPa (24); we
calculate for the shorter Fe-O bond length
a slope d(1.S.)/d(Fe-0) = +1.37 {mm/sec)/
A for pressures P < 1 GPa and +0.83 (mm/
sec)/A for pressures P > | GPa. The solid
line through the data of e-Fe,O; in Fig. |
has the high-pressure slope.

Extrapolation of the dashed line in Fig. 1
givesan [.§.(VI) = 0.88 mm/sec foran M—-O

1.S. (mm/s)
e

0.6 ]
0.4 ‘- » WOISICopFeds
0 CaD(37Co):Felr

+ MO(S7Co):Fe3+
» CuO(57Fe):Fed+
© a-FepOzFel+

1.9 2.0 2.1 2.2 2.3 2.4
M-C Bond Length (A}

FiG. 1. Room-temperature “'Fe isomer shift (1.S.)
versus metal (M)—oxygen bond length in MO(’Co) (M
= Mg, Ca, Mn, Co, Ni, Cu) and a-Fe,0;. Isomer shifts
have been converted to absorber data and are with
respect to o-Fe. Vertical lines correspond to the re-
ported ranges of .S, of the principal ¥Fe** and daugh-
ter "Fe?* components of CuQ (’'Co). The dashed and
solid lines through the CoO(7Co) and a-Fe, 0, data,
respectively, are calculated from the pressure depen-
dence of the M-0 bond length and L.S. (see text).

bond length of 1.95 A, which remains larger
than the .S, = 0.68 = [.§. = 0.75 mm/sec
observed for CuO{*’Co). However, bending
of the Fe-0O-Cu bond from 180° to near
100° should enhance the covalent bonding
to lower the predicted 1.S. from 0.88 mm/
sec. Moreover, according to Eq. (i) reduc-
tion from sixfold to fourfold coordination
may be expected to reduce the [.S. by about
0.1 mm/sec, which corresponds to an ex-
pected 1.5.(1V) < 0.78 mm/sec. We believe
the reduced 1.5. for ¥Fe?* in CuO{*’Co) re-
flects an enhanced covalent contribution to
the Fe-O bond due to not only g shorter
Fe-0 bond length, but also to a reduction
of the Fe—O-Cu bond angle from 180° to
near 100°, which eliminates competition for
the same O:2p orbital by the bridged cat-
ions. Moreover, there is also an inductive
cffect in microdoped samples. Comparison
of the Fe’* daughter 1.S. for MgO(*’Co)
and CaO(*’Co) suggests that the inductive
effect compensates for much of the size ef-
fectin CaO(*’Co). Although a strongly cova-
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lent component in the Cu—O bond might be
expected to reduce the covalent component
at an Fe atom sharing a common bridging
oxygen, this effect is reduced by a bond
angle of 100° since the two ions do not com-
pete for the same O : 2p orbital at a 90° bond
angle.

The Co’*?* couple lies close to the
Cu?*'* couple in oxides, and it is not possi-
ble from semiempirical considerations to
predict unambiguosly whether the charge-
transfer reaction,

Cu’t + Co?" — Cut + Co*',  (4)

is biased to the left or to the right in any
given copper oxide. The observation of a
principal “’Fe?" daughter component in the
Mgssbauer spectrum of CuO(*’Co) shows
that the equilibrium reaction (4) is biased to
the left and also that the lifetime of the *"Fe?*
daughter state is 7 > 107® sec for the elec-
tron-transfer reaction (2) after electron cap-
ture by the ’Co?* nucleus. The observation
of a satellite component withan 1.S. = 0.2(2)
mm/sec implies the presence of another
electron-transfer mechanism in the absence
of a competitively fast electron transfer in
reaction (2). In CoO(*’Co) and NiO(’Co),
cation vacancies create Co** and Ni*" spe-
cies, and the "Fe*” satellites arise from the
electron-transfer reactions

FeZ+ + M3+ — Fe3+ + M2+
(M = Coor Ni). (5

The S'Fe’" daughter satellites are stronger
for cation-deficient MO{*’Co) with M = Co
or Ni than is found for CuQ¢*’Co); this ob-
servation indicates that CuO is more nearly
stoichiometric.

The ambiguity fo the directional bias of
reaction (4) is highlighted by a comparison
of the Mossbauer data for CuQ and the high-
temperature superconductor YBa,Cu;0,,,
microdoped with *“Co. Whereas CuO(’Co)
exhibits a *’Fe?* daughter and a ¥Fe’* satel-
lite, YBa,Cu;0,, (*"Co) shows no evidence
for ¥Fe2*; it gives isomer shifts of 0.00 and

0.30 mm/sec for the ¥Fe daughters in, re-
spectively, the Cu{l) chains and Cu(2)
planes (24, 25). These latter isomer shifts
correspond to intermediate-spin and high-
spin Fe’* daughter states, respectively.
This result shows that p-type doping of the
superconductive oxides has transformed re-
action {4) to

p + Co*t — Co'", (6)

where p is an itinerant-electron hole in the
(x} — y% band of a (Cu0,)* ™~ sheet or
(2 — ¥ band of a (CuQ,)*™?~ chain of the
YBa,Cu,0,,, phase. It would appear that
the Co**2* couple falls between the Cu?*'*
and Cu**2* redox couples in oxides.

Conclusions

The above considerations lead to the fol-
lowing conclusions:

(I) The empirical equation (1} is applica-
ble to iron oxides with a large iron-atom
concentration, but it needs to be modified
in microdoped samples where there is a non-
equilibrium Fe—O bond length and/or an im-
portant inductive effect.

{2) The 1.S. varies essentially lineariy with
bond length for bond lengths near their nor-
mal values:

d(1.8.)/d(Co-0) = 1.08 (mm/sec)/A for a
Fe?* daughter

d(1.8.)/d(Co-0) = 0.83 (mm/sec)/A for a
Fe3* daughter.

(3} The 1.S. is decreased from its value
for [80° M—O-M interactions by (a) reduc-
tion of the bond angle toward 90° and (b)
introduction of a strongly electropositive
counter cation M" in 180° M—O-M’ bonds.

(4) The Co**”* redox couple tends to lie
in the samll energy gap between the Cu2*’*
and Cu**?* redox couples in copper oxides.
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