Physico-chemical Characterizations of Au(III) in $Ln_2Li_{0.50}Au_{0.50}O_4$ (Ln = La, Nd, Sm, Eu, Gd) Oxides

F. TRESSE, G. DEMAZEAU, J. P. SANCHEZ,* L. FOURNES, and K. S. SUH

Laboratoire de Chimie du Solide du CNRS and Interface Hautes Pressions, ENSCPB-Université Bordeaux I, 33405 Talence Cedex, France; and *CENG-DRFMC/SPSMS/LIH, 85X, 38041 Grenoble Cedex, France

Received November 1, 1991; in revised form August 3, 1992; accepted August 10, 1992

The $Ln_2Li_{0.50}Au_{0.50}O_4$ (Ln = La, Nd, Sm, Eu, Gd) oxides have been prepared under oxygen pressure. The physical and chemical characterizations of the lanthanum phase confirm the stabilization of trivalent gold in a square-planar surrounding. Lithium is located in two similar crystallographic sites, in agreement with a layered structure with a 1/1 cationic order in the layers. The crystal structure is discussed, but the absence of single-crystal data does not allow a precise determination. © 1993 Academic Press, Inc.

I. Introduction

In the Li-M-O system (M = transition elements), when the Li-M-O angle is close to 180° the high ionicity of Li-O bonds reinforces the covalency of the antagonist-bonds which share the same oxygen 2p orbital. A regular distribution of the weak Li-O bonds surrounding the (MO_6) octahedron has been used for stabilizing the isotropic electronic configuration in a perovskite-type lattice. This is the case of Ru(V), Os(V) (I), or Fe(V) (I) d³ in the La₂ LiIO₆ oxides.

If Li-O bonds are only located in the xOy planes of the K_2NiF_4 -type structure, it is possible to stabilize some anisotropic electronic configurations such high-spin (HS) Fe(IV) $(t_{2g}^3d_{z^2}^1d_{x^2-y^2}^0)$ in $A_{0.50}La_{1.50}Li_{0.50}$ Fe_{0.50}O₄ (A = Ca, Sr, Ba) (3) and low-spin (LS) Ni(III) $(t_{2g}^6d_{z^2}^1d_{x^2-y^2}^0)$ in La₂Li_{0.50}Ni_{0.50} O₄ (4).

The stabilization of high oxidation states

of transition elements in different oxygenated lattices allows the study of correlations between the physical properties of such materials versus the metal-oxygen bonding strength (5).

Numerous unusual oxidation states or electronic configurations of the first family of transition elements (3d) have been characterized in oxides such as high-spin Fe(IV) in $A_{0.50}$ La_{1.50}Li_{0.50}Fe(IV)_{0.50}O₄ (A = Ca, Sr,Ba) (3), Fe(V) in La₂LiFe(V)O₆ (2), the LS \rightarrow HS transition of Co(III) in LnCo (III)O₃ (Ln(III) = rare-earth) (6-9), the intermediate spin state (S = 1) of Co(III) in $La_2Li_{0.50}Co(III)_{0.50}O_4$ (10) and $La_2Li_{0.50}$ $Cu(III)_{0.50-x}Co(III)_xO_4$ (11), LS Co(IV) in (12), $Sr_{0.50}La_{1.50}Li_{0.50}Co(IV)_{0.50}O_4$ Ni(III) in LnNi(III)O₃ (13–16) and SrLn $Ni(III)O_4$ (17) (Ln(III) = rare-earth), Cu(III) in LaCu(III)O₃ (18), and d^8 (LS) Cu(III) in $La_2Li_{0.50}Cu(III)_{0.50}O_4$ (18) and SrLaCu(III)O₄ (19). Few transition elements of the second (4d) and third (5d) series have been studied. However, Ru(V) in $La_2LiRu(V)O_6$ (1), Pd(IV) in $Zn_2Pd(IV)O_4$ (20), Ir(V) in $La_2LiIr(V)O_6$ (1, 21, 22), and Pt(IV) in $Mg_2Pt(IV)O_4$ (23) have been found.

The superconducting oxides are characterized by a mixed valence, low-dimensional structure containing polyhedron of variable coordinations. The stabilization and the study of transition elements in different oxygen coordinations were able to lead us to a better understanding of the superconducting behavior (24, 25).

In oxides lattices $Cu(II)(d^9)$ and $Cu(III)(d^8)$ can adopt several different coordinations such as (i) more or less distorted octahedral (La_2CuO_4 (26) and $La_2Li_{0.50}Cu_{0.50}O_4$ (18)), (ii) square-planar (Nd₂ CuO_4 (27)), and (iii) pyramidal with a square base (YBa₂Cu₃O₇ (28), Nd_{2-x-y} $Ce_xSr_yCuO_{4-\delta}$ (29)).

Gold and silver belong to the same column of the periodic table as copper, but differ by the low stability of the divalent oxidation state. In the case of gold, the oxidation states $+I(d^{10})$ and $+III(d^{8})$ are more stable than $+II(d^9)$. For Au(III), the d^8 lowspin state is stabilized through the covalency of the Au(III)-O bond, such an electronic configuration generally inducing a square-planar coordination. Few oxygenated lattices containing Au(III) have been prepared, namely, $A \text{ AuO}_2$ (A = Na, K, Rb,Cs) (30). In these structures, Au(III) adopts square-planar (AuO₄) coordination, forming sheets by edge sharing (Fig. 1). In order to investigate isolated Au(III), we have prepared and studied the Ln₂Li_{0.50}Au(III)_{0.50}O₄ phases (Ln = La, Nd, Eu, Sm, Gd).

II. Preparation of the Materials

Two different methods have been used for the preparation of the $Ln_2Li_{0.50}Au_{0.50}O_4$ phases.

(a) Direct synthesis under oxygen pressure. Ln_2O_3 , $Au_2O_3-nH_2O$ (n = 2) were

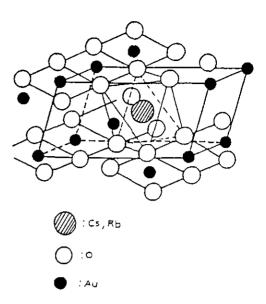


FIG. 1. Square-planar (AuO₄^(-V)) environment in RbAu(III)O₂ and CsAu(III)O₂, after H.-D. Wasel-Nielen and R. Hoppe (3θ).

mixed with excess Li₂O₂ compensating the mechanical decomposition of the gold oxide (Au₂O₃ begins to evolve oxygen at 110°C) in the mortar. The lithium peroxide is used in excess due to because of easy sublimation at normal pressure of Li₂O at 923 K. The resulting powders are treated under 70 MPa of oxygen pressure at 1023 K for 12 hr.

Under these experimental conditions, only the phases containing La, Nd, or Sm could be prepared. Eu₂Li_{0.50}Au_{0.50}O₄ and Gd₂Li_{0.50}Au_{0.50}O₄ were not isolated as pure phases even if the pressure was increased using very high oxygen pressure conditions in a "Belt"-type apparatus (decomposition of KClO₃ in the presence of Ln_2 O₃, Au₂O₃-nH₂O and Li₂O₂ under 5 GPa (50 kbar), at 1023 K). After the synthesis the excess of Li in the product present as LiOH · 2H₂O could be leached out rapidly with distillated water at pH = 7.

(b) Synthesis in air and sintering under oxygen pressure. The second method was used only for La₂Li_{0.50}Au_{0.50}O₄. It consists

of two successive steps. The first one is a thermal treatment in air at 1023 K of La₂O₃, $Au_2O_3-nH_2O$, and Li_2O_2 (in 1200% mass excess). After 15 hr of thermal treatment, the mixture, contained in an alumina crucible, is guenched in air to room temperature. The excess of lithium is eliminated by a distilled-water washing as previously described. The resulting product is dryed at 400 K for 5 hr in order to eliminate the absorbed water, followed by a second treatment under 80 MPa of oxygen pressure at 773 K for 15 hr in a gold tube. The second method leads to a well crystallized material. The occurrence of LaLiO2 in same preparations at higher temperatures seems to indicate a partial reduction of the gold oxide, leading to a deficiency of this element. The gold phases $Ln_2Li_{0.50}Au_{0.50}O_4$ (Ln = La, Nd, Sm) are pale-yellow colored.

III. Experimental Results

- (a) Determination of the gold oxidation state. Iodometric titration has been performed and leads to an average oxidation state close to 3+ for gold in such oxides.
- (b) X-ray diffraction study. The X-ray diffraction pattern (XRDP) of La₂Li_{0.50} $Au_{0.50}O_4$, $Nd_2Li_{0.50}Au_{0.50}O_4$, and $Sm_2Li_{0.50}$ Au_{0.50}O₄ are given in Fig. 2. The two first patterns have been indexed in the Cmmm space group as proposed by F. Abbattista et al. (31) for the lanthanum phase. The chosen cell parameters a, b, and c with a = c = $a_0\sqrt{2}$ and $b=c_0$; a_0 and c_0 being the parameters of the base K₂NiF₄-type tetragonal cell. Such an indexation could be induced by a 1/1 Li(I)/Au(III) order in the xOyplanes, probably due to the large charge difference between these cations. The Sm₂ Li_{0.50}Au_{0.50}O₄ structure belongs to a K₂ NiF₄-type, but the space group could not be determined.

The cell parameters of these three phases are given in Table I. The c_0/a_0 ratio is close to 3.05 for La and Nd phases and 3.10 for

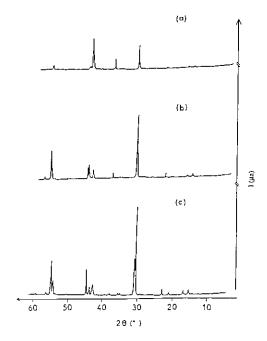


FIG. 2. X-ray diffraction patterns of: (a) $Sm_2Li_{0.50}$ $Au_{0.50}O_4$, (b) $Nd_2Li_{0.50}Au_{0.50}O_4$, and (c) $La_2Li_{0.50}$ $Au_{0.50}O_4$.

the Sm phase. In layered structures and more specially, those deriving from K_2 NiF₄-type, the c_0/a_0 ratio should be correlated with the local distortion of the cationic coordination polyhedron.

It is notable that the experimental c_0/a_0 values for the three phases are lower than those observed for the K_2NiF_4 -type oxides.

TABLE I

CELL PARAMETERS OF $Ln_2Li_{0.50}Au_{0.50}O_4$ (Ln = La, Nd, Sm) Phases

	a_0 (Å)	c_0 (Å)	c_0/a_0
La ₂ Li _{0.50} Au _{0.50} O ₄	4.07	12.41	3.05
$Nd_2Li_{0.50}Au_{0.50}O_4$	3.98	12.11	3.04
$Sm_2Li_{0.50}Au_{0.50}O_4$	3.92	12.18	3.11

Note. $\mathbf{a} = \mathbf{a}_0 + \mathbf{b}_0$, $\mathbf{b} = \mathbf{c}_0$, and $\mathbf{c} = \mathbf{a}_0 - \mathbf{b}_0$ with $|\mathbf{a}| = \sqrt{2} |\mathbf{a}_0|$ and $|\mathbf{a}_0| = |\mathbf{b}_0|$. a_0 and a_0 are the cell parameters of the \mathbf{K}_2 NiF-type phase, a and b are the parameters of the fundamental cell describing the Li/Au order.

98 TRESSE ET AL.

When the transition element is characterized by an isotropic electronic configuration, c_0/a_0 is close to 3.30 \pm 0.05 [SrLa-Fe(III)O₄, with Fe(III) $(t_{2\mu}^3 e_{\mu}^2)$, $c_0/a_0 = 3.28$ (32) and $La_2Li_{0.50}Co(III)_{0.50}O_4$ where, at low temperature, Co(III) adopts a low-spin configuration, $(t_{2g}^6 e_g^0)$, $c_0/a_0 = 3.34 (10)$]. With a transition ion characterized by an anisotropic electronic configuration, two possibilities could occur: either the difference of the electronic population between the two e_{ϱ} -type orbitals is (i) one electron (Jahn-Teller distortion), for example, La₂Li_{0.50} $Ni(III)_{0.50}O_4$ (4) [low-spin Ni(III), $(t_{2g}^6 d_z^{12})$ with $c_0/a_0 \simeq 3.43$], Sr_{0.50}La_{1.50}Li_{0.50} $Fe(IV)_{0.50}O_4$ (3) [high-spin Fe(IV) $(t_{2g}^3d_{z^2}^1)$, with $c_0/a_0 \approx 3.46$], or (ii) two electrons [low-spin d^8 Cu(III) $(t_{2g}^6 d_{z^2}^2 d_{x^2-y^2}^0)$, in La₂ $Li_{0.50}Cu(III)_{0.50}O_4$ (18) with $c_0/a_0 \approx 3.54$ (Table II). The low c_0/a_0 values observed for these gold oxides can be compared to those of Ln_2CuO_4 compounds (27) (Nd₂ $\text{CuO}_4\text{-type}$) $(c_0/a_0 \approx 3.08)$ where Cu(II) $(t_{2p}^6 d_{z^2}^2 d_{x^2-y^2}^1)$ are in edge-shared square-planar environment (Fig. 3).

(c) Magnetic characterization. The La₂ Li_{0.50}Au_{0.50}O₄ phase is diamagnetic at room temperature. This diamagnetic behavior illustrates the pairing of the *d* electrons which should confirm a *d*⁸ low-spin electronic configuration from Au(III).

If, as it has been suggested by the magnetic susceptibility measurements, Au(III) adopts a low-spin d^8 configuration, a low

 $TABLE \; II \\ c_0/a_0 \; Ratio \; for \; Different \; K_2NIF-Type \; Phases \;$

Phases	c_0/a_0	Elec. conf.	Ref.
K ₂ Ni(II)F ₄	3.26	d8	(35)
La ₂ Li _{0.50} Al(III) _{0.50} O ₄	3.38	d^0	(36)
$La_2Li_{0.50}Mn(III)_{0.50}O_4$	3.42	d^4	(37)
$La_{1.75}Li_{0.75}Fe(IV)_{0.50}O_4$	3.43	d^4	(38)
La ₂ Li _{0.50} Co(III) _{0.50} O ₄	3.34	d^6	(10)
$La_2Li_{0.50}Ni(III)_{0.50}O_4$	3.43	d^7	(4)
$La_2Li_{0.50}Cu(III)_{0.50}O_4$	3.54	d^8	(18)

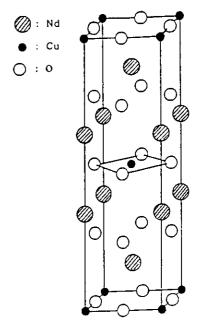


Fig. 3. The Nd₂CuO₄-type structure.

value c_0/a_0 for the $Ln_2 Li_{0.50} Au(III)_{0.50} O_4$ phases (Ln = La, Nd, Sm) is not compatible with a high elongation of the octahedron (MO_6) (as observed for $La_2 Li_{0.50} Cu(III)_{0.50} O_4$ ($c_0/a_0 \approx 3.54$) where a 1/1 Li/Cu order is assumed in the perovskite-type layers of the $K_2 NiF_4$ lattice). On the other hand, the c_0/a_0 ratio found for $La_2 Li_{0.50} Au(III)_{0.50} O_4$ is close to that observed for $Nd_2 CuO_4$ and suggests a square-planar oxygen environment for Au(III). In order to confirm the oxidation state of gold and to precisely determine its oxygen environment, a Mössbauer spectroscopy study has been undertaken.

(d) Mössbauer study. ¹⁹⁷Au Mössbauer spectroscopy measurements were performed using a ¹⁹⁷Pt source obtained by neutron irradiation of 250 mg of natural platinum during 5 hours in a flux of 10¹²n·cm²·sec⁻¹. The absorber thickness was about 90 mg of Au/cm². The 77.35 keV gamma rays were detected using an intrinsic high-resolution Ge detector. Both the

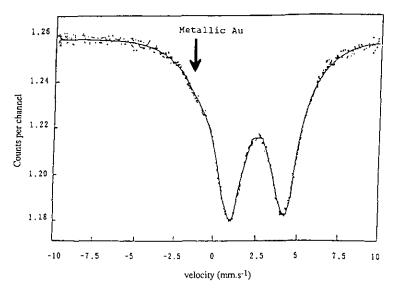


Fig. 4. Mössbauer resonance spectrum of ¹⁹⁷Au in Nd₂Li_{0.50}Au_{0.50}O₄ at 4.2 K.

source and the absorber were maintained at 4.2 K. The spectrum shown in Fig. 4 was computer analyzed as a superposition of a quadrupole split doublet and a single line. The relevant least-squares fitted parameters are given in Table III. The doublet, which represents about 94% of the spectral area, is characterized by an isomer shift (δ) of 3.75(2) mm·sec⁻¹ (versus metallic Au) and a quadrupole splitting (Δ) of 3.28(2) mm·sec⁻¹. As demonstrated previously neither the isomer shift nor the quadrupole splitting values alone can characterize the oxidation state of Au. However, when the

TABLE III MÖSSBAUER PARAMETERS OF ^{197}Au in $Nd_2Li_{0.50}Au_{0.50}O_4$ at 4.2 K

	ô (mm⋅sec ⁻¹)	Δ (mm·sec ⁻¹)	W (mm⋅sec-1)	P (%)
Au(III)	3.75(2)	3.28(2)	2.18(2)	94(1)
Au(0)	0.002(2)	0	1.94(11)	6(1)

Note. δ = isomer shift with respect to metallic Au; Δ = quadrupole splitting; W = linewidth of the Lorentzians; P = relative spectral area.

two hyperfine parameters are considered together, a clear cut between Au(I) and Au(III) oxidation states can be made (33) and Mössbauer spectroscopy of ¹⁹⁷Au has been shown to be a valuable tool for characterizing new gold compounds. The Mössbauer data of ¹⁹⁷Au in Nd₂Li_{0.50}Au_{0.50}O₄ (Table III) demonstrate the occurrence of four coordinates Au(III) which is expected to be in a square-planar oxygen environment (Fig. 5). In this case Au(III) would adopt a d^8 low spin electronic configuration $(t_{2g}^6 d_{z^2}^2)$ $d_{x^2-y^2}^0$, owing to the high covalency of the Au(III)-O bonds. The observed additional single line (about 6% of the total spectral area) is attributed to metallic gold, probably induced by the thermal decomposition of the starting gold oxide material.

In addition, ¹⁵¹Eu Mössbauer measurements at room temperature of the isotypic Nd_{1.50}Eu_{0.50}Li_{0.50}Au_{0.50}O₄ have been performed using a ¹⁵¹SmF₃ source (Fig. 6). The Mössbauer spectrum consists of a single resonance line. Its isomer (δ) shift of 0.90(2) mm·sec⁻¹ (relative to EuF₃) characterizes the occurrence of Eu(III).

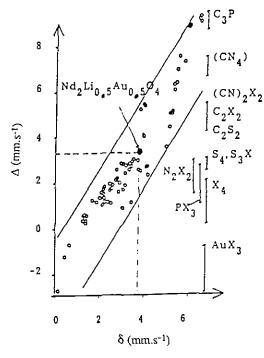


FIG. 5. Correlation diagram of the Mössbauer parameters for some materials containing Au in different polyhedra.

(e) ⁷Li-NMR study of La₂Li_{0.50}Au_{0.50}O₄. An NMR study was performed by Bruker MSL-200 spectrometer with standard variable-temperature unit (VT-1000) to determine the lithium environments in the La₂ Li_{0.50}Au_{0.50}O₄ phase.

A nucleus of ^7Li with I = 3/2 in the La₂ Li_{0.50} $M(\text{III})_{0.50}\text{O}_4$ oxides (M = Co, Ni, Cu) (34) is sensitive to the electrostatic environment and the symmetry of the neighbouring sites ($M(\text{III})\text{O}_6$) through the quadrupolar interaction with the electric field gradient (g). Spectrometer operating conditions for static spectra are the following:

resonance 77.727 MHz
frequence
offset 51,000 Hz
frequency
data size 4 K
data point 2 K

spectral
width
filter width
pulse
program

(90°_x-τ-90°_y-with 8 cycles)
90° pulse width: 2,4 ≪ s
ringdown delay: 12 ≪ s
recycle time: 5 sec

The observed results lead to three main conclusions:

- (i) the quadrupolar resonance line is not observed down to 195 K.
- (ii) only a single narrow line with FWHM (full width at half-maximum) smaller than 750 Hz is observed at room temperature,
- (iii) the lines is broadened as decreasing temperature. These results are quite different than those found for the La₂Li_{0.50} $M(III)_{0.50}O_4$ phases (M = Co, Ni, Cu) (34), where lithium was characterized by a quadrupolar interaction of 45 to 50 kHz, a value consistent with the structural distortion of the neighboring ($M(III)O_6$) octahedral sites, induced either by the Jahn–Teller distortion due to the low-spin state of Ni(III) or the d^8 low-spin configuration of Cu(III). This site deformation for M(III) atoms increases from Co(III) to Cu(III) and

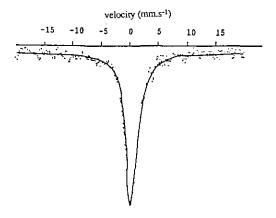


FIG. 6. Mössbauer resonance spectrum of ^{151}Eu in $Nd_{1.50}Eu_{0.50}Li_{0.50}Au_{0.50}O_4$ at 293 K.

could be linked to the electronic configuration of the M(III) at 293 K: low-spin Co(III) $(t_{2g}^6 d_g^0)$, low-spin Ni(III) $(t_{2g}^6 d_{z^2}^1)$, and d^8 lowspin Cu(III) $(t_{2g}^6 d_{z^2}^2)$.

For the La₂Li_{0.50}Au(III)_{0.50}O₄ phase, the analysis of the ⁷Li NMR spectrum at 293 K leads to two types of possible informations. The very small width of the resonating line $(\approx 750 \text{ Hz compared to the } 1500 \text{ Hz in the})$ case of $La_2Li_{0.50}Cu(III)_{0.50}O_4$ (34)) could be due to either a lithium environment different from an elongated octahedron or the relative mobility of this ion in the lattice. The lack of any detectable ionic conductivity on a pellet of sintered La₂Li_{0.50}Au(III)_{0.50} O₄ eliminates a possibility of Li(I) mobility. The symmetry of the resonating absorption line indicates a highly symmetric oxygenated site for Li(I). The X-ray diffraction pattern shows no structural transition between 293 and 77 K, thus the thermal evolution of the FWHM of ⁷Li NMR line is not correlated to any sizeable modification of the cationic environment (see Fig. 7).

A high-resolution 7Li NMR study using

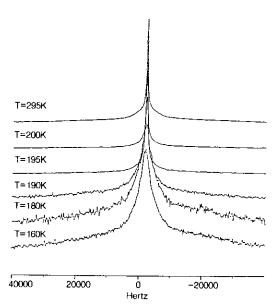
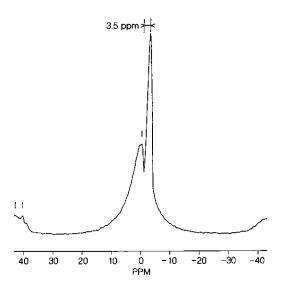



Fig. 7. ⁷Li NMR spectra of La₂Li_{0.50}Au_{0.50}O₄ versus temperature.

Ftg. 8. 7Li NMR M.A.S. spectrum of La₂Li_{0.50} Au_{0.50}O₄.

M.A.S. technique ($v_{\rm rot} = 5$ kHz) has been donc in order to determine the room-temperature Li-site environment. The spectra is given in Fig. 8. Two different sites ($\delta \simeq 3.5$ ppm) have been observed in a ratio close to 1/1. This was confirmed by the shape of the rotation bands. Moreover, the significant intensity of the two lines rules out the possibility of an impurity contribution not detected by X-ray diffraction.

In the layered structure of the K₂NiF₄-type characterized by a 1/1 cationic order in the *x*O*y* planes, two cationic sites have already been postulated for the transition element (see, for example, the Mössbauer study of Sr_{0.50}La_{1.50}Li_{0.50}Fe(IV)_{0.50}O₄ (3)). These two sites are induced by stacking faults along the *c*-axis for the perovskite-type layers containing Li(I) and Fe(IV) (Fig. 9). In the case of La₂Li_{0.50}Au(III)_{0.50}O₄, two types of layers could be considered: layers with a mixed Li(I) and Au(III) characterized by a 1/1 cationic order, or layers containing either Li(I) or Au(III).

If we allow a 50% probability that a Li(I) cation (or a Au(III)) is up to a Li(I) taken as

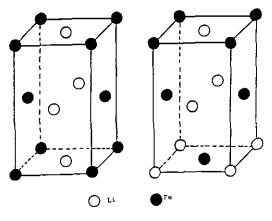


Fig. 9. Schematic representation of the two possible stacking of the (Li/Fe) layers in $Sr_{0.50}La_{1.50}Li_{0.50}$ Fe_{0.50}O₄.

reference in a K₂NiF₄-type lattice, these two stacking possibilities lead only to two types of sites (similar to the Sr_{0.50}La_{1.50}Li_{0.50} Fe(IV)_{0.50}O₄ lattice), (Fig. 9).

IV. Conclusions

The different physical and chemical characterizations of the La₂Li_{0.50}Au_{0.50}O₄ phase, suggest then following points: (i) iodometric titration and Mössbauer study show that gold adopts an oxidation state 3+, (ii) Au(III) is stabilized in an oxygenated square-planar environment (Mössbauer characterization), an elongated octahedral site (AuO₆) is not compatible with the low c_0/a_0 value observed (3.05 compared to 3.54 for La₂Li_{0.50}Cu(III)_{0.50}O₄), and (iii) Li(I) is located in two different sites (very close from a crystallographical point of view). Such a result is in good agreement with a layered structure with the Li(I) and Au(III) cations distributed in the same layers (7Li NMR MAS study) with a 1/1 ordering.

At the present stage, it is not possible to precise determination of the Li(I) environment. A more detailed ⁷Li NMR study should be performed. Moreover, it seems

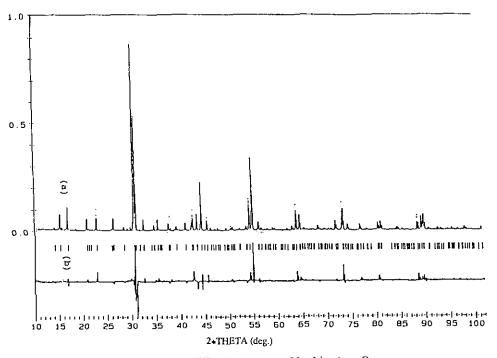


Fig. 10. X-ray diffraction pattern of $La_2Li_{0.50}Au_{0.50}O_4$.

highly probable that the Li site is isotropic but not octahedral. This fact could explain the poor agreement of the structure proposed by F. Abbattista *et al.* (31) for La₂ Li_{0.50}Au_{0.50}O₄ with our X-ray diffraction study performed at room temperature from a step-by-step diffractometer (Fig. 10).

From a Rietveld calculation, the Nd₂ CuO₄-type structure gives a better agreement with the experimental data. The lack of reliable information on the Li(I) environment does not allow a precise determination of the real structure, which is probably intermediate between the K₂NiF₄- and Nd₂ CuO₄-types. The low Z-values of lithium and oxygen atoms, compared to those of La and Au, using X-ray diffraction, increases the difficulty of solving this structure. Due to the difficulty of preparing a single crystal of such $Ln_2Li_{0.50}Au(III)_{0.50}O_4$ oxides, a neutron powder diffraction study and an enlarged ⁷Li investigation are in progress in order to precisely determination the Li(I) environment and the structure.

References

- K. HAYASHI, G. DEMAZEAU, AND M. POUCHARD, C. R. Acad. Sci. Paris 292, 1433 (1981).
- 2. B. Buffat, Thèse de l'Université Bordeaux I (France), no. 802 (1984).
- G. Demazeau, N. Chevreau, L. Fournes, J. L. Soubeyroux, Y. Takeda, M. Thomas, and M. Pouchard, Rev. Chim. Miner. 20, 155 (1983).
- G. DEMAZEAU, J. L. MARTY, M. POUCHARD, T. ROJO, J. M. DANCE, AND P. HAGENMULLER, Mater. Res. Bull. 16, 47 (1981).
- G. DEMAZEAU, in "High Pressure Chemical Synthesis" (J. Jurczak and B. Baranowski, Eds.), Chap. 5, pp. 101-133, Elsevier, Amsterdam, Oxford, New York, Tokyo (1989).
- G. DEMAZEAU, M. POUCHARD, AND P. HAGEN-MULLER, J. Solid State Chem. 9, 202 (1974).
- P. M. RACCAH AND J. B. GOODENOUGH, *Phys. Rev.* 155, 932 (1967).
- V. G. BHIDE, D. S. RAJORIA, Y. S. REDDY, G. RAMA RAO, AND C. N. R. RAO, Phys. Rev. B 8, 5028 (1973).
- D. S. RAJORIA, V. G. BHIDE, G. RAMA RAO, AND C. N. R. RAO, J. Chem. Soc. Faraday Trans. 2 70, 512 (1974).

- G. Demazeau, M. Pouchard, M. Thomas,
 J. F. Colombet, J. C. Grenier, L. Fournes,
 J. L. Soubeyroux and P. Hagenmuller, Mater. Res. Bull. 15, 451 (1980); 16, 533 (1981).
- B. BUFFAT, G. DEMAZEAU, M. POUCHARD, AND P. HAGENMULLER, Mater. Res. Bull. 18, 1153, 1983.
- B. BUFFAT, G. DEMAZEAU, R. BLACK, Y. TAKEDA, M. POUCHARD, AND P. HAGENMULLER, C. R. Acad. Sci. Paris 295, 557, 1982.
- G. DEMAZEAU, Thèse de l'Université Bordeaux I (France), no. 419 (1973).
- F. BERTAUT AND F. FORRAT, J. Phys. Radium 17, 129 (1956).
- A. WOLD, B. POST, AND E. BANKS, J. Am. Chem. Soc. 79, 4911 (1957).
- M. FOEX, A. MANCHERON, AND M. LINE, C. R. Acad. Sci. Paris 250, 3027 (1960).
- G. DEMAZEAU, M. POUCHARD, AND P. HAGEN-MULLER, J. Solid State Chem. 18, 159 (1976).
- G. DEMAZEAU, C. PARENT, M. POUCHARD, AND P. HAGENMULLER, Mater. Res. Bull. 7, 913 (1972).
- J. B. GOODENOUGH, G. DEMAZEAU, M. POU-CHARD, AND P. HAGENMULLER, J. Solid State Chem. 8, 325 (1973).
- G. Demazeau, I. Omeran, and M. Pouchard, Mater. Res. Bull. 11, 1449 (1976).
- K. HAYASHI, G. DEMAZEAU, M. POUCHARD, AND P. HAGENMULLER, Mater. Res. Bull. 15, 461 (1980).
- J. DARRIET, G. DEMAZEAU, AND M. POUCHARD, Mater. Res. Bull. 16, 1013 (1981).
- O. MULLER AND R. ROY, Mater. Res. Bull. 4, 39 (1969).
- J. G. BEDNORZ AND K. A. MÜLLER, Z. Phys. B-Condensed Matter 64, 189 (1986).
- 25. K. YVON AND M. FRANCOIS, Z. Phys. B-Condensed Matter 76, 413 (1989).
- Von B. Grande, Hk. Müller-Buschbaum, and M. Schweizer, Z. Anorg. Allg. Chem. 428, 120 (1977).
- HK. MÜLLER-BUSCHBAUM AND W. WOLL-SCHLÄGER, Z. Anorg. Allg. Chem. 414, 76 (1975).
- M. K. Wu, J. R. ASHBURN, C. J. TORNG, P. H. HOR, R. L. MENG, L. GAO, Z. J. HUANG, Y. Q. WANG, AND C. W. CHU, *Phys. Rev. Lett.* 58 (9), 908 (1987).
- H. Sawa, S. Suzuki, M. Watanabe, J. Akimitsu, H. Matsubara, H. Watabe, S. Uchida, K. Kokusho, H. Asano, F. Izumi, and E. Takayama-Muronachi, *Nature* 337, 347 (1989).
- H.-D. WASEL-NIELEN AND R. HOPPE, Z. Anorg. Allg. Chem. 375, 43 (1970).
- F. ABBATTISTA, M. VALLINO AND D. MAZZA, J. Less-Common Met. 110, 391 (1985).

(1988).

- 32. G. Blasse, J. Inorg. Nucl. Chem. 27, 2683 (1965).
- 33. R. V. Parish, in "Mössbauer Spectroscopy Ap-
- Vol. 1, Chap. 17, p. 527, Plenum Press, New York

34. G. VILLENEUVE, T. ROJO, G. DEMAZEAU, AND

P. HAGENMULLER, Mater. Res. Bull. 23, 1787

- (1984).
- plied to Inorganic Chemistry" (G. J. Long, Ed.),
- - 35. D. BALY AND K. PLIETH, Z. Electrochem. Ber.

Bull. 20, 293 (1985).

- Bun. Phys. Chem. 59, 55 (1955). 36. F. ABBATTISTA AND M. VALLINO, Inorg. Chem.
 - Acta 140, 147 (1985).
- 37. F. ABBATTISTA AND M. VALLING, Atti. Accad.
- Sci. Torino 116, 89 (1983). 38. F. ABBATTISTA AND M. VALLINO, Mater. Res.