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Indexing programs often propose several possible cells compatible with the same observed X-ray
powder diagram. Two types of ambiguity can be distinguished: one of geometrical origin, in which the
crystallographic network remains unchanged, and the other of mathematical origin, giving cells without
any physical meaning. A list of these ambiguities is presented and a computer program suitable for

their detection is proposed.

Introduction

Many new inorganic compounds are
available only in the form of powders, so
the indexing of X-ray powder patterns of
unknown structures has become a wide-
spread method. Several appropriate com-
puter programs are now available, but they
often propose _multiple solutions. Besides
haphazard cells due to experimental errors,
there sometimes exist different celis due to
geometrical or mathematical ambiguities,
giving exactly the same calculated powder
diagram. We compile a list of these ambigu-
ities (probably not exhaustive) and give a
simple means of selecting the crystallo-
graphic cell. We discuss only ambiguities
giving cells whose symmetries are at least
monoclinic (any X-ray powder pattern can
be indexed with an infinite number of tri-
clinic cells}.

Definitions. The reduced cell (Buerger
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cell) (1, 2) is the primitive cell based on the
three shortest noncoplanar vectors. Some
compounds can have more than one Buerger
cell (3, 4). The Niggli cell (always unique)
is the Buerger cell with the greatest angle
deviation (deviation = |a — 90| + |8 — 90
+ |y — 90} (5). The crystallographic cell
belongs to the most symmetric Bravais lat-
tice corresponding to the crystalline net-
work and can contain several lattice points.

Geometrical Ambiguities

These ambiguities arise because a given
lattice can be described by different unit
cells. Thus, they can occur both in the in-
dexing of powder diagrams and in structure
determinations using single crystals (6-9).
They can be classified according to their
respective volumes.

Any high symmetry cell can be indexed
with a monoclinic cell with the same vol-
ume. In these cases, it is necessary to calcu-
late the different cell choices (as defined in
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the Internationa} Tables (10)) to put into evi-
dence some particular relationship between
the parameters. The d-multiplicity test that
we propose detects these cases easily.

The problem becomes mere complicated
when the cells due to geometrical ambigu-
ities and the crystallographic cell do not
have the same volume. We now discuss the
main possibilities,

Orthorhombic C-Centered System

Any orthorhombic C cell can be indexed
using monoclinic P cells. Before proposing
a monoclinic P system, it is necessary first
to reduce the cell and then to calculate the
two other cell choices (using matrices given
in the International Tables (/0)). If, in one
of them, the axial relationship a = ¢ is ful-
filled, the compound can be indexed in the
orthorhombic C system.

Orthorhombic F-Centered System

Any orthorhombic F cell can be trans-
formed into three different monoclinic f
cells and into three different monoclinic C
cells. We have named these six cells “*semi-
crystallographic cells’ as they contain two
lattice points, while the crystallographic cell
has four and the primitive cell only one. In
the monoclinic I cell choice, the relationship
a = c is fulfilled. So, before proposing a
monoclinic C system, it is necessary to cal-
culate the corresponding monoclinic [ cell
choice; if ¢ = ¢ the compound can be in-
dexed in the orthorhombic F system.

Hexagonal System

Any hexagonal cell can be transformed
into an orthorhombic C cell, for which the
relationship @ = V34 is fulfilled.

Rhombohedral System

Any rhombohedral cell can be trans-
formed into a triple hexagonal cell (/0). A
less known ambiguity is transformation into
a monoclinic € cell. One possible matrix is
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I 1 0 a, a,
1 -1 0 b, |=|by].

0 01 o €

This matrix does not always give the cell-
choice with 8 closest to 90°; for instance, in
the case of RbSn,(PO,), (a = 9.332 A, a =
53.00° ({1)), we obtain g = 16,703, b =
8.328, and ¢ = 9.332 A, B = 47.74°. The
corresponding cell choice with S closest to
90° is I centered, @ = 9.332, b = 8.328, and
¢ = 12.508 /31, B = 98.74°. In such a case,
the detection of rhombohedral symmetry is
not obvious. A cell reduction does not give
the rhombohedral cell, but two reduced cells
with the following parameters:

a=b=28328A,c=9.332A, a = 116.50°,
8 = 90.00°, y = 120.00°;

a=b=8328A,¢c=9332A, « = 63.50°,
8 = 63.50°, vy = 60.00°.

Infact, in arhombohedral system, the primi-
tive crystaliographic cell is not reduced
when a < 60° or & > 109.47° (4, 10).

Cubic Systems

The Niggli cell of crystallographic cubic /
or F cell is rhombohedral (e« = 109.47° or
60°, respectively). Therefore, the ambigu-
ities described for the rhombohedral system
are also possible. In the case of the cubic F
system, we can calculate a semicrystallo-
graphic cell, tetragonal I, with the axial rela-
tionship ¢ = V2a.

Mathematical Ambiguities

These ambiguities give cells correspond-
ing to a network different from the crystallo-
graphic one; in fact, they have no physical
meaning. (For example, it is possibie to ob-
tain cells with noninteger Z or cells with
some apices not corresponding to lattice
points!) However, for mathematical rea-
sons, the calculated powder X-ray diagram
fits exactly the experimental one. Of course,
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these ambiguities cannot occur during struc-
tural studies carried out on single crystals.
We have found only one systematic work
dealing with this problem (Mighell and San-
toro (/2)). They named this effect *‘geomet-
rical ambiguities.”” We think this phrase is
confusing because, from our point of view,
this ambiguity is due to a mathematical
rather than to a geometrical cause (the same
true lattice being cut into cells having differ-
ent shapes). Thus, we prefer to use the term
“‘mathematical ambiguities.”

Cell Tdentification

1. The elimination of haphazard cells can
be performed according to the following cri-
teria:

— low average error on 6 (i.e., less than
0.015%) '

— low standard deviation on each cell pa-
rameter (i.e., less than one-thousandth of
the value of the parameter)

— high value of the merit factor F, (/3)
(it is generally accepted that a true cell must
have F, > 9.

These limitations cannot detect any kind of
ambiguity.

2. Density measurement is useless in the
case of geometrical ambiguity because the
Z value of all cells is always an integer. But
for mathematical ambiguity, it can help to
eliminate cells with a noninteger value of Z.

3. The indexing of several isolypic com-
positions (solid solutions or pure com-
pounds) provides an additional test, as all
samples must be indexed with the same set
of hkl values.

4. The evolution of the X-ray patternas a
function of temperature is useful in the case
of pseudosymmetry as it is likely that not all
lattice parameters will change at the same
rate.

5. Optical observation under polarized
tight confirms cubic indexation easily, espe-
cially when the cell volume is large, and one
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may be tempted to look for a smaller unit
ceil.

6. Finally, the cell must be tested for the
existence of some kind of ambiguity.

We list in Table 1 the main geometrical
and mathematical ambiguities. But the prob-
lem can be complicated by the fact that the
ambiguities can combine with ¢ach other.
For instance, a powder diagram of a cubic /
compound can be indexed using an ortho-
rhombic F cell (mathematical ambiguity)
which can itself be transformed into six
monoclini¢ J- or C-centered cells (geometri-
cal ambiguity).

Detection of Ambignities
with Computer Programs

Several programs, or methods suitable for
programming, have been proposed in the
literature (14—19). As discussed by Andrews
and Bernstein (/7), some of these can lack
efficiency (especially in the case of pseudo-
symmetry). The main practical problem is
how 1o take into account the experimental
errors on cell parameters, generally not well
known by operators (standard deviations
given by indexing programs correspond to
underestimated experimental errors). These
methods are useful for detecting geometrical
ambiguities, but useless in cases of mathe-
matical ambiguiry.

We have developed a program combin-
ing several different methods, That the
different methods do not have the same
sensitivity to experimental errors is a mat-
ter of practical interest. The main data to
be introduced are the values of the cell
parameters, tolerances of the cell parame-
ters and of 8, and the centering type of
the proposed cell. We shall now briefly
discuss the different options.

Matrices Multipticiry Test

This test, proposed by Himes & Mighell
(14) to determine the metric symmetry, is
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TABLE 1
LisT OF KNOWN AMBIGUITIES (-G—, GEOMETRICAL; ~-M—, MATHEMATICAL)

Proposed cell with special Possible cell of
relationship between parameters higher symmetry
Monoclinic P -G— Orthorhombic C
a=c cy = bn
(in one of the cell-choices) 30 = Em + Zm 3[, = Em - Em
Monoclinic P -M— Hexagonal-rhombohedral
No apparent relationship ay = 2bn
eh = (V3 a, - e sin(Ba))ih,)
Monoclinic C -G— Orthorhombie F
Transform into moneclinic f; o = ¢ Eo =dmtCp By=dg— Em
¢, =%,
Monoclinic € -G— Hexagonal-rhombohedral
No apparent relationship a, = by
ey = (V3 ay - o sin(Ba)¥(by)
Orthorhombic P -M— Cubic I
a=V2-b=2 ac=\/§.au
Orthorhombic P -M— Hexagonal
a=\3ib ay=2by o, = ¢y
Orthorhombic C -G— Hexagonal
a=Vip a= by €y = ¢y
Orthorhombi¢ C -M— Cubic F
a=V2ib=2V2c a, = a,
Orthorhombic | -M— Cubic F
a=V2ib=3V1c a. = uy
Orthorhombic F -M— Cubic [
a=V2h=13c a, = b
Rhombohedral -G— Cubic F
a = 60° a. = \/i.ar
Rhombohedral —G— Cubic I
o = 109,47° a, = 2a,/\3
Hexagonal -G— Cubic F
& = /6 and nonextinction i, = \/i.ah = ch;’\/i
condition —~h + k +{ = 3n
Hexagonal -G— Cubic 1
@ = 2V2.¢/\/3 and nonextinction a, = ah/\/_ = 20,,/\/3
condition - + £+ = 3n
Tetragonal P -M— Cubic P
a=c\2 a, = ¢
Tetragonal P -M— Cubic I
a=Vic u, = 2c,
Tetragonal 1 -G— Cubic F
a=clV2 G, = G

Note. a, b, and ¢ represent the unit cell axes moduli. Vector notations have been used only when there was
no obvious relationship between vector moduli.

useful only for geometrical ambiguities. represented as matrices. Whatever the
Each of the seven lattice systems has achar-  primitive cell proposed, the same number of
acteristic number of symmetry operations, matrices will transform it into itself. As it
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has been pointed out (/7) that the algorithm
used by Himes and Mighell (/9) could give
rise to infinite loops, we use another.

The number of matrices corresponding
to each system is 1 (triclinic), 2 {mono-
clinic), 4 (orthorhombic), 6 (rhombohe-
dral), 8 {tetragonal), 12 (hexagonal), and
24 (cubic). In the case of pseudo-symme-
try, the program can also find other values.
If this occurs, the operator can change the
experimental tolerances. The program also
calculates the average cell obtained from
the matrices; this is the primitive cell of
highest symmetry possible within experi-
mental error.

Nigpli Test

This test is useful only in the case of geo-
metrical ambiguities. It calculates the pa-
rameters of the Niggli cell and its matrix
form, using an algorithm proposed by
Gruber (20). There are only 44 different
types of Niggli cell matrix forms, and calcu-
lation of the crystallographic cell is in princi-
ple easy (/0, 15) when the type of Niggli cell
is known. Once again, the main practical
problem is determining what type the matrix
form belongs to, owing to experimental er-
rors (the average cell calculated from the
matrix test can be useful for making this
choice).

Buerger Test

Starting from the Niggli cell calculated
above, this test searches all the other re-
duced or pseudo-reduced cells (Buerger
cells). As some compounds ¢an have more
than one reduced cell, a small distortion
(within experimental error) could lead the
algorithm used during the Niggli test to
find a Buerger cell. The matrix form of
such a cell could belong 10 a type not listed
in the literature, or not compatible with
the other tests performed. If this occurs,
the Buerger test will find all the reduced
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cells possible, including the real Niggli cell.
The algorithm is similar to that used in the
mafrix test.

d-Multiplicities Test

This new test is directly related to the
matrix test described above but takes the
experimental errors into account in a differ-
ent way. All the matrices transforming the
cell into itself will also transform the Akl
indices of the reticular planes.

The *‘d muitiplicity’” is defined as the
number of different ikl indices correspond-
ing to a given d value. It depends on the
crystal symmetry and on the Akl pattern.
The higher the crystal symmetry, the higher
the 4 multiplicity.

In case of geometrical ambiguity, the
muitiplicity corresponding to each d value
remains the same as that in the true cell.
So if a high symmetry crystal powder is
indexed in a too-low symmetry cell, the
caiculated multiplicity of many d values
will not be compatible with the assumed
cell symmetry. The multiplicity values are
discussed in Ref. (21).

One interest of this d-multiplicities test
is that it is the only one able to detect the
possibility of mathematical ambiguities. In
contrast to geometrical ambiguities, the d
multiplicities are not always the same as
those in the true cell, but they lie between
the multiplicities predicted by the assumed
lattice system and the multiplicities ob-
served in the true crystallographic cell. So,
if many o values show muitiplicitics that
are too high, it is necessary to search
for special relationships between the cell
parameters.,

Also of practical interest is that this test
is the only one in which the operator
must assume the experimental tolerance on
measured #. For example, in the case of
pseudo-symmetry, the average cell calcu-
lated by the matrix test described above
would have a too-high symmetry, Using
the d-multiplicitics test, one can see if
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this average cell is compatible with the
experimental tolerance on 8.

Conclusion

Combining different tests generally
allows the calculation of the cell of highest
symmetry. However, when possible, the
study of some isotypic compositions can
provide useful additional information in the
indexing of a compound with unknown
structure on the basis of an X-ray powder
diagram.

A more detailed discussion (2/) and a list-
ing of our program TESTSYM are available
from the authors or from the NAPS.’

Acknowledgments

The authors gratefully acknowledge Professor P.
Tarte (Liége) for his useful suggestions.

> See NAPS Document No. 04991 for 63 pages of
supplementary materials. Order from ASIS/NAPS. Mi-
crofiche Publications. P.O. Box 3513, Grand Central
Station, New York, NY 10163. Remit in advance $4.00
for microfiche copy or for photocopy, $7.75 up to 20
pages plus $.30 for each additional page. All orders
must be prepaid. Institutions and Organizations may
order by purchase order. However, there is a billing
and handling charge for this service of $15. Foreign
orders add $4.50 for postage and handling. for the first
20 pages, and 31,00 for additional 10 pages of material,
$1.50 for postage of any microfiche orders.

BRIEF COMMUNICATIONS

References

J. M. ). BUERGER, Z. Krystallogr, 109, 42 (1957).
2. M. J. BUERGER, Z. Krystallogr. 113, 52 (1960).
3. A, SANTORO AND A. D, MIGHELL, Acta Cyrstal-
logr. Sect. A 26, 124 (1970).
4. B. GRUBER, Acta Crystallogr. Sect. A 29, 4313
(1973).
5. B. GRUBER, Acta Crysiaifogr. Sect. A 45, 123
(1989).
6. R. Faure, H. LOISELEUR, R. BaRTNIK, 8. LEs-
NIAK, AND A. LAURENT, Cryst. Struct. Commun.
10, 515 (1981).
7. W. H. Baur anND E. TiLLMANNS, Acta Crys-
tatfogr. Sect. B 42, 95 (1986].
8. M. JaBeR, J. GUILHEM, aAND H. LOISELEUR, Acla
Crystallogr. Sect. C 39, 485 (1983).
9. R. E. MaRsH, Acta Crysiallogr. Sect. C 39, 1473
(1983).
f0. T. Haun (Ed.), “International Tables for Crystal-
lography,”” Vol. A, Part 2, Reidel, Dordrecht
(1983).
71. R. PERRET aND A. Boupsaba, C.R. Acad. Sci.
Paris C 282, 245 (1976).
12. A.D. MIGHELL AND A. SANTORO, J. Appl. Crys-
tallogr. 8, 372 (1975).
I13. G. S. SMiTH aND R. L. SNYDER, J. Appl. Crys-
tallogr. 12, 60 (1979},
i14. V. L. HIMES aND A. D, MIGHELL, Acta Crys-
taliogr. Sect. A 38, 748 (1982).
15. A. D. MiGHELL AND J, R. RoDGERS, Acta Crys-
tallogr. Sect. A 36, 321 (1980).
16. W. CLEGG, Acta Crystallogr. Sect. A 37, 913
(1981},
17. L.C. ANDREWS AND H. J. BERNSTEIN, Acta Crys-
tallogr. Sect. A 44, 1009 (1988).
18. Y. LE PaGE, J. Appl. Crystallogr. 15, 255 (1982).
19. V. L. HiMes aND A. D. MIGHELL, Acta Crys-
tallogr. Sect. A 43, 375 (1987).
20. 1. Krivy aND B. GRUBER, Acta Crystallogr. Sect.
A 32, 297 (1976).
2. J. M. WinaND, thesis, Univ, of Liége, Belgium
(1990).



