K₂FeF₅: Synthesis and Crystal Structure of a New Form # J. L. FOURQUET AND H. DUROY Laboratoire des Fluorures, U.R.A. C.N.R.S. 449, Faculté des Sciences, Université du Maine, Avenue O. Messiaen, 72017 Le Mans Cedex, France Received May 18, 1992; in revised form September 11,1992; accepted September 14, 1992 Single crystals of a new form of K_2FeF_5 have been grown by hydrothermal synthesis in concentrated HF solutions. The structure is established from single crystal X-ray diffraction data: space group Pbam, Z=8, a=7.3591 (4) Å, b=23.0897 (10) Å, and c=5.7054 (2) Å (R=0.0257, $R_w=0.0273$ for 1530 independent reflections and 84 parameters). The network is built with infinite and single linked cis-chains of FeF_6 octahedra, running along the c axis, separated by 10 coordinated potassium ions. The structure is compared to those of Rb_2CrF_5 and of the previously known K_2FeF_5 form (Pbcn), showing respectively the same single linked and double linked chains of MF_6 octahedra. © 1993 Academic Press, Inc. ### 1. Introduction Up to now, among the A_2BF_5 -type compounds, three have been known to be made up with zigzag cis-chains of BF_6 octahedra: K_2FeF_5 (1) and α -(NH₄)FeF₅ (2) with double-linked chains and Rb₂CrF₅ (3) with single linked chains. We report here the structure of a new K_2FeF_5 form with single linked cis-chains, prepared from HF aqueous solutions. ### 2. Preparation Single crystals were prepared by hydrothermal synthesis in concentrated HF solution (40%). Typically 2.14 g of KF were added to 1.5 g of Fe₂O₃ in 5 ml of HF solution in a 10 ml closed Teflon vessel. The bomb was heated at 175°C (heating rate 1°/min), maintained 1 day at this temperature, and then allowed to cool naturally. Transparent, needle-shaped crystals were filtered and air-dried. As shown by DSC ex- periments, they transform at 190° C irreversibly to K_3 FeF₆ + KFeF₄. #### 3. Structural Determination A small needle of approximate size $(0.3 \times 0.06 \times 0.08)$ mm was chosen for the structure determination. Table I gathers the experimental conditions of the data collection. The lattice parameters were refined from the positions of 36 reflections near 30° (2θ) by the double scan technique. Owing to the small size of the crystal and to the small value of the absorption coefficient, it was not judged necessary to apply an absorption correction. The intensity data show systematic absences characteristic of *Pham* and *Pha2* space groups (0kl: k = 2n + 1; h0l: h = 2n + 1). All the calculations were performed with the SHELX-76 program (4). The atomic scattering factors for ions and the values of $\Delta f'$ and $\Delta f''$ were taken from "International TABLE I Conditions of the Data Collection (Siemens AED2 Four Circle Diffractometer) | Symmetry | Orthorhombic | |---|---| | Space group | Pbam | | a (Å) | 7.3591 (4) | | b (Å) | 23,0897 (10) | | c (Å) | 5.7054 (2) | | $V(\mathring{A}^3)$ | 968.05 | | Z | 8 | | Formula weight (g) | 229.04 | | $D_{\rm cate}$ (g/cm ³) | 3.14 | | Crystal volume (10 ⁻³ (mm ³) | 1.44 | | Radiation | $MoK\alpha$ (graphite monochromatized) | | T (K) | 293 | | Scanning mode | $\omega/2\theta$ | | Aperture (mm) | 4 × 4 | | Range registered: | | | θ _{max} (°) | 35 | | h.k.l _{max} | 11, 35, 9 | | Absorption coefficient | $\mu = 48.38 \text{ cm}^{-1}$ | | Absorption correction | none | | Reflections as measured | two independent sets
total 4974 (330
standards) | | used in refinement $(I > 3\sigma(I))$ | 1530 | | Number of refined parameters | 84 | | Weighting scheme | $w = 1.3574/(\sigma^2(F) + 5.22 \times 10^{-4}F^2$ | | Secondary extinction coefficient | $x = 36(2) \times 10^{-4}$ | | Election density in final Fourier | | | difference map (max and min) (e^{-}/A^3) | +1.0, -1.18 | | R | 0.0257 | | $R_{\rm w}$ | 0.0273 | Tables for X-ray Crystallography" (5). With the *Pbam* space group, the direct methods facilities of the program revealed all the atoms of the unit cell on the best E map. The atomic coordinates and the anisotropic thermal parameters were then refined, the final model giving R=0.0257 and $R_{\rm w}=0.0273$. The final Fourier difference map was featureless. Table II presents the atomic coordinates and thermal parameters (structure factor tables will be sent upon request). The main interatomic distances and angles are given in Table III. Calculations with the *Pba*2 space group did not significantly improve the results. # 4. Description of the Structure Figure 1 shows the projection on the (100) plane. The network can be described as built from infinite and single linked *cis*-chains of FeF₆ octahedra, running along the *c*-axis and separated by potassium ions. It is a superstructure of the Rb₂CrF₅ type (3) shown at Fig. 2. TABLE II K_2FeF_5 (*Pham*): Atomic Coordinates and Thermal Parameters^a | | x | у | z | U_{11} | U_{22} | U_{33} | U_{12} | $B_{\rm eq} [{ m \AA}^2]$ | |-----|---------|---------|---------------|----------|----------|----------|----------|---------------------------| | K1 | 2983(1) | 2610(1) | 0 | 189(3) | 146(3) | 213(3) | 41(2) | 1.44(2) | | K2 | 1333(1) | 831(1) | 0 | 209(3) | 160(3) | 187(3) | 27(2) | 1.46(2) | | K3 | 4469(1) | 1683(1) | 1 2 | 238(3) | 194(3) | 179(3) | 58(3) | 1.61(2) | | K4 | 2293(1) | 4881(1) | $\frac{1}{2}$ | 170(3) | 144(3) | 186(3) | -18(2) | 1.32(2) | | Fe1 | 1201(1) | 4063(1) | 0 | 91(2) | 82(2) | 93(2) | 4(1) | 0.70(1) | | Fe2 | 9558(1) | 1556(1) | $\frac{1}{2}$ | 102(2) | 91(2) | 92(2) | -9(1) | 0.75(1) | | Fl | 8161(3) | 2239(1) | $\frac{1}{2}$ | 309(12) | 119(9) | 292(12) | 71(8) | 1.90(8) | | F2 | 1103(2) | 1805(1) | 2578(3) | 262(7) | 268(8) | 155(7) | -111(6) | 1.80(6) | | F3 | 2823(2) | 3732(1) | 7490(3) | 203(6) | 227(6) | 195(6) | 37(5) | 1.64(5) | | F4 | 4652(2) | 678(1) | 7591(3) | 169(6) | 183(5) | 151(6) | -26(5) | 1.32(4) | | F5 | 526(3) | 783(1) | $\frac{1}{2}$ | 240(10) | 162(9) | 266(11) | 100(8) | 1.76(8) | | F6 | 5078(3) | 1692(1) | 0 | 187(8) | 111(7) | 222(10) | 45(6) | 1.37(6) | | F7 | 2819(3) | 4704(1) | 0 | 190(9) | 126(8) | 258(11) | -49(7) | 1.51(7) | ^a Standard deviations are given in parentheses and refer to the last digit, x, y, z, and U_{ij} are \times 10⁴. The U_{ij} relate to the expression $T = \exp[-2\pi^2(h^2a^{*2}U_{11} + \cdots + 2klb^*c^*U_{23})]$. All U_{13} and $U_{23} = 0$. $TABLE\ III$ $K_{2}FeF_{5}\ (\textit{Pbam});\ Selected\ Interatomic\ Distances\ (\mathring{A})\ and\ Angles\ (^{\circ})$ | | | | Fe1F ₆ Oc
〈Fe1-F〉 | | | | | | |-----|------------|--|---------------------------------|-------------------|-------------------------------|----------|-----------|----------| | Fel | F4 | F4 | F7 | | F | F6 | F3 | F3 | | F4 | 1.883(1) | 2.749(2) | 2.840 | 5(2) | 2.7 | 33(2) | 3.896(1) | 2.703(2) | | F4 | 93.8(0.2) | 1.883(1) | 2.846(2) | | 2.73 | 33(2) | 2.703(2) | 3.896(1) | | F7 | 97.6(0.2) | 97.6(0.2) | 1.900 | 0(2) | 3,80 | 02(3) | 2.662(3) | 2,662(3) | | F6 | 91.6(0.2) | 91.6(0.2) | 166.5(0 | .2) | 1.93 | 29(3) | 2.663(2) | 2.663(2) | | F3 | 176.2(0.1) | 87.7(0.2) | 85.7(0 | .2) | 84.9(0.2) | | 2.015(1) | 2.864(2) | | F3 | 87.7(0.2) | 176.2(0.1) | 85.7(0 |).2) | 84.9 | (0.2) | 90.6(0.2) | 2.015(1) | | | | | Fe2F ₆ Oc
〈Fe2-F〉 | | | | | | | Fe2 | F2 | F2 | FI | | J | F5 | F3 | F3 | | F2 | 1,880(1) | 2.764(2) | 2.75 | 2.757(2) 2.767(2) | | 67(2) | 3.901(2) | 2,714(2) | | F2 | 94.6(0.2) | 1.880(1) | 2.75 | | | 67(2) | 2.714(2) | 3,901(2) | | F1 | 94.2(0.2) | 94.2(0.2) | 1.88 | • / | | 86(3) | 2.666(3) | 2,666(3) | | F5 | 93.4(0.2) | 93.4(0.2) | 168.7(0 | | | | 2.689(2) | 2,689(2) | | F3 | 177.3(0.1) | 88.1(0.2) | 86.00 | | | | 2.023(1) | 2,841(2) | | F3 | 88.1(0.2) | 177.3(0.1) | 86.00 |).2) | 85.9(0.2) | | 89.2(0.2) | 2.023(1) | | | | | Bridgin
Fe1-F3-F | - | | | | | | | | K 1 Polyt | | | K2 Polyh | edron | | | | | | K1 Polyhedron $\langle K1-F \rangle = 2.855$ | | | $\langle K2-F \rangle =$ | | | | | | | K1-F6 | 2.621(3) | | K2-F7 | 2.676(3) | | | | | | KI-F6 | 2.677(3) | $2 \times$ | K2-F2 | 2.692(3) | | | | | | 2× K1–F2 | 2.744(3) | $2 \times$ | K2-F4 | 2.825(2) | | | | | | 2× K1-F1 | 2.877(1) | | K2-F7 | 2.866(3) | | | | | | 2× K1-F3 | 2.962(3) | $2 \times$ | K2-F5 | 2.916(1) | | | | | | 2× K1-F2 | 3.043(2) | $2\times$ | K2-F3 | 3.121(2) | | | | | | K3 Polyl | nedron | | K4 Polyh | edron | | | | | | $\langle K3-F \rangle =$ | $\langle K3-F\rangle = 2.867$ | | $\langle K4-F\rangle = 2.839$ | | | | | | | K3-FI | 2.669(3) | | K4-F5 | 2.629(3) | | | | | | 2× K3–F4 | 2.755(3) | 2× | K4-F4 | 2.760(2) | | | | | | 2× K3–F2 | 2.850(2) | $2\times$ | K4-F4 | 2.762(2) | | | | | | 2× K3–F6 | 2.888(1) | | K4-F5 | 2.830(3) | | | | | | 2× K3–F3 | 3.005(2) | 2× | K4-F7 | 2.908(1) | | | | | | K3-F1 | 3.005(2) | $2\times$ | K4-F3 | 3.035(3) | | | Figure 3 presents the projection on the (001) plane and shows the mutual orientation of the chains. As shown in Table III, the FeF₆ octahedra are quite regular, the mean Fe-F distances being very close to the sum of the ionic radii: 1.930 Å (6). Classically and as in the structure of the previously known K₂FeF₅ form (*Pbcn*), the four Fe-F terminal bonds are shortened while the bridging Fe1-F3 Ftg. 1. K₂FeF₅ (*Pham*). [100] projection of the structure. K atoms are circles. Fe2 octahedra are hatched. Numbers are x coordinates for the Fe atoms (centers of octahedra). and Fe2-F3 distances are significantly longer. All the potassium ions are tenfold coordinated; we observe a clear cut of the K-F distances near 3.12 Å, the next nearest F neighbors being at 3.4 Å. It is interesting to compare this structure first to those of Rb_2CrF_5 (3) and Rb_2FeF_5 (7), which exhibit the same single-linked cischains of MF_6 octahedra running along the b axis as shown in Fig. 2 and Fig. 4. In the title structure, the mutual orientation of the chains is different (see Fig. 3) and enforces the doubling of the b axis (perpendicular to the chains) while the values of the a and c parameters agree very well respectively with those of the a and b parameters for Rb_2CrF_5 and Rb_2FeF_5 as shown in Table IV. FIG. 2. Rb₂CrF₅(*Pham*). [100] projection of the structure. Rb atoms are circles. Fig. 3. K_2 FeF₃ (*Pham*). [001] projection of the structure. K atoms are circles. Fe2 octahedra are hatched. Fe1 are at z = 0, Fe2 at $z = \frac{1}{2}$. Numbers refer to the z coordinate for K atoms. | Compound | S. G. | a(Å) | b(Å) | c(Å) | Z | V/2(Å ³) | Type of chain | Ref. | |--|-------|-----------|-------------|-------------|----|----------------------|---------------|-----------| | Rb ₂ CrF ₅ | Pnma | 7.515(5) | 5.724(4) | 11.985(6) | 4 | 128.88 | Single link | (3) | | Rb ₂ FeF ₅ | Pnma | 7.565(1) | 5.810(1) | 12.002(4) | 4 | 131.88 | Single link | (7) | | K ₂ FeF ₅ | Pham | 7.3591(4) | 23.0897(10) | 5.7054(2) | 8 | 121.14 | Single link | this work | | α -(NH ₄) ₂ FeF ₅ | Pbcn | 7.6223(5) | 13.4408(8) | 10.4167(6) | 8 | 133.39 | Double link | (2) | | K ₂ FeF ₅ | Pbcn | 7.4059(4) | 12.8771(9) | 20.4282(13) | 16 | 121.76 | Double link | (I) | TABLE IV Crystallographic Data for Some $A_2BF_5\ cis$ -Chain Structures Figure 5 presents the projection of the previously known form of K_2FeF_5 (*Pbcn*). The *cis*-chains are different and present double links. These chains are also encountered in α -(NH₄)₂FeF₅ (2) as shown in Fig. 6. ### 5. Conclusions The existence of two structural forms of K_2FeF_5 , differing by the nature of the links Fig. 4. Rb₂CrF₅. [010] projection of the structure, Rb atoms are circles. Numbers refer to y coordinate for Rb atoms. Fig. 5, K₂FeF₃ (*Phcm*). [100] projection of the structure. K atoms are circles. FIG. 6. α -(NH₄)₂FeF₅. [100] projection of the structure. N atoms are circles. of the cis-chains of FeF₆ octahedra, is interesting from the magnetic point of view. It is easy to predict that the title compound constitutes a new one-dimensional antiferromagnetic model. Further study is now in progress in this direction. ## Acknowledgments We are indebted to Dr. Retoux for his assistance during the data collection and to Dr. Le Bail for his helpful discussions. #### References A. Le Bail, A. Desert, and J. L. Fourquet, J. Solid State Chem. 84, 408 (1990). - J. L. FOURQUET, A. LE BAIL, H. DUROY, AND M. C. MORON, Eur. J. Solid State Inorg. Chem. 26, 435 (1989). - CH. JACOBONI, R. DE PAPE, M. POULAIN, J. Y. LE MAROUILLE, AND D. GRANDJEAN, Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 30, 2688 (1974). - G. M. SHELDRICK, "SHELX-76, A Program for Crystal Structure Determination", Univ. of Cambridge (1976). - "International Tables for X-Ray Crystallography," Vol. IV, Kynoch, Birmingham (1974). - R. D. Shannon, Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 32, 751 (1976). - E. HERDTWECK, J. GRAULICH, AND D. BABEL, Z. Naturforsch. B 45, 161 (1990)