JOURNAL OF SOLID STATE CHEMISTRY 103, 387-393 (1993)

Cation and Vacancy Distribution in Nonstoichiometric Hausmanite
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The defect structure of the synthetic anhydrous hausmanite Mn;O, has been investigated by X-ray
powder diffraction and chemical analysis. The integrated intensity ratios of X-ray reflections, the unit-
cell constant values, and the Mn’* content in samples evidence the nonstoichiometry of hausmanite.
The degree of oxidation of manganese, Mn*/Mn**, varied in the ranges of 2.05 to 3.04. The main type
of defects is the cation vacancies, the anionic sublattice remains virtually unaffected. The distribution
of Mn** ions and of cation vacancies over the positions of both spinel catienic sublattices depends on
the oxidation degree of manganese. For Mn**/Mn* =< 2.4 the vacancies are created merely on the
tetrahedral sites and for Mn'~/Mn’* > 2.4 the excess of vacancies is distributed at random over the
tetrahedral and octahedral sites according to the formula Mng”™ ,,,Mnd} O, Mnj} JO;; for x < 1/3 and
Mnfg‘_;x)Mn[’_;},l_ Itﬁ)D[_\f2+llhl[Mn?‘):Nﬁ—xfl)DLrﬂl-ifﬁ]]031 for x > 1/3. The lattice constants yvary in the ranges

a = 0.8148-0.8150 nm and ¢ = 0.9466-0.9464 nm for Mn**/Mn>* varying from 2.05 to 3.04.
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Introduction

Hausmanite, Mn,0,, is considered to be
the most stable manganese oxide and can be
obtained from any of the Mn oxides, hy-
drous oxides, or hydroxides, as well as from
a variety of manganous salts (e.g., chloride,
nitrate, sulfate) merely by thermal decom-
position in air at about 1000°C, Mn;0, can
also be prepared by oxidation of an aqueous
suspension of manganous hydroxide.

The fow-temperature polymorph of haus-
manite, e-Mn;0,, crystallizes in the tetrago-
nal system, space group f4,/amd. The unit
cell with lattice constants ¢ = 0.576 nm and
¢ = 0.944 nm consists of four Mn;0, units
(I). It is, however, much more convenient
to consider the crystal lattice of hausmanite
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as a tetragonally distorted spinel structure
(space group F4,/ddm). In that casc the unit
cell is twice the former one, with a, =
V24 = 0.814 nm and ctfa, = 1.16, contain-
ing 8 Mn;0, units. The value of the oxygen
parameter i has been determined to be equal
1o 0.375 (2, 3).

The unit-cell parameters reported for
a-Mn;0,, measured at room temperature,
differ slightly and vary within the ranges
a = 0.8I136-0.8150 nm (4-8) and ¢ =
0.942-0.946 nm (2, 5, 9, 10). These diver-
gences may be due to some extent to the
different oxidation state of manganese and
to the resulting lattice defects. The unit-cell
parameters increase continually with in-
creasing temperature, reaching the values
of a = 0.820 nm and ¢ = 0.949 nm at 1000°C
{5). The reversible phase transformation of
Mn;0, from tetragonal (low-temperature,
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a-Mn;O,) to cubic
3-Mn;0,) symmetry
1150-1175°C.

The 13, ¢, state for octahedral Mn(IlI) is
subject to the Jahn-Teller effect, resulting
in the distortion of Mn"™O, octahedra
(with four Mn-0O distances of 0.193 nm
and two of 0,229 nm (//}) and changing the
crystal structure from cubic to elongated
tetragonal. Based on the above observa-
tions, the stoichiometric hausmanite, o-
Mn,0,, at room temperature, may be re-
garded as a normal spinel (AB,0,); i.c., in
the unit cell containing 32 oxide ions, 8
Mn?* ions occupy the tetrahedral (A) and
16 Mn** ions the octahedral (B) sites (8,
12, 13).

Most references emphasize the tendency
of hausmanite toward nonstoichiometry
marked by the formation of oxygen-rich
compounds compared to thc Mn: O ratio
in Mn;0, (/4-17). These departures from
stoichiometry lead in consequence to de-
fect structures, and Mn** for Mn?* substi-
tution may result in interstitial anions or
in cation vacancy formation. The studies
of Driessens (/2) revealed the smail cffect
of the oxygen pressure on the oxygen
content in hausmanite, indicating a small
number of anionic defects. The oxidation
of manganese may then be equilibrated by
the creation of cationic vacancies.

The first systematic studies on deviation
from  stoichiometry in  hausmanite,
Mn,_;0,, were undertaken by Dieckmann
and Keller (/8-20). The value of 8§ was
determined thermogravimetrically, as a
function of the oxygen activity, between
1000 and 1130°C for the low temperature
phase (a-Mn;_;0,) and between 1200 and
1350°C for the high temperature phase (3-
Mn,_;0O,). A cation deficit was observed
at high oxygen activities and a cation ex-
cess at low oxygen activities. It was con-
cluded that in the temperature range inves-
tigated the dominant defect species in both
phases are cation vacancies at high oxygen

(high-temperature,
takes place at
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activities and interstitial manganese at low
oxygen activities.

All of the studies cited above concerned
cation and vacancy distributions in Mn;Qy
at high temperatures only. No detailed in-
vestigations on defect structure and nonstoi-
chiometry at room temperature have been
reported. In this paper we present the re-
sults of X-ray powder diffraction measure-
ments identifying the type of defects in the
anhydrous hausmanite,

Experimental

Mn,(O, samples were prepared by thermal
decomposition of MnCQO,;, MnSQO,, and
MnQ, {(analytical grade reagents) and of
“low temperature Mn;0, - aq’” (obtained by
oxidation of Mn(OH),) at 900-1100°C during
3 hrin air. The variety of reactants used, as
well as the decomposition temperatures, led
to the formation of hausmanite samples with
different oxidation degree of manganese
(see Table I). The X-ray powder diffraction
patterns indicated that the samples were
monophasic (Fig. ).

For the quantitative chemical analysis the
samples were dissolved in hydrochloric
acid. The content of Mn?*-, Mn**-ions and
of total manganese was determined by both
iodimetric titration and EDTA back-titra-
tion with Zn*" solution using Eriochrome
Black T as indicator. The limit of error for
the determination of Mn** and Mn** was
+0.2%.

X-ray powder diffraction studies were
performed with a TUR-M61 diffractometer
equipped with a HZG-3 horizontal goniom-
eter and proportional counter employing
the Mn-filtered FeKa radiation. For the
precise determination of lattice parameters
the X-ray reflections in the range ©® =
28°-43° were recorded by step scanning,
using ® increments of 0.01° and a fixed
counting time of 60 sec/step. The limit
errors for ¢ and ¢ unit-cell constant deter-
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TABLE 1

PREPARATION DETAILS AND ANALYTICAL DATA OF SYNTHETIC ANHYDROUS HAUSMANITE SAMPLES
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Chemical
Decomposition  composition (wt.%) Oxidation degree Cation

Sample Precursor temperature vacancies,
number Mn-compound °C) Mn'*  Mn’* Q" Mn't/Mn’T  yin Mo®t Oy, unit-cell

1 MnCQO, 1000 48.42 2357 28.01 2.05 2.672 0.05

2 MnSO, 1100 49.34 2254 2812 2.19 2.687 0.18

3 MnSQ, 1100 49.68 22,16 28.16 2.4 2.692 0.23

4 MnQ, 1100 49,75 22.09 28.16 2.25 2.692 0.23

5 Mn;0, - aq 1000 50.24 21.54 28.22 2.33 2,700 0.30

6 MnCO, 1100 30.65 21.08 28.27 2.40 2.707 0.35

7 MnCO, 900 51.83  19.77  28.40 2.62 2.724 0.50

8 MnCOQO, 1100 5371 17.68 28.61 3.04 2.752 0.75
mination were Aa = =0.0001 nm and [(511), and [(404)/1{400) were measured
Ac = x=0.0003 nm. and compared with the intensity ratios cal-

The measurements of the integrated in-
tensitics of the X-ray lines were made by
the continuous-averaging scan technique at
a scan rate of 0.25°/min. To avoid the effect
of preferred oricntation of crystallites a
brass sample holder with a thin film win-
dow was used. The changes in the reflec-
tion intensities ratios J(111)/I(511), 1(202)/

culated for models of the Mn,0, structure
with different cation and vacancy distribu-
tions.

For the hausmanite regarded as tetrago-
nally distorted normal spinel, AB,O,, as-
suming the oxygen parameter i« = 0.375 (2,
J), the relation between the structure factors
{ F,.;) and the form factors (f,, fz, and f5)

1604}

T T 1 T =TT T
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{313

M13)

(202

FiG. 1. X-ray powder diffraction pattern of anhydrous hausmanite—sample 6. Akl indices correspond

to the tetragonal spinel unit cell; FeKo radiation.
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calculated for the ® range of 10°-43° are
given by the expressions

(kD) | Fiil?
(i 322 — fu)?
(202),(220),(224),(422) 64:‘1
(L3)L15),G10,330.511)  32(f, + 2f;"
(222) 256(2f — fa)!
{004),{400) 642f — f + Afg)

(404).(440) 640205 + £ + 47

n

Theoretical intensities were calculated as
Ly = |Ful x p x (L.P.). The values of
atomic scattering factors, multiplicity fac-
tors (p), and Lorenz polarization factors
(L.P.) were taken from the International Ta-
bles for X-ray Crystallography (27). The
limit errors of the intensity measurements
were Al 5 = £2%, Alygysy = 3%, and
AMyggrapg = £5%.

Results and Discussion

As was already mentioned all prepara-
tions of hausmanite obtained during thermal
treatment were monophasic and very well
crystallized. Figure 1 shows the X-ray pow-
der pattern of an average sample (number 6).
Electron microscopic observations revealed
the cubooctahedric crystallites.

The content of 0%~ ions per unit cell was
calculated on the bases of pycnometric den-
sity measurements, chemical analysis, and
unit cell volume determined from X-ray dif-
fraction (¢.g., for sample 6, p, = 4.74
g-cm 3,V = 629.0 107* ¢cm?). The values
of 20% /unit cell obtained were 31.7 and
31.8.

The degree of oxidation of manganese,
Mn**/Mn’", inthe Mn;O, samples was vari-
able but as a rule higher than the stoichio-
metric one and comprised the values of
2.05 = Mn**/Mn** = 3.04,

The occurence of supplementary Mn**
ions in the presence of the unaffected an-
ionic sublattice was the main reason of the
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Fi1G. 2. Experimental values of the integrated inten-
sity ratios of X-ray lines plotted against the oxidation
degree of manganese, Mn®* /Mn**.

cation vacancy formation according to the
relation.

3Mn®* = 2Mnd* + Oy, (2)

The numbers of cationic vacancies per unit
cell derived from chemical analysis of sam-
ples are presented in Table L. Calculations
have been made on the assumption that
20’ /unit cell = 32.

Variation of the X-ray line intensity ap-
pears to be proportional to the degree of
oxidation of manganese, which was the
main factor in the vacancy creation, and
therefore the measured values of the inten-
sity ratios were plotted against the Mn**+/
Mn?" ratio. Figure 2 shows these results
with the marked limits of error. The I{111)/
I(511) values increase whereas [(202)/1(511)
and 7(404)/1{400) decrease with the increase
of the oxidation degree of manganese in
preparations. Assuming that the form fac-
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tors fyi+ = fun+- the changes observed may
be attributed to the formation of cation va-
cancies. Consideration of the structure fac-
tor values in Eq. (1) indicates that the cation
vacancies are formed mainly in tetrahedral
positions.

In order to determine the most probable
vacancy distribution calculations of the X-
ray ling intensity ratios were performed for
the following defect structure models of
hausmanite;

L. The cation vacancies are located in the
A sublattice only. The Mn®>* ions and the
excess of Mn®" ions occupy the tetrahedral
sites; the B sublattice and the anionic sublat-
tice are undefected. For this model two pos-
sibilities of cation and vacancy distribution
were assumed: la, Vacancies for the oxida-
tion degree Mn**/Mn?* = 2.4 are distrib-
uted over the A sites and for Mn* " /Mn?* >
2.4 over the B sites; Ib. Vacancies for Mn**/
Mn** > 2.4 are randomly distributed on
both A and B sublattices.

II. The cation vacancies occupy the B
sites only. The A sublattice and the anionic
one are undefected with the Mn®™ and Mn?*
ions on A sites.

III. Vacancies are randomly distributed
and devided between both A and B cation
sublattices, i.e., 1/2 Oy, and Mn** ions on
B sites (16 positions) and 1/2 Oy, . Mn?* and
remaining Mn** on the A sites (8 positions).

IV and V models correspond to I and 111
respectively, with assumed 20?~ /unit
cell = 31.5.

For stoichiometric hausmanitc (Mn®*/
Mn®** = 2.0} theoretical intensity ratios are
TN/ = 62.39%; [(202)/1(511) =
143.78%; and [(404)/1(400) = 283.29%.

Figure 3 presents the intensity ratios cal-
culated for the models -V plotted as a func-
tion of the oxidation degree, Mn**/Mn?+,
compared to the intensity ratios measured
taken from Fig. 2. Experimental results con-
firm that the mechanism 1-Ib is operative.
For the oxidation degree of manganese in
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FiG. 3. X-ray line intensity ratios as a function of the
oxidation degree of manganese, Mn**/Mn?", calcu-
lated for different cation and vacancy distributions
(curves [-V). See text.

the ranges 2.0 = Mn**/Mn?* =< 2.4 the cat-
ion vacancies are created in the A sublattice
in eonsequence of the oxidation of Mn** to
Mn** on tetrahedral sites. The **saturation”’
of the A sublattice with the cation vacancies
appears for 1/3 Oy, /unit- cell approximately
and for Mn*+/Mn’" > 2.4 further cation va-
cancies are randomly distributed over the
tetrahedral and octahedral positions. The
I(TLD/I(511) and F202)/1(511) intensity ra-
tios measured fit the 1-Ib model particularly
well. The residual factor R = 0.0039, These
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F16. 4. Lattice constants and volume of the tetrago-
nal spinel unit cell of hausmanite plotted as a function
of Mn** content in tetrahedral sites.

data show clearly as well that the assump-
tion of undefected or very slightly defected
(O, <€ 0.5/unit cell) anionic sublattice was
correct.

For nonstoichiometric anhydrous haus-
manite, considered as a normal spinel
AglB]0s,, the following general formula
can be suggested:
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Mng" 3y Mn3;! O, [Mnig 05, 3)

for 2.0 = Mnp**/Mn’* = 2.4 and x = 1/3,
and

14 3+
Mg 5 Mt s e+ 1)
3+
IMngghse - vnlJun-1g]0n  (4)

for Mn**/Mn?* > 2.4 and x > 1/3, where x
is the number of cation vacancies per unit
cell. Substituting Mn**/Mn** = w, the rela-
tion between the number of cation vacancies
(x) and the oxidation degree of manganese
(o) may be written as
Bla — 2)
T har 2 )
The values of lattice constants and the
unit cell volume of a tetragonal spinel unit
cell of the hausmanite samples determined
by x-ray powder diffraction are presented in
Fig. 4, plotted as a function of the Mn**
content in tetrahedral spinel positions. Ta-
ble 1! contains these unit cell parameters
together with the number of vacancies per
unit cell and their distribution over the A
and B cation sublattices. Although the a and
¢ parameters change only slightly with the
increase of the oxidation degree of manga-
nese, some distinct regularities can be ob-
served. The a parameter increases with the

TABLE 11

CATION AND VACANCY DISTRIBUTION OVER THE TETRAHEDRAL (A} AND OCTAHEDRAL (B) SPINEL SITES,
LATTICE PARAMETERS, AND UNIT-CELL VOLUME OF SYNTHETIC ANHYDROUS HAUSMANITE SAMPLES

Cation Lattice constants (nm}

Oxidation vacancies Mn** ions Unit-cell
degree, o ¢ volume
Mn?/Mn2t A B A B (=0.0001 nm) {x0.0003 nm) (nm?)
2.05 0.054 0 0.107 16 0.81476 0.94654 0.6283
2.19 0.178 0 0.352 16 0.81479 0.54661 0.6284
2.25 0.225 0 0.464 16 0.81483 0.94656 0.6285
2.33 0.296 0 0.591 16 0.81484 0.94657 0.6285
2.40 0.354 0 0.697 16 0.81487 0.94662 0.6286
2.62 0.430 0.075 1.083 15.925 0.81489 0.94662 0.6286
3.4 0.550 0.196 1.691 15.804 0.81499 0.94645 0.6286
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increase of Mn** content in tetrahedral sites
despite of the increase of cation vacancies
in the A positions. It may be explained by
the Jahn-Teller distortion which appears as
a flattening of the oxygen tetrahedra con-
taining Mn*" ions. The occurrence of cation
vacancies in the octahedral sites, i.e., the
decrease in Mn®* content on B sites, attenu-
ates the Jahn-Teller effect on the oxygen
octahedra responsible for the tetrahedral
distortion of spinel lattice and the ¢ parame-
ter decreases, but only for high Mn** con-
tent in the Mn,0, lattice. The result of pre-
cise measurement of the unit cell parameters
confirms indirectly the correctness of the
assumed model of structure of nonstoichio-
metric anhydrous hausmanite.
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