Structural Changes Accompanying the Low-Temperature Annealing of $YBa_2Cu_3O_{7-\delta}$ (0.3 $\leq \delta \leq$ 0.4): Transformation of the 123 Phase to a 124-Type Structure*

R. NAGARAJAN AND C. N. R. RAO†

Solid State and Structural Chemistry Unit and CSIR Centre of Excellence in Chemistry, Indian Institute of Science, Bangalore 560 012, India

Communicated by J. M. Honig, February 9, 1993

Superconducting YBa₂Cu₃O_{7- δ} (0.3 $\leq \delta \leq$ 0.4) compositions seem to transform to a metastable YBa₂Cu₄O₈ (124)-like phase with a *c* parameter of 27.2 Å on annealing at 473 K for a few hours. © 1993 Academic Press, Inc.

Based on electron microscopy and other studies, YBa₂Cu₃O_{7- δ} (0.3 $\leq \delta \leq$ 0.4) compositions with a superconducting transition temperature of ~60 K (in the plateau region of the T_c - δ plot) have been shown to be thermodynamically metastable, disproportionating into more-stable phases on annealing at relatively low temperatures (~470 K) for a few hours (I, 2). These 123 compositions have an orthorhombic structure distinctly different from that of compositions with $\delta \le 0.25$ ($T_c \sim 90$ K), where the c lattice parameter is exactly three times the b parameter. A significant feature of the effect of annealing $YBa_2Cu_3O_{7-\delta}$ (0.3 $\leq \delta \leq$ 0.4) compositions at 470 K is the marked change in the X-ray diffraction pattern occurring after a period of ~48 hr. This is accompanied by streaking in the electron diffraction pattern along the c^* direction, indicating considerable oxygen disorder in the ab plane. We were interested in investigating the nature of the structural transformation

occurring in $YBa_2Cu_3O_{7-\delta}$ when subjected to low-temperature annealing and have therefore carried out a systematic study of the effect of annealing several compositions of $YBa_2Cu_3O_{7-\delta}$ ($\delta=0.50, 0.43, 0.34, 0.29, 0.22,$ and 0.08) in different atmospheres at 473 and 573 K.

All the YBa₂Cu₃O_{7- δ} compositions except the one with $\delta=0.08$ are oxidized to YBa₂ Cu₃O_{6.92} when heated in air at 573 K or in oxygen at 473 K. When the samples were heated in air or in dynamic vacuum ($\sim 10^{-3}$ torr) at 473 K, there was no significant change in the $\delta=0.50$ and 0.08 compositions. However, changes signifying the formation of new phases, accompanied by a low-angle reflection of $2\theta \sim 6.5-6.7^{\circ}$, occurred in compositions with δ values of 0.43, 0.34, 0.29, and 0.22. In Table I, we summarize the information on the gross changes occurring on low-temperature annealing of YBa₂Cu₃O_{7- δ} compositions.

In Fig. 1 we show the X-ray diffraction patterns of YBa₂Cu₃O_{6.7} subjected to annealing for different periods at 473 K in air. New features, especially the low-angle reflection, begin to emerge on annealing the

^{*} Contribution No. 910 from the Solid State & Structural Chemistry Unit.

[†] To whom correspondence should be addressed.

TABLE I				
Changes Occurring in YBa2Cu3O7-8 on Annealing				

δ	Structure after heating at 473 K (48 hr) in			Structure after
	Vacuum .	Air	O ₂	heating at 573 K (48 hr) in air
0.50	No change	No change	Oxidizes to YBa ₂ Cu ₃ O _{6.92}	Oxidizes to YBa ₂ Cu ₃ O _{6 92}
0.43	Changes to new phase(s)	Changes to new phase(s)	Oxidizes to YBa ₂ Cu ₃ O _{6.92}	Oxidizes to YBa ₂ Cu ₃ O _{6.92}
0.34	Changes to new phase(s)	Changes to new phase(s)	Oxidizes to YBa ₂ Cu ₃ O _{6 92}	Oxidizes to YBa ₂ Cu ₃ O _{6 92}
0.29	Changes to new phase(s)	Changes to new phase(s)	Oxidizes to YBa ₂ Cu ₃ O _{6.92}	Oxidizes to YBa ₂ Cu ₃ O _{6 92}
0.22	Changes to new phase(s)	Changes to new phase(s)	Oxidizes to YBa ₂ Cu ₃ O _{6.92}	Oxidizes to YBa ₂ Cu ₃ O _{6 92}
0.08	No change	No change	No change	No change

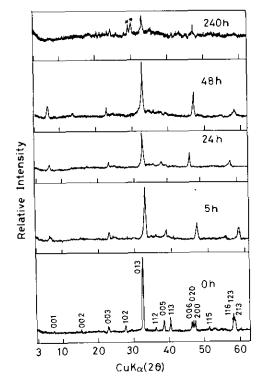


Fig. 1. Changes occurring in the X-ray diffraction pattern of YBa₂Cu₃O_{6.7} annealed at 473 K in air for different periods.

sample for 24 hr. After 240 hr of heating, however, the material starts to decompose into BaCuO2 and other phases. Changes similar to those in Fig. 1 are also found on annealing other compositions of YBa₂Cu₃ $O_{7-\delta}$ (0.3 $\leq \delta \leq$ 0.4). We notice from Fig. 1 that the X-ray lines become broad on annealing for 48 hr, indicating extensive disorder. The X-ray diffraction pattern therefore appears more like that of a tetragonal cuprate than that of an orthorhombic cuprate. The low-angle line around $2\theta \sim 6.6^{\circ}$ corresponds to a c parameter of 27.2 Å. Furthermore, the position of the low-angle reflecvaries proportionally with tion c parameter of the starting YBa₂Cu₃O₇₋₈ composition. It is noteworthy that the c parameter of 27.2 Å is close to that of YBa₂Cu₄O₈ (124 phase) and that the corresponding 004 reflection is also present in the diffraction pattern of the annealed product (see Fig. 1).

The low-angle X-ray reflection at $2\theta \sim 6.6$ Å appears in all the $YBa_2Cu_3O_{7-\delta}$ (0.3 $\leq \delta \leq 0.4$) compositions after annealing at 473 K, suggesting that all these oxygen-deficient 123 compositions may be transforming to $YBa_2Cu_4O_8$. Such a transformation of $YBa_2Cu_3O_{7-\delta}(\delta = 0.25)$, yielding $YBa_2Cu_4O_8$ together with Y_2BaCuO_5 and

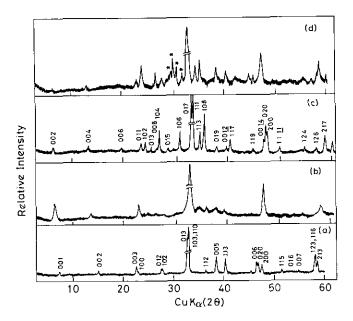


Fig. 2. Powder X-ray diffraction patterns of (a) $YBa_2Cu_3O_{6,7}$, (b) the product obtained after $YBa_2Cu_3O_{6,7}$ is annealed at 473 K in air for 48 hr, (c) bulk $YBa_2Cu_4O_8$ (Ammm), (d) a mixture of $YBa_2Cu_4O_8$ (Ammm) and $YBa_2Cu_2O_7$ containing $BaCuO_2$ and Y_2BaCuO_5 .

 $BaCuO_2$, has been considered in the literature [3]:

$$\begin{array}{l} 4 \; YBa_{2}Cu_{3}O_{6.75} \rightarrow 2 \; YBa_{2}Cu_{4}O_{8} \\ + \; Y_{2}BaCuO_{5} \, + \, 3 \; BaCuO_{2} \, . \end{array}$$

This transformation is expected to be feasible at or below 873 K at an oxygen pressure of one atmosphere. An examination of the X-ray diffraction pattern of YBa₂Cu₃O_{6.7} heated at \sim 473 K in air for 48 hr (Fig. 1) shows that there is no obvious presence of BaCuO₂ and other impurity phases; these appear only after extensive heating (~240 hr). The X-ray diffraction pattern of the product obtained after annealing for 48 hr in air is indeed much too simple and does not appear to be like the pattern of bulk YBa₂Cu₄O₈ (Ammm space group) or of a mixture of YBa₂Cu₄O₈ with Cu-deficient YBa₂Cu₃O₇₋₈, BaCuO₂, etc. (Fig. 2). Neither could we reconcile the observed pattern with that of Y₂Ba₄Cu₇O₁₅ (247 phase) or any other intergrowth between 124 and 123 phases. Cu-deficient 123 cuprates of the type YBa₂Cu_{3-x}O_{7-δ} cannot be prepared in pure form for x > 0.2. When x > 0.2, the cuprate prepared by the ceramic method contains BaCuO₂ and other impurities.

There is some electron microscopic evidence for the transformation of oxygen-deficient YBa₂Cu₃O₇₋₈, as well as of some other rare earth 123 cuprates, into 124 (Y (Ln) Ba₂Cu₄O₈) phases, without giving rise to other copper oxide phases (4). Such a transformation appears to be favored by planar defects along the c axis associated with oxygen disorder. Furthermore, HREM images show that the 124 slabs extend over considerable regions of the crystals. As mentioned earlier, the X-ray diffraction pattern of YBa₂Cu₃O_{6,7} annealed at 473 K for 48 hr (Fig. 2b) does not correspond to that of bulk YBa₂Cu₄O₈(Ammm), as can be seen from Fig. 2c. We see no evidence for the formation of cuprates of the type YBa₂ Cu₅O₁₀. We can, however, conceive of metastable forms of YBa₂Cu₄O₈ involving I-centering or primitive-centering instead of the A-centering present in bulk YBa₂Cu₄O₈ (Ammm) prepared in the laboratory. The

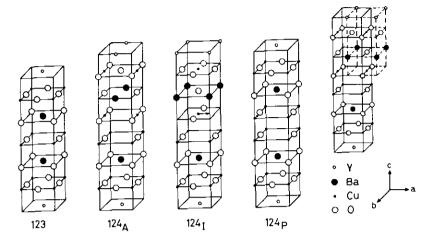


Fig. 3. Unit cells of YBa₂Cu₃O₇ along with the A-centered, I-centered, and P-centered forms of YBa₂Cu₄O₈. Inset shows the shear mechanism involved in the transformation from A-centered to I-centered YBa₂Cu₄O₈.

I-centered and P-centered $YBa_2Cu_4O_8$ structures can be generated from the YBa_2 Cu_4O_8 (Ammm) structure (4) by a shear operation of half of the unit cell by a/2 or b/2, respectively (Fig. 3). Both the I-centered and P-centered structures of

YBa₂Cu₄O₈ would involve two copper atoms with an unfavorable threefold coordination of oxygen, whereas in YBa₂Cu₄O₈ (Ammm), the chain copper atoms have aplanar fourfold coordination of oxygen. The *I*- and *P*-centered structures are therefore

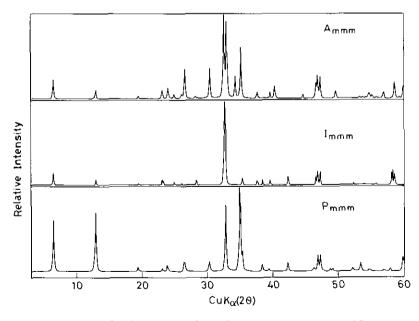


Fig. 4. Computed X-ray diffraction patterns of YBa₂Cu₄O₈ in Ammm, Immm, and Pmmm space groups for the same c parameter (27.24 Å).

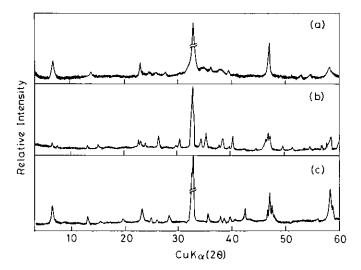


FIG. 5. Comparison of the X-ray diffraction patterns of (a) the product obtained after annealing YBa₂Cu₃O_{6.7} at 473 K for 48 hr in air with the patterns of (b) 80:20 mixture of YBa₂Cu₄O₈ (Ammm) and YBa₂Cu₃O_{6.7} and (c) 80:20 mixture of YBa₂Cu₄O₈ (Immm) and YBa₂Cu₃O_{6.7}.

unlikely to be stable phases which can be synthesized by the usual methods, but which are formed as metastable phases during the course of the transformation of oxygen-deficient $YBa_2Cu_3O_{7-\delta}$.

In order to assign the structure of the product obtained by annealing YBa₂Cu₃O_{6.7} at 473 K for 48 hr, we computed the X-ray diffraction patterns of YBa₂Cu₄O₈ in the Iand P-centered forms, taking into consideration the highest symmetry elements of the point group, mmm, as well as the lattice parameters of YBa₂Cu₄O₈ (Ammm). The computed diffraction patterns are shown in Fig. 4. The experimentally observed diffraction pattern of the product, obtained after annealing YBa₂Cu₃O_{6.7} at 473 K in air for 48 hr, seems to be definitely closer to that of the Immm form of YBa₂ Cu₄O₈. Since some untransformed YBa₂ $Cu_3O_{6.7}$ is always present after the annealing for 48 hr, we have compared the observed X-ray diffraction pattern of the transformed product (Fig. 5a) with that of a 80:20 mixture of the YBa₂Cu₄O₈ (Ammm) phase with YBa₂Cu₃O_{6,7} (Fig. 5b). The correspondence is not as good as that with the computed pattern of a 80:20 mixture of YBa₂Cu₄O₈ (Immm) with YBa₂Cu₃O_{6.7}. We believe that the structural transformation $Cu_3O_{6,7}$ to the 124 phase is aided by the oxygen disorder (in the ab plane) inherently present in the starting cuprate composition. Oxygen vacancies in $YBa_2Cu_3O_{7-\delta}$ (0.3 \leq $\delta \leq 0.4$) are not ordered sufficiently to give rise to a well-defined defect structure as in $YBa_2Cu_3O_{6.5}$ (1, 2, 5–7). The metastability of the 124(Immm) with the unusual coordination of chain Cu atoms is likely to be responsible for its decomposition to BaCuO₂ and other phases on long annealing. Furthermore, the rather broad X-ray reflections resulting from disorder in the product of low-temperature annealing of YBa₂Cu₃O₇ (see Fig. 1 or 2b) masks the orthorhombicity, if any, and the structure appears to be tetragonal. An I4/mmm space group would indeed make the diffraction pattern even simpler than that of the Immm structure shown in Figs. 4 and 5.

References

 C. N. R. RAO, R. NAGARAJAN, A. K. GANGULI, G. N. SUBBANNA, AND S. V. BHAT, *Phys. Rev. B* 42, 6765 (1990).

885 (1991).

- 2. C. N. R. RAO, G. N. SUBBANNA, R. NAGARAJAN, A. K. GANGULI, L. GANAPATHI, R. VIJAYARAGHA-
 - VAN, S. V. BHAT, AND A. R. RAJU, J. Solid State Chem. 88, 163 (1990).
- 3. FERNANDO H. GARZON, IAN D. RAISTRICK, D. S. GINLEY, AND J. W. HALLORAN, J. Mater. Res. 6.

4. H. W. ZANDBERGEN, Physica C 193, 371 (1992).

- 5. Y. P. Lin, J. E. Greedan, A. H. O'Reilly, J. N.
 - REIMERS, C. V. STAGER, AND M. L. POST, J. Solid State Chem. 84, 226 (1990).

HERZOG, Physica C 196, 363 (1992).

- 6. C. J. Hou, A. Manthiram, L. Rabenberg, and J. B. GOODENOUGH, J. Mater. Res. 5, 9 (1990).
- 7. T. Krekals, H. Zou, G. Van Tendeloo, D. Wa-GENER, M. BUCHGEISTER, S. M. HOSSEINI, AND P.