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LaMn(),,; samples with Mn** content up to 50% have been prepared by different methods. The
structure of LaMn(), 5 changes from orthorhombic 1o cubic (via rhombohedral} with increase in the
Mn'* content. LaMnO;,,; samples containing greater than 20% Mn** are ferromagnetic and show
resistivity maxima at a teraperatire 7, which is close to the ferromagnetic Curie temperature. The
resistivity maximum is due to the occurrence of a metal-insulator transition. In samples heated to
the same temperature, the value of T, increases with % Mn**. For a given sample. T, increases with
the temperature ol heat treatment due to the increase in particle size. The onset ol ferromagnetism
in LaMnQ,, ; accompanied by an insulator-metal transition is similar to that found in La,. Ca MnO,

and La;_,Sr,Co0y.  © 1993 Academic Press. Inc.

introduction

Modern solid state chemistry owes much
to the pioncering efforts of Professor J. S.
Anderson, Professor Anderson was a great
solid state chemist and was one of the earti-
cst chemists to get interested in the general
problem of dcfeets and stoichiometry in in-
organic solids. His classic papers on defect
thermodynamics and exlended defects as
well as his contributions 1o high resolution

* Dedicated to the mentory of Professor J. 8. Ander-
son, a pioneer in sofid state chemistry and a dear friend
ol vne of the authors (CNRR).
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clectron microscopy of compiex solids can-
not be forgoticn. Important concepts such
as infinitely adaptive structures were first
introduced by him. He was a source of inspi-
ration to one of the authors (C. N. R, Rao)
in his formative years. This author also had
the good fortune to work with Professor An-
derson during his term as Commonwealth
Visiting Professor at Oxford on various
problems including eleetron microscopy of
perovskite oxides. Professor and Mrs. An-
derson were close friends of the Rao family.
1t is with great pleasure that we dedicate
this article on the defect perovskite,
LaMnQ,,;, to the memory of Professor
Anderson.
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L.aMn0, is an interesting anion-excess
pervoskite (/) studied by Van Santen and
Jonker (2) many years ago. Jonker (3) ob-
served that LaMnO; was an orthorhombic
compound which would become ferromag-
netic if it could be obtained in the cubic
structure at ordinary temperatures. A
neutron diffraction study by Tofield and
Scott (4) has thrown light on the nature
of oxidative nonsteichiometry in this
perovskite. The composition LaMnO, ,, or
LaMndMnjt,0, ; seems best described
as (Lag g0 06) (Mng7,sMng 3,500 )05 with
both A and B icn vacancies () and involv-
ing the elimination of a small proportion of
La,0,. In (La,_ M,),.,MnQO,,;, where M
is a divalent cation such as Sr or Ca, the
Assite deficiency, v, is less than 0.1 when
x = 0 and decreases with increasing x (5).
Depending on the Mn** content, the struc-
ture of LaMnQ,,; is reported to change
from orthorhombic to rhombohedral, the
latter occurring at high Mn** content (6-8).
A similar structural change is also seen in
La,_ M (IDMnO;, where M = Ca’* or
Sr°*. Mn**—O-Mn** interaction is ferro-
magnetic and La, M (IDMnO; therefore
becomes ferromagnetic in the range x =
0.1 to x = 0.5; when x > 0.5, the material
becomes antiferromagnetic  just like
CaMn0, (7, §). LaMnO, containing a suffi-
ciently high percentage of Mn** is also fer-
romagnetic and a Curie temperature of 170
K has been reported for LaMnO, with 20%
Mntt (7).

In the ferromagnetic regime of La,_ Ca,
MnO; (x = 0.5), electron hopping from
Mn** to Mn*" is rapid, giving rise to rela-
tively low electrical resistivity, In the ferro-
magnetic phase, the resistivity increases
with increase in temperature, showing a
maximum at the Curie point (8, 9). Such
variation in resistivity may be considered to
represent a metal—insulator transition oc-
curring at the ferromagnetic Curie tempera-
ture. When the Mn** content, x, is high and
the material is antiferromagnetic, such re-

sistivily behavior is not observed (9). We
were interested in investigating the proper-
ties of parent LaMnOQ,,; with changing
Mn** content, one of the main objectives
being to explore the metal-insulator transi-
tion in the absence of doping with a divalent
cation. For this purpose, we have prepared
LaMnO;, . ; by several chemical routes, fol-
lowed by treatment in air or O, to obtain
varying Mn** content. Samples so prepared
were characterized by X-ray diffraction,
electrical resistance, and other measure-
ments. Bond distances and other structural
parameters have been obtained for La-
MnQO;, ; samples with different Mn** con-
tent by Rietveld profile analysis.

Experimental

LaMnO,  , samples were prepared by the
following routes: (i} a ceramic route by firing
a mixture of La,0, and Mn,0, at 1470 K for
12 hr in air followed by sintering under the
same conditions, (il) a sol-gel route using
citric acid and ethylenediamine as gelling
agents for the lanthanum-manganese nitrate
solution, (iii} coprecipitation as hydroxide
or hydroxycarbonate, and (iv) combustion
of a dried mixture of lanthanum and manga-
nese nitrates with urea. In the last three soft-
chemistry routes, decomposition (or ho-
mogenization in the case of combustion)
was carried out by calcination at 1070 or
1220 K for 6 hr in air or oxygen. LaMnQO,
powders so prepared were pressed into pel-
lets and annealed for 6 hr under the same
conditions. The Mn** content was deter-
mined by redox titrations using standard fer-
rous and permanganate solutions.

In Table I, the Mn*" content of some of
the LaMnO,, ; samples prepared by differ-
ent methods is listed. We see that we are
able to introduce Mn** upto ~40% in
LaMnO,. High-resolution X-ray diffraction
data for these compounds were obtained in
the 26 range of 8°-80° with a STOE auto-
matic powder diffractometer using a
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TABLE 1

Mn** CONTENT IN VaRIOUS SAMPLES oF LaMnO;,

Average %
Route Conditions Mn** T, (K)
(i) Ceramic 1470 K/air 12 Sample 1 —_
10 Sample 2 —
(ii) Sol-gel 1070 K/air 40 215
1070 K/O, 19 222
1220 K/O, 26 Sample 1 232
28 Sample 2 245
(iii) Hydroxide 1070 K/air 32 155
1070 K/O, 35 Sample 1 165
33 Sample 2 145
1070 K/N, unstable —
1220 K/air 26 205
1220 K/N, § {after 1 week) —_
Hydroxycarbonate 1070 K/air 14 —
1220 K/air 30 255
1220 K/O, 33 287
(iv) Combustion 1070 K{air 34 165
1220 K/air 29 205

* The % Mn'* values have an experimental uncertainty of +2,

Ge(111) monochromator and CuKea (A =
1.5406 A) radiation, with a linear PSD in the
transmission mode. Rietveld profile analysis
was carried out on samples with Mn*" con-
tent of 10%, 28%, and 40%. Electrical mea-
surements were carried out on sintered pel-
lets by the four-probe method in the 15-300
K range. The room-temperature resistivity
of LaMnO,, ; samples with ~20% Mn** was
around 5 (¢ ¢m or less; with 10% Mn**, the
resistivity was much higher (—80 {} cm).
Magnetization measurements were carried
out on representative samples to determine
the Curie temperatures.

Results and Discussion

In Fig. 1 we have shown the X-ray diffrac-
tion patterns of three LaMnO;,; samples
with different percentages of Mn'*.
LaMnO,_; is orthorhombic (Pbnm) up to
~20% Mn** and becomes rhombohedral
(R3c) at higher Mn** content. When the

Mn** content is greater than 30%, the rhom-
bohedral angle becomes close to 90° and the
diffraction pattern is that of a cubic phase
(Fm3m). In Table IT we list the unit cell
parameters of typical LaMnO;,; samples
studied by us. The unit cell dimensions, as
well as the properties of LaMn(Q;, seem to
depend not only on the Mn** content but
also on the heat treatment as shown later.

The structure of LaMnO, ; samples with
10%, 28%, and 40% Mn*" and possessing
the orthorhombic (Pbnm, z = 4), rhombohe-
dral (R3¢, z = 2), and cubic (Fmlm, z =
8) structure, respectively, was subjected to
Rietveld profile analysis. The lattice param-
eters of these perovskites are Mn** ~ 10%,
a = 5.543(2), 5.495(2), and 7.804(5) A,
Mn*t ~28%,a = 5.479(1) A, a = 60.54(1)°;
and Mn** ~ 40%, a = 7.792(14) A. The
Mn-0 distances in these compounds show
interesting variation with % Mn**. In the
orthorhombic sample with 10% Mn**, there
are two Mn-0 distances of 2.023 and 2.058
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FiG. 1. X-ray diffraction patterns of LaMn(, . ; with different percentages of Mn**.

A: these are close to the sum of the ionic
radii of Mn** and 0%~ (2.01 A). The Mn—-O
distance in the rhombohedral sample with
28% Mn** is 1.957 A, while that in the cubic
sample is 1.948 A. The distance of 1.948 A
is close to the sum of ionic radii of Mn**

and O~ (1.92 A). The La-0 distance also
varies with % Mn** with distances in the
range 2.98 and 2.25 A in the orthorhombic
structure, and in the 2.98-2.54 A range in
the rhombohedral structure. In the cubic
structure, it is 2.756 A. The octahedral dis-

TABLE 11
STRUCTURE AND PrROPERTIES OF LaMnQ,, ; SAMPLES PREPARED BY DIFFERENT METHODS

Preparative route Mn** Structure® Unit cell parameters T, (K)

Ceramic 10 (@] a = 5.515; b = 5.502; —
1470 K/air (Pbnnt) c = 7.880 A

Hydroxide 26 R a = 5.480; a = 60.566° 205
1220 K/air (R3c)

Sol-get 28 R a=5476A, & = 60.564 245
1220 K/C, (R3c)

Hydroxycarbonate 33 C a =178 A 280
1220 K/O, (Fm3m)

Hydroxide 32 C a=77684 155
1070 K/air (Fm3m}

Sol—gei 39 C a=7792A 222
1070 K/O, (Fm3nt)

20, Orthorhombic; R, Rhombohedral; C, Cubic,

# The ferromagnetic T, values obtained from magnetization measurements are generally 10—15° higher.
“ A sample prepared by the sol-gel route with ~50% Mn** showed the same structure.
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Fi1G. 2. Variation of electrical resistance with temper-

ature in LaMnO,,; samples annealed at 1220 K. Note

that the temperature corresponding to the resistance
maximum increases with the Mn** content.

tortion decreases from the orthorhombic
structure to the cubic structure as evidenced
by the Mn—-O-Mn angle. The Mn—-O-Mn
angle in the orthorhombic and rhombohe-
dral structures is 149.56° and 167.10°, re-
spectively, while it is 180° in the cubic
structure.

We have studied the electrical properties
of LaMnO,, ; samples annealed at 1070 and
1220 K. All the samples containing more
than 20% Mn** and possessing the rhombo-
hedral or cubic structure show the metal—
insulator transition around the Curie tem-
perature. In Fig. 2 we show the electrical
resistance behavior of typical samples
heated to 1220 K with % Mn*" greater than
20. All the samples exhibit characteristic re-
sistance maxima. The temperature corre-
sponding to the resistance maximum, 7T,,

is close to the Curie temperature. What is
interesting is that T, increases as the Mn**
content increases. This is exactly what we
would expect since the ferromagnetic Curie
temperature also increases in the same man-
ner. In La,_ M, (IDMnO, , ; the material be-
comes antiferromagnetic when x > 0.5, In
LaMnO,_;, however, we are not able to
increase the Mn** content beyond ~50%
and the material remains ferromagnetic in
the % Mn*' range of 20 to 50.

In Tables I and II we have listed the values
of the metal-insulator transition tempera-
tures for the different LaMnO,,; samples
prepared by us. In Fig. 3 we have plotted
the transition temperature, T,, against the
Mn*t content for samples heated to 1070
and 1220 K. We see that within the experi-
mental uncertainties, the value of T, is pro-
portional to the Mn** content. Further-
more, T, is also dependent on the
temperature of heat treatment. The slopes
of the plots corresponding to the two tem-
peratures of treatment (Fig. 3) are, however,
comparable. Part of the reason for the varia-
tion of T, or the Curie temperature with the
temperature of heat treatment could be the
complex defect structure involving anion
excess as well as A- and B-ion vacancies {3,
4}. It is more likely, however, that the T, is

1220 K
300
N
1070K
Z 200}
=
100 L L
20 30 40

o Mot

F1G. 3. Variation of the temperature of the metal-
insufator transition, 7;, of LaMnO,_ ; with Mn** con-
tent. Data at two annealing temperatures are plotted.
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TABLE III

EFFECT OF ANNEALING TEMPERATURE ON THE
PROPERTIES ©OF LaMnQO,,; PREPARED BY THE
SoL-GEL RoUuTE

Heat treatment Surface
temperature area
(K) % Mn** (mg) T, (K}
870 52(0) 25 50¢
970 42(C) 20 190
1070 370 10 215
1220 26(R} 3 233
1370 18(0) <1 —b
1470 10(0) <] —

? Broad transition,
& No clear transition.

lower for samples heated at a lower temper-
ature (for the same Mn** content) because
of particle size effects.

In order to investigate the effect of parti-
cle size on the metal-insulator transition,
we have examined LaMnQ, , ; samples pre-
pared by the sol-gel route and heated to
different temperatures. The Mn** content
of the sample decreases with increase in the

) {50
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s -140
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é . 30 ¥,
a A—= z
2 k| ¥
- L - 20
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2 L ]
[
e . A0
3 4 )
900 100 1300
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FIc. 4. Variation of (a) the Mn** content (triangles)
and (b) the 300 K resistivity (closed circles} of
LaMaQO,. ; prepared by the sol-gel route.
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FiG. 5. Temperature variation of electrical resistance
of LaMnO;,; samples annealed at different tempera-
tures. Note the increase in T, with increased annealing
temperature,

temperature of heat treatment (Tabie III,
Fig. 4). The surface area decreases with in-
crease in temperature of heat treatment due
to the increase in particle size as expected,
Electrical resistivity also decreases appreci-
ably with the increase in the treatment tem-
perature (see resistivity data shown in Fig.
4). What is interesting is that the tempera-
ture of the metal-insulator transition, T,,
increases markedly with the increase in the
temperature of treatment although the Mn**
content decreases from 52% to 26% (Fig.
5). This is clearly a particle size effect. It is
indeed known that magnetization decreases
markedly when the particle size is small.
Accordingly, the sample heated to 870 K
shows a broad transition at a low tempera-
ture (~350 K) although it contains around
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50% Mn**. Similarly, the sample heated to
970 K with ~40% Mn** shows a T, of 150
K (compared to 222 K for a sample heated
to 1070 K with 39% Mn*").
Ferromagnetism and the metal—insulator
transition occur around the same tempera-
ture in LaMnO,,,; and LaM,(IDMn,_ .0,
because the electrons responsible for ferro-
magnetism are also involved in the condiic-
tion process (8, 9). These oxides are itiner-
ant-electron ferromagnets, where electron-
hopping from Mn** to Mn*" is responsible
for the relatively low resistivity as well as
the ferromagnetism. The situation is com-
parable to that in La,_, Sr.CoO, (10), where
electron hopping between Co** and Co**
causes metallicity as well as ferromagne-
tism. Interestingly, in the cobalt system, at
x = 0.15, ferromagnetism sets in at low tem-
peratures and the d-electrons become itiner-
ant at this composition even at room temper-
ature. The explanation for the resistivity
maximum in LaMnQ,, ; is as follows.
LaMnQ,,; containing a sufficiently high
proportion of Mn?* has low resistivity at
ordinary temperatures, but as the tempera-
ture is decreased, the resistivity increases
justas in many oxide semiconductors. How-
ever, at the Curie temperature, the faster
electron hopping between Mn** and Mn**

reduces the resistivity, giving metal-like be-
havior in the ferromagnetic regime at low
temperatures,
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