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Syntheses and Crystal Structure of Hg,P,Brg

AV, SHEVELKOV,* E. V. DIKAREV, axp B. A, POPOVKIN

Department of Chemistry, Moscow State University, Leninskie Gory,

119899, Moscow V-234, Russia

Received May 29, 1992; accepted September 22, 1992

The mercury phosphide-bromide Hg;PyBr, has been synthesized and its structure has been refined
based on single-crystal X-ray measurements to R = 0.064 and R,, = 0.065. The compound crystallizes
in the space group P2/c of the monoclinic system with two formula units tn a cell of dimensions
a = 6.0452(7), b = 19.848(2), ¢ = 7.5596(8) A, and A = 104.214(9)°, The structure js built of Hg,
octahedra filled with Py~ dumbbells. The octahedra share 5 vertices of 6 with neighboring octahedra
forming a three-dimensional network. The relationship between the structures of He,P,Br, and

Hg,5b,Br, is discussed. @ 1993 Academic Press, [nc.

Introduction

A certain number of phases are known
in the I1,-V-VII systems. As a rule, their
structures appear to be complicated three-
dimensional networks. where either Z3~
dumbbells (Z = P, As, Sb) (/-5) or infinite
Z') chains (Z = P, As) (6, 7) could be
subtracted. Hg,8b,Br, (8) and Cd,P,Cl; (9)
remain apart. Their structures consist of
three-dimensional [HggSb,] for [CdP,D)
shells with holes of two different sizes,
HgBr, (or CdCl,} regutar octahedra fill the
bigger holes. Recently (8) we found that
mercury atoms in Hg,Sb,Br, randomly oc-
cupied part of the HgBrg octahedra, the re-
maining mercury atoms being in the centers
of the smaller holes. Our search for new
compounds with the same stoichiometry has
resulted so far in a synthesis of only one
new phase, Hg,P,Brs. We report here the
crystal structure of Hg,P,Br,, which is quite
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different from the structures of Hg;Sh,Br,
and Cd,P,Cl,. The relationship between
structures with 7: 4 : 6 stoichiometry is also
discussed in this article.

Experimental

Hg,P,Br, was prepared by heating a stoi-
chiometric mixture of mercury (II) bromide,
red phosphorus, and iiquid mercury to a
temperature of 360°C in a sealed silica tube
for 7 days. The X-ray analysis (Nonius FR-
552, CuKua,) of the product did not detect
any fraces of the starting materials. The
composition Hg,P,Br, was confirmed by the
structure solution.

A suitable brown crystal was selected
from the reaction product and mounted
on a CAD4 diffractometer. The unit cell
dimensions, a = 6.0452(7), b = 19.848(2),
c = 7.5596(8) A, B = 104.214(9)°, were re-
fined based on 24 well-centered reflections
in the angular range 16° < 8 < 18°. Details
of subsequent data collection are given in
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TABLE I
DaTta COLLECTION AND REFINEMENT PARAMETERS
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TABLE II
FINAL ATOMIC PARAMETERS FOR Hg,P,Bry

Spce Group P2/c (No. 14)

a (A} 6.0432(7)
b {A) 19.848(2)
e (A) 7.5596(8)
BC) 104.214(9)
V(AY 879.3(3)
Z 2
Peale. (g,lcml) 7.582(3)
w (cm™) E 768.63
Crystal size {(mmy} 0.05 x 0.08 x 0.1
A {(MoKa) 0.71069
Temperature of

measurement 293 K
Scan mode w — 28
Sin 0/A e 0.660
No. of measured

reflections 2364
No. of reflections used in

refinement with F >

6a(F) 1286
No. of refined parameters 79
Weights lw = o¥(F) + 0.01F?
R 0.064
R, 0.065

Atom xia wb e Bisoteq
Hgl 0 0 o 1.54(6)
Hg2 0.4927(3) 0.13710(%) 0.08312) 1.17(4)
Hg3 0.5098(3) 0.23480(8) 0.8184{2) 1.30(4)
Hega 0.2229(3) 0.08538(9) 0.4898(2) 2.09%(5}
Brl 0.4021(7) 0.0192(2) 0.7782(5) 1,29}
Br2 0.3604(7) 0.21222) 0.7012(6) 1.30(9)
Br3 0.8141(8) 0.1100(3) 0.5815(7) 2.58(13)
Pl 0.145(2) 0.1017(4) 0.1634(12) 0.4(2)
P2 0.872(2) 0.177K5) 0.0883(12) 0.5(2)

built up from Hg, P, and Br atoms with
Hg-P, Hg—Br, and P-P bonds, as is usual
for the major of II,—V—VII structures (/-5).
The interatomic distances and bond angles
are listed in Table III.

TABLE 1II

SELECTED INTERATOMIC DISTANCES (A)
AND BoND ANGLES (%)

Table I. Intensities were corrected for Lo-
rentz and polarization effects. A semiempiri-
cal absorption correction was applied based
ony-scansof fourreflections. Systematic ab-
sences, h0l: I+ 2n, 0k0: k # 2n, uniquely de-
fine the space group P2,/c (No. 14),

All mercury atoms were located by direct
methods. The remaining atoms were found
by two successive Fourier syntheses. The
Ap(x, ¥, z) syntheses that followed isotropic
least-square refinement (R = 0.093, R, =
0.096) showed the highest peak to be of 3.2
e/A’ lying 0.71 A from mercury atom. Final
refinement of atomic coordinates and their
anisotropic thermal parameters has led to
R =0.064, R, = 0.065, and to the atomic pa-
rameters listed in Table II. All data analysis
were carried out using CSD programs (10).

Description of the Structure and
Discussion

The crystal structure of Hg;P,Brg is a
complicated three-dimensional framework

Distances Angles
Pl1-P2 2.207¢13) P2-P1-Hgl 106,3(4)
Hgl 2.423(9) P2-P1-Hg) 1119(4)
Hg? 2.436(10) P2-P1-Hg4 107.9(4)
Heg4d 2.403(%) Hgl-P1-Hg2 109.5(4)
Hgl-P1-Hgd 111.7¢4)
Hg2-P1-Hg4 109.6(4)
P2-PI 2.207(13) P1-P2-Hg2? 115.0(3)
Hg2 2.419¢10) P1-P2-Hg3 109.0(4)
He3 2.396(9) P1-P2-Hg3 111.5(4)
Hg3 2.428(9) Hg2-P2-Hg3 115.6(4)
Hg2-P2-Hg3 (00.0(3}
Hg3-P2-Hg} 105.0(4)
Hgl-P1 2.423(%) {=2) P1-Hgl-P1 180
Bri 3.296(4) {x2) P1-Hgl-Brl 87.02) (x2)
Pl-Hgl-Brl 93.0(2) (x2)
Brl-Hgl-Brl 180
Hg2-P1 2.436(10) P1-Hg2-P2 164.6(3)
P2 2.41%(10)
Brl 3.236(4)
Brl 3.286(4)
Br2 3.173(5)
Br2 3.276(5)
Hg3-P2 2.396(9) P2-Hgi-P2 159.5(3)
P2 2.428(9)
Br2 3.097(5)
Br2 3.251{5)
Br3 3.027(6)
Hgd-P1 2.403(9}) P1-Hg4-Brl 151.4(3}
Brl 2.548(4) Pl1-Hg4-Br2 113,042}
Br2 2.983(5) P1-Hg4-Br3 105.6(3)
Br3 2.76%(5) Br1-Hg4-Br2 83.45(13)
Br1-Hg4-Br3 95.45(15)
Br2-Hg4-Br3 82.2%14)




SYNTHESIS AND STRUCTURE OF Hg,P;Bry

The phosphorus atoms, P1 and P2, are
each surrounded by one phosphorus and
three mercury atoms forming an almost reg-
ular tetrahedron. The P-P distance of 2.21
A is nearly the same as found in Cd,P,1, ()
and Cd,P,Cl; (9), but considerably longer
than the shortest P-P distance of 2.10 A in
Hg,P;sI; (/7), and corresponds to the single
P-P bond ({2). The P-Hg distances
(2.40-2.44 A) correlate well with those in
Hg,P,l,. The P~P contact of 2.21 A and the
tetrahedral coordination of phosphorus,
IP + 3Hg, define the P}~ dumbbell pre-
viously described in the structures of
II,-V-VII series (1, 9, 11}.

The coordination of four independent
mercury atoms is more complex. The Hgl
alom possesses unusual planar coordina-
tion. Two phosphorus atoms (in trans form)
and two more distant bromine atoms build
a parallelogram. The Hg2 atom is sur-
rounded by two phosphorus atoms; four
more distant bromine atoms complete the
distorted octahedral coordination. The Hg3
atom is surrounded by two phosphorus and
three bromine atoms, forming a highly dis-
torted trigonal bipyramid. Finally, the Hgd
atom is situated at the center of a distorted
tetrahedron of three bromine and one phos-
phorus atoms. When compared with the
structures of 11~ V-VII series, the coordi-
nation of Hg2, Hg3, and Hgd4 atoms is quite
usual; on the other hand, the Hgl atom pos-
sesses unique coordination.

The Hg-Br distances vary in the range
2.55-3.30 A, depending on the coordination
of the mercury atoms. The Hgd4 atom with
IP + 3Br neighborhood has shorter Hg—Br
distances than Hgl, Hg2, and Hg3 atoms
with 2P + 2Br, 2P + 4Br, and 2P + 3Br
neighborhoods, respectively.

The shortest Hg—Hg and P-Br contacts
are larger than the sums of the correspond-
ing van der Waals radii. The shortest Br-Br
distance of 3.36 A is slightly smaller than
the sum of the bromine van der Waals radii.
Stiil, no Hg-Hg, P-Br, and Br-Br bonding
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F1G. 1. A view of the crystal structure of Hg,P,Brg
down ihe @ axes. Three-dimensional sequences of
P,Hg; octahedra are shown. Bromine atoms are drawn
inside the unit cell with circles. A P}~ dumbbell is drawn
in the top left corner.

can be considered, and the compound can
be formulated as [(Hg?");(P3 ),(Br' ).

The arrangement of mercury atoms can
be described in terms of distorted Hg, octa-
hedra centered with P}~ dumbbells. Figure
| presents the structure of Hg,P,Br, as a
compilation of corner-shared Hg.P, octahe-
dra with bromine atoms in between. Each
octahedron shares 5 vertices of 6 with neigh-
boring octahedra, while one vertex remains
unshared.

Though the structure of Hg;P,Bry is quite
different from those of isomorphous
Hg,;Sb,Br, (8) and Cd,P,Cl, (9) compounds,
the relationship between two structure
types can easily be found (Fig. 2). When the
octahedra are turned round a pseudo-4-fold
axis running through the Hg2 atoms, the
unshared vertices, Hgd atoms, collide
{shown in Fig. 2a with arrows), and a three-
dimensional [Hg,P,] framework with all ver-
tices shared is formed. That leads to a *‘per-
ovskite-like’* sequence of octahedra with
one half of the A-positions occupied in an
orderly way by HgBr, (or CdCl,) octahedra
in the structures of Hg,Sb,Br, (or Cd,P,Cly)
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Fig. 2. The relationship between the strctures of
Hg,P,Br, (a} and Hg,Sb,Brg (b). See text for explana-
tions.

(Fig. 2b}. In the case of Hg,P,Br, the
HgBr, octahedra are too large to occupy
A-positions, which could be a reason why
Hg,P,Br, does not crystallize in the struc-
ture type of Hg;Sh,Br.

The dimensions of the M, (M = Cd, Hg)
octahedron are obviously determined by the
covalent radius of the V group element, and
therefore, by the Z-Z distance in the Zj~
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dumbbell (Z = P, As, Sb). The consistency
of the dimensions of Z}~ centered M; octa-
hedra and MX, octahedra (X = ClI, Br) is
necessary for the stability of the Hg,58b,Br,
structure type. Taking into account the simi-
larity of the respective Hg—Z and Cd-Z dis-
tances, as well as the Hg-X and Cd-X dis-
tances, in II,-V-VII compounds, one can
predict the existence of Cd;Sb,Br, and
Hg,P,Cl; phases, but as yet we have failed
to obtain the compounds with the mentioned
compositions.
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