A Vanadium (III) Phosphate with V₂O₁₀ Octahedral Units: KV₄P₇O₂₄

L. BENHAMADA, A. GRANDIN, M. M. BOREL, A. LECLAIRE, AND B. RAVEAU

Laboratoire de Cristallographie et Sciences des Matériaux, CRISMAT, URA 1318 associé au CNRS, ISMRA, Université de Caen, Boulevard du Maréchal Juin, 14050 Caen Cedex, France

Received June 1, 1992; in revised form September 28, 1992; accepted September 30, 1992

A new vanadium III phosphate, KV₄P₇O₂₄, was isolated and its structure was determined from single crystal X-ray diffraction data. This phase crystallizes in the triclinic space group $P\bar{I}$ with a=10.0846(7); b = 10.2309 (6); c = 10.8283 (9) Å; $\alpha = 112.757$ (5); $\beta = 109.226$ (7); $\gamma = 104.675$ (5)°. The [V₄P₇O₂₄]_x host lattice is built-up from corner-sharing PO₄ tetrahedra, P₂O₇ groups, P₄O₁₃ units, and pairs of edge-sharing VO₆ octahedra forming V₂O₁₀ units. This mixed framework delimits cages where the potassium cations are located. The relationships between this structure and the V(IV) phosphate (VO)₂P₂O₇ are discussed. © 1993 Academic Press, Inc.

Introduction

Recent studies of the vanadium phosphates have confirmed the extraordinarily rich crystal chemistry of these compounds. This great ability to form original mixed frameworks comes from the great ability of vanadium to adapt various coordinations ranging from strongly distorted octahedral to pyramidal and even to tetrahedral. This great flexibility of the vanadium polyhedra is especially encountered in V(IV) and V(V)phosphates and mixed valence oxides V(IV)-V(V). In the case of trivalent vanadium, the coordination remains octahedral, but the VO₆ octahedra can be significantly distorted. For this reason the creation of tunnel structures involving large cavities should also be considered for V(III) phosphates, by introducing large univalent cations, such as potassium, rubidium, and cesium into such mixed frameworks. Up to now the number of compounds

isolated in the A-V(III)-P-O systems remain rather limited since only six phosphates— $Cs(Rb)VP_2O_7$ (1), $Cs(Rb)VP_4O_{12}$ (2), $CsV_2P_5O_{16}$ (3), and $Cs_3V_3P_{12}O_{36}$ (4) were isolated in the cases of cesium and rubidium. We have investigated recently the system K-V-P-O, for which three V(III) phosphates— KVP_2O_7 (5), $K_6V_2P_4O_{16}$ (6), and $K_{11}V_{15}P_{18}O_{73}$ (7)—have been isolated. We report here on the crystal structure of a new vanadium (III) phosphate, KV₄P₇O₂₄, involving V₂O₁₀ octahedral units, which exhibits structural similarities with $(VO)_2P_2O_7$ (8).

Synthesis

Green crystals of KV₄P₇O₂₄ were crystallized as a minor product in a mixture of nominal composition $K_{0.25}VP_2O_7$ in the following way. First an adequate mixture of K_2CO_3 , V_2O_5 , and $H(NH_4)_2PO_4$ was heated 0022-4596/93 \$5.00

TABLE I Summary of Crystal Data, Intensity Measurements, and Structure Refinement Parameters for $KV_4P_7O_{24}$

•	Crystal data					
Space group	$P\overline{1}$					
Cell dimensions	$a = 10.0846(7) \text{ Å}; \alpha = 112.757(5)$					
	$b = 10.2309(6) \text{ Å}; \beta = 109.226(7)$					
	$c = 10.8283(9) \text{ Å; } \gamma = 104.675(5)$					
Volume	875(5) Å ³					
Z	2					
Intens	Intensity measurements					
$\lambda (MoK\alpha)$	0.71073 Å					
Scan mode	$\omega - \frac{2}{3}\theta$					
Scan width (°)	$1 + 0.35 \tan \theta$					
Slit aperture (mm)	$1.09 + \tan \theta$					
$\max \theta$ (°)	38°					
Standard reflections	three measured every 3000 sec					
Reflections with $I > 3\sigma$	6727					
$\mu(\text{mm}^{-1})$	2.986 mm ⁻¹					
Structure s	solution and refinement					
Parameters refined	325					
Agreement factors	$R = 0.023$ $R_{\rm w} = 0.027$					
Weighting scheme	$w = f(\sin \theta/\lambda)$					

to 653 K in air, in order to eliminate CO_2 , H_2O , and NH_3 . In the second step, the finely ground product was mixed with an appropriate amount of vanadium and sealed in an evacuated silica ampoule. This sample was then heated at 1273 K for two weeks. Some green crystals were then isolated from the resulting mixture. The composition deduced from the structural determination $KV_4P_7O_{24}$ was confirmed by microprobe analysis.

Structure Determination

A green crystal with dimensions $0.179 \times 0.128 \times 0.154$ mm was selected for the structure determination. The cell parameters reported in Table I were determined and refined by diffractometric techniques at 294 K with a least-squares refinement based upon 25 reflections with $18^{\circ} < \theta < 22^{\circ}$.

The space group is $P\overline{1}$. The data were collected on a CAD-4 Enraf-Nonius diffractometer with the data collection parameters reported in Table 1. The reflections were

corrected for Lorentz and polarization effects; no correction was made for extinction and absorption.

Atomic coordinates of the vanadium atom were deduced by the heavy atom method, and the other atoms were located by subsequent Fourier series. Refinement of the atomic coordinates and their anisotropic thermal parameters led to R=0.023 and $R_{\rm w}=0.027$ and to the atomic parameters reported in Table II.

Description of the Structure and Discussion

As shown on the projection of the structure of this phosphate along c (Fig. 1), the host lattice $[V_4P_7O_{24}]_{\infty}$ is very original. It consists of monophosphate PO_4 , diphosphate P_2O_7 , and tetraphosphate P_4O_{13} groups sharing their corners with octahedral V_2O_{10} units. The V_2O_{10} units, which are built up from two edge-sharing VO_6 octahedra, are observed for the first time in V(III) phos-

TABLE II

TABLE OF POSITIONAL PARAMETERS AND THEIR ESTIMATED STANDARD DEVIATIONS

Atom	x	у	z	B(A2)
V(1)	0.75498(2)	0,14970(2)	0.25561(2)	0.316(3)
V(2)	0.37412(2)	0.22301(2)	-0.11396(2)	0.325(3)
V(3)	0.07363(2)	0.68772(2)	0.07401(2)	0.309(3)
V(4)	0.42673(3)	0.58143(2)	0.41113(2)	0.310(3)
P(1)	0.38321(4)	-0.06258(4)	0.11691(4)	0.311(5)
P(2)	0.50103(4)	0.27387(4)	0.24211(4)	0.333(5)
P(3)	0.24365(4)	0.81280(4)	0.43424(4)	0.348(5)
P(4)	0.30263(4)	0.51073(4)	0.05170(4)	0.321(5)
P(5)	-0.00160(4)	0.00662(4)	0.22450(4)	0.344(5)
P(6)	0.06493(4)	0.32096(4)	0.26257(4)	0.341(5)
P(7)	0.27241(4)	0.13098(4)	0.52037(4)	0.340(5)
K	0.86440(6)	0.57356(6)	0.32447(6)	2.087(9)
O(1)	0.9650(1)	0.3223(1)	0.3413(1)	0.67(2)
O(2)	0.5537(1)	-0.0451(1)	0.1739(1)	0.50(2)
O(3)	0.6906(1)	0.1085(1)	0.0473(1)	0.80(2)
O(4)	0.6707(1)	0.3016(1)	0.2972(1)	0.66(2)
O(5)	0.8275(1)	0.1810(1)	0.4606(1)	0.65(2)
O(6)	0.8330(1)	-0.0211(1)	0.1979(1)	0.52(2)
O(7)	0.2677(1)	0.3530(1)	-0.0790(1)	0.65(2)
O(8)	0.4323(2)	0.2682(1)	0.0949(1)	0.96(2)
O(9)	0.5868(1)	0.3615(1)	-0.0465(1)	0.90(2)
O(10)	0.2770(1)	0.1781(1)	-0.3299(1)	0.82(2)
O(11)	0.1106(1)	0.7126(1)	0.2713(1)	0.72(2)
O(12)	0.2904(1)	0.8387(1)	0.1580(1)	0.59(2)
O(13)	0.0022(2)	0.6650(1)	-0.1254(1)	0.84(2)
O(14)	-0.1380(1)	0.4885(1)	-0.0102(1)	0.51(2)
O(15)	0.0154(1)	0.8714(1)	0.1277(1)	0.85(2)
O(16)	0.2299(1)	. 0.4409(1)	0.3745(1)	0.78(2)
O(17)	0.4898(1)	0.3945(1)	0.3726(1)	0.46(2)
O(18)	0.3749(1)	0.7671(1)	0.4623(1)	0.76(2)
O(19)	0.6400(1)	0.7391(1)	0.4934(1)	0.71(2)
O(20)	0.3682(2)	0.5274(1)	0.2067(1)	0.95(2)
O(21)	0.4020(1)	0.1099(1)	0.2180(1)	0.63(2)
O(22)	0.3177(1)	0.9912(1)	0.4671(1)	0.64(2)
O(23)	0.0668(1)	0.1482(1)	0.2040(1)	0.67(2)
O(24)	0.0922(1)	0.0635(1)	0.4002(1)	0.71(2)

Note. Anisotropically refined atoms are given in the isotropic equivalent displacement parameter defined as $B = \frac{4}{3} [\beta_{11}a^2 + \beta_{22}b^2 + \beta_{33}c^2 + \beta_{12} ab \cos \gamma + \beta_{13} ac \cos \beta + \beta_{23} bc \cos \alpha].$

phates. Indeed, most of the V(III) phosphates are characterized by single VO₆ octahedra sharing their corners with PO₄ tetrahedra as shown for AVP_2O_7 with A = Li(9), K(5), Rb(I), and Cs(I0), $AV_2(P_2O_7)_2$ with A = Ba(II) and Sr(I2), $CsV_2P_5O_{16}(3)$, $V(PO_3)_3(I3)$, $Cs_3V_3P_{12}O_{36}(4)$, whereas only one oxide— VPO_4 —exhibits infinite chains

of edge-sharing octahedra (14), and two phosphates— $V_4(P_2O_7)_3$ (15) and $V_3P_5SiO_{19}$ (16)—present V_2O_9 octahedral clusters of two face-sharing octahedra. In this respect this new structure is to be compared to the mixed-valent vanadium phosphate $KV_3P_4O_{16}$ (17) and the tetravalent vanadium phosphate $(VO)_2P_2O_7$ (8) in which pairs of

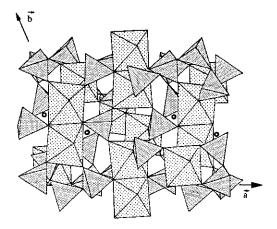


Fig. 1. Projection of the structure along c.

edge-sharing VO_6 octahedra can be recognized. Nevertheless, in both latter structures the V_2O_{10} units share the corners of their octahedra, forming infinite octahedral chains. This is not the case for $KV_4P_7O_{24}$, whose V_2O_{10} units are isolated, i.e., share their corners with PO_4 tetrahedra only.

In fact the $[V_4P_7O_{24}]_{\infty}$ framework exhibits rather close relationships with the tetravalent vanadium phosphate $(VO)_2P_2O_7$. The consideration of layers parallel to the (001) plane, shows that they form ribbons (Fig. 2a) whose disposition of PO₄ tetrahedra and V₂O₁₀ units is very similar to that encountered for (VO)₂P₂O₂ (hatched polyhedra in Fig. 2b). One remarkable feature common to these structures is that the oxygen atoms common at the two edge-sharing octahedra are also shared by PO4 tetrahedron, leading to a significant distortion of the VO6 octahedra. These (VO)₂P₂O₂-like ribbons which extend indefinitely along a are interrupted in the **b** direction by a connection with V_2O_{10} units (labelled V₄ in Fig. 2a) oriented differently with respect to the layer, and forming with the other P₂O₇ groups rather large holes where the K+ atoms are located. Thus the $[V_4P_7O_{24}]_{\infty}$ framework can be described as the stacking along c of such similar layers. Each layer shares the corners of its P_2O_7

groups either with P_2O_7 groups of the next one, forming P_4O_{13} units, or with V_2O_{10} units. Thus the orientation of the P_2O_7 groups with respect to the V_2O_{10} units is completely different from that observed for $(VO)_2P_2O_7$; the P-P directions are respectively parallel and perpendicular to the $V \cdot \cdot \cdot V$ direction, as shown for the comparison of Fig. 2a and b.

One observes three kinds of V_2O_{10} units; two of these—V(1)-V(2) and V(3)-V(3) belong to the (VO)₂P₂O₇-like ribbons (Fig. 2a), whereas the third one, V(4)-V(4), is shared between two (001) layers. The V-V distances are respectively of 3.199 (5), 3.211 (5), and 3.143 (5) Å. The V(1)-V(2) unit is linked (Fig. 3a) to two P_2O_7 groups, two P₄O₁₃ units, and two PO₄ monophosphate groups. It is remarkable that each P_2O_7 group and each P₄O₁₃ group shares two of its apices with the same V₂O₁₀ unit, whereas the oxygen atoms O(2) and O(6) are shared by three polyhedra, V(1), V(2), and P(1) or P(5), belonging to one P_2O_7 or one P_4O_{13} unit respectively. As a result the four distances—V(1)–O(2), V(1)-O(6), V(2)-O(2), and V(2)-O(6)—exhibit the largest values (Table III) in the V(1) and V(2) octahedra (2.06 to 2.13 Å), in agreement with the fact that the O(2) and O(6) atoms are linked to three polyhedra. The O(7) and O(9) atoms which are shared between a V(2) octahedron and a monophosphate group P(4) exhibit much shorter V-O distances (1.91 to 1.94 Å); in the same way the O(8), O(4), and O(3), which are shared between one VO₆ octahedron and one P_2O_7 group, exhibit rather short distances, ranging from 1.93 to 1.96 Å (Table III). The O(5), and especially the O(1) and O(10) atoms which are shared between one VO₆ octahedron and one P₄O₁₃ group tend to present intermediate V-O distances ranging from 1.95 to 2.02 Å. It is also worth pointing out that the V(1) octahedron is significantly less distorted than the V(2) octahedron as shown by the range of the O-V-O angles in Table III.

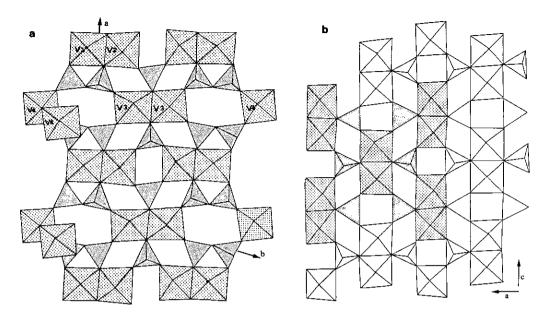


Fig. 2. (a) A layer parallel to the 001 plane in the $[V_4P_7O_{24}]_x$ framework. (b) A layer of $(VO)_2P_2O_7$ structure.

The V(3)-V(3) unit (Fig. 3b) is linked to two P_2O_7 groups, four P_4O_{13} groups, and two PO₄ single tetrahedra. In this case each tetrahedral unit P_2O_7 shares only one apex with the same V₂O₁₀ unit; i.e., each V(3) octahedron is linked to one P_2O_7 group (bond V(3)-O(12)-P(1)). One of the two P_4O_{13} shares two of its corners with the same octahedron (bond V(3)-O(11)-P(3) or V(3)-O(15)-P(5)); the other one P₄O₁₃ unit shares one corner with the same V(3) octahedron (bond V(3)-O(I3)-P(6)). As for the V(1)-V(2) units, the two oxygen atoms O(14) common to the two octahedra are also shared by a third polyhedron, the monophosphate group P(4). Consequently the V(3) octahedron is also strongly distorted (Table III), with two significantly longer V-O distances corresponding to the threefold linked O(14) atom (2.02 to 2.14 Å), whereas the other V-O distances which correspond to oxygen atoms shared by two polyhedra range from 1.93 to 2.03 Å.

The V(4)-V(4) unit (Fig. 3c) is also linked

to two P2O7 groups, four P4O13 units, and two PO₄ tetrahedra, but in a very different way. In this case, for two P₄O₁₃ groups, each unit shares two of its apices with two different octahedra of the same V₂O₁₀ unit (bonds V(1)-O(16)-P(6) and V(4)-O(19)-P(7), whereas for the two other P₄O₁₃ groups each unit shares only one apex with one V(4)octahedron (bonds V(4)–O(18)–P(3)), Each P_2O_7 group shares only one apex with each V_2O_{10} unit, but at the junction of two V(4) octahedra, so that the O(17) atom is triply bonded (bond P(2)-O(17)-V(4)). Each monophosphate group P(4) shares one oxygen with each V(4) octahedron of the V₂O₁₀ units (bond V(4)–O(20)–P(4)). The V–O distances, and especially the larger values obtained for V(4)-O(17) bonds (Table III) are in agreement with the fact that O(17) is shared by three polyhedra whereas other oxygens are shared by two polyhedra.

The seven independent PO₄ tetrahedra exhibit an almost regular "O₄" tetrahedral geometry (Table IV) but are characterized

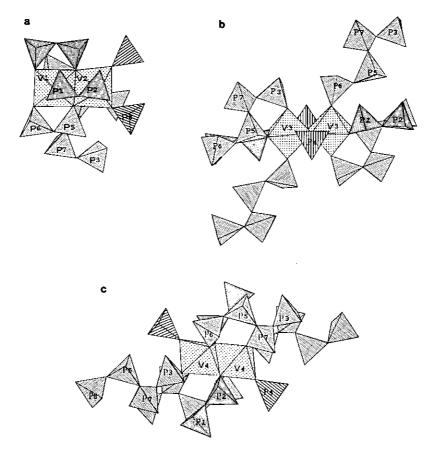


Fig. 3. (a) Neighborhood of the $[(V(1)-V(2))O_{10}]$ unit. (b) Neighborhood of the $[(V(3)-V(3))O_{10}]$ unit. (c) Neighborhood of the $[(V(4)-V(4))O_{10}]$ unit.

by a significant variation of the P-O distances. In the monophosphate groups P(4), the longer distance (1.57 Å) corresponds to the triply linked oxygen atom O(14), whereas the three other distances, ranging from 1.508 to 1.533 Å, are close to those observed in monophosphates.

The P(1) and P(2) tetrahedra which form the P_2O_7 groups exhibit one longer P-O bond (1.59 Å) characteristic of the P-O-P bridging bonds, whereas intermediate P-O distances (1.536 to 1.558 Å) correspond to the oxygen atoms O(2) and O(17) which are triply bonded. In each tetrahedron the two other P-O distances ranging from 1.497 to

1.521 Å are close to those encountered in regular PO_4 tetrahedra.

The P(3), P(5), P(6), and P(7) tetrahedra which form the P_4O_{13} units exhibit P-O distances similar to those observed in the tetraphosphates $Mo_2P_4O_{15}$ (18) and $Nb_2P_4O_{15}$ (19). The two terminal P(3) and P(6) tetrahedra exhibit only one longer P-O distance (1.628 to 1.638 Å), characteristic of the bridging oxygen of the P_2O_7 group, whereas the three other distances, ranging from 1.49 to 1.52 Å, are in agreement with the existence of V-O-P bonds. The two intermediate P(5) and P(7) tetrahedra, exhibit for each of them two longer P-O distances, ranging

	-					
V(1)	O(1)	O(2)	O(3)	O(4)	O(5)	O(6)
O(1)	2.002(1)	4.062)	2.884(2)	2.784(2)	2.700(2)	2.928(2)
O(2)	172.46(5)	2.069(1)	2.841(2)	2.989(2)	2.860(2)	2.679(2)
O(3)	93.36(6)	89.59(6)	1.962(1)	2.773(2)	3.916(6)	2.752(2)
O(4)	90.17(5)	96.73(5)	90.91(6)	1.929(1)	2.826(2)	3.985(6)
O(5)	86.02(6)	90.51(5)	175.70(6)	93.35(6)	1.956(1)	2.825(2)
O(6)	92.29(5)	80.96(5)	86.35(6)	176.42(6)	89.42(5)	2.059(1)
V(2)	O(2 ⁱ)	O(6 ⁱⁱ)	O(7)	O(8)	O(9)	O(10)
O(2i)	2.081(1)	2.679(2)	3.976(6)	2.999(2)	2.706(2)	2.945(2)
O(6 ⁱⁱ)	78.85(5)	2.137(1)	2.869(2)	2.896(2)	4.035(6)	2.788(2)
O(7)	168.70(5)	89.99(5)	1.914(1)	2.644(2)	3.094(2)	2.662(2)
O(8)	95.68(6)	89.76(6)	85.96(6)	1.963(1)	2.763(2)	3.963(6)
O(9)	84.47(5)	163.21(5)	106.74(6)	90.07(7)	1.942(1)	2.993(2)
O(10)	91.87(5)	84.25(5)	85.17(6)	169.29(6)	98.22(6)	2.017(1)
V(3)	O(11)	O(12)	O(13)	O(14)	O(14 ⁱⁱ)	O(15)
O(11)	1.943(1)	2.822(2)	3.861(6)	2.735(2)	2.933(2)	2.783(2)
O(12)	92.26(6)	1.971(1)	2.883(2)	4.092(6)	2.785(2)	2.805(2)
O(13)	169.72(6)	95.18(6)	1.934(1)	2.903(2)	2.836(2)	2.670(2)
O(14)	83.74(5)	166.70(5)	90.51(6)	2.149(1)	2.659(2)	3.295(2)
O(14ii)	95.55(6)	88.56(5)	91.72(6)	79.24(5)	2.018(1)	4.052(6)
O(15)	88.65(6)	88.78(6)	84.43(6)	103.77(5)	175.10(6)	2.038(1)
V(4)	O(16)	O(17)	O(17 ⁱⁱⁱ)	O(18)	O(19)	O(20)
O(16)	1.938(1)	2.784(2)	2.692(2)	2.887(2)	3.889(6)	2.883(2)
O(17)	87.09(5)	2.099(1)	2.666(2)	4.115(6)	2.976(2)	2.804(2)
O(17 ⁱⁱⁱ)	83.56(5)	78.83(5)	2.099(1)	3.101(2)	2.751(2)	3.969(6)
O(18)	93.73(6)	176.39(6)	97.76(5)	2.017(1)	2.686(2)	2.868(2)
O(19)	168.07(6)	93.86(5)	84.95(5)	84.61(6)	1.972(1)	2.833(2)
O(20)	97.64(6)	89.08(6)	167.79(6)	94.29(6)	94.27(6)	1.893(1)

Note. The V(O) distances are on the diagonal. Above it are the $O(i) \cdot \cdot \cdot O(j)$ distances and below it are the $O(i) \cdot \cdot \cdot V - O(j)$ angles.

from 1.57 to 1.60 Å, characteristic of the bridging P-O-P bonds; in each of these tetrahedra the two other P-O distances range from 1.47 to 1.52 Å in agreement with the formation of V-O-P bonds.

The K^+ ions which are located in the cages are surrounded by seven oxygen atoms, at distances ranging from 2.81 to 3.20 Å (Table V); in fact one can consider for potassium a 3 + 3 coordination, forming a

strongly distorted antiprism with three short K-O distances (2.8 to 2.88 Å) and three longer ones (3.02 to 3.04 Å) (Fig. 4).

Concluding Remarks

These results confirm the extraordinary flexibility of the VO_6 octahedra involving trivalent vanadium. The existence of really isolated V_2O_{10} units has been obtained for

TABLE IV $\label{eq:Distances} \text{Distances (Å) and Angles in PO}_4 \text{ Tetrahedra}$

P(1)	O(2)	O(3 ⁱ)	O(12 ^{iv})	O(21)
O(2)	1.558(1)	2.516(2)	2.536(2)	2.491(2)
O(3i)	110.84(8)	1.497(1)	2.535(2)	2.515(2)
O(12iv)	112.29(7)	115.79(8)	1.496(1)	2.434(2)
O(21)	104.34(7)	108.77(8)	103.86(7)	1.596(1)
P(2)	O(4)	O(8)	O(17)	O(21)
O(4)	1.521(1)	2.496(2)	2.482(2)	2.530(2)
O(8)	112.27(8)	1.485(1)	2.552(2)	2.486(2)
O(17)	108.50(7)	115.28(8)	1.536(1)	2.452(2)
O(21)	108.89(7)	107.96(8)	103.42(7)	1.588(1)
P(3)	O(5 ⁱⁱⁱ)	O(11)	O(18)	O(22)
O(5 ⁱⁱⁱ)	1.523(1)	2.453(2)	2.544(2)	2.526(2)
O(11)	107.47(7)	1.520(1)	2.533(2)	2.525(2)
O(18)	115.15(8)	114.64(8)	1.490(1)	2.488(2)
O(22)	106.52(7)	106.65(8)	105.79(7)	1.628(1)
P(4)	O(7)	O(9 ^v)	O(14 ⁱⁱ)	O(20)
O(7)	1.532(1)	2.444(2)	2.444(2)	2.555(2)
O(9 ^v)	106.34(8)	1.522(1)	2.570(2)	2.508(2)
O(14 ⁱⁱ)	103.74(7)	112.22(7)	1.574(1)	2.497(2)
O(20)	114.39(8)	111.77(9)	108.19(8)	1.508(1)
P(5)	$O(6^{vi})$	O(15 ^{vii})	O(23)	O(24)
O(6 ^{vi})	1.525(1)	2.543(2)	2.510(2)	2.449(2)
O(15 ^{vii})	116.29(8)	1.469(1)	2.476(2)	2.531(2)
O(23)	108.35(7)	109.10(8)	1.570(1)	2.551(2)
O(24)	103.56(7)	111.53(8)	107.59(7)	1.592(1)
P(6)	O(1 ^{vi})	O(13 ⁱⁱ)	O(16)	O(23)
O(1 ^{vi})	1.518(1)	2.512(2)	2.475(2)	2.514(2)
O(13 ⁱⁱ)	112.91(8)	1.496(1)	2.495(2)	2.530(2)
O(16)	110.54(8)	113.16(8)	1.493(1)	2.512(2)
O(23)	105.49(7)	107.60(8)	106.59(8)	1.638(1)
P(7)	O(10viii)	O(19 ⁱⁱⁱ)	O(22 ^{vii})	O(24)
O(10 ^{viii})	1.483(1)	2.516(2)	2.529(2)	2.459(2)
O(19iii)	115.75(8)	1.488(1)	2.519(2)	2.467(2)
O(22vii)	112.09(8)	111.12(7)	1.566(1)	2.535(2)
O(24)	105.36(8)	105.63(7)	106.00(7)	1.607(1)

Note. The P-O distances are on the diagonal. Above it are the $O(i) \cdot \cdot \cdot O(j)$ distances and below it are the O(i)-P-O(j) angles.

K-O(1)	=	3.038(2)	
$K-O(1^{ix})$	=	3.030(2)	
K-O(4)	=	2.807(1)	
$K-O(5^{ix})$	=	2.853(2)	
K-O(7°)	=	3.021(2)	
$K-O(10^{v})$	=	3.204(2)	
$K - O(11^x)$	=	2.882(2)	
		•	

Symmetry code

(i):	1-x	; - y	; -z
(ii):	- x	; 1 - y	; - z
(iii):	1-x	; 1 - y	; 1 - z
(iv):	- x	; -1 - y	; - z
(v):	1 - x	; 1 - y	; - z
(vi):	-1 + x	; y	; z
(vii):	х	; -1 + y	; z
(viii):	х	; y	; 1 + z
(ix):	2-x	; 1 - y	; 1 - z
(x):	1 + x	; y	; z

the first time in the V(III) phosphates. Such units can be considered as clusters which will be studied for their magnetic properties.

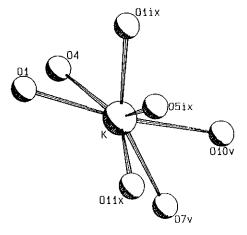


Fig. 4. The polyhedron of oxygen atoms around K^+ in $KV_4P_7O_{24}$.

References

- I. U. FLÖRKE, Z. Kristallogr. 191, 137 (1990).
- A. V. LAVROV, M. YA. VOITENKOV, AND E. G. TSELEBROVSKAYA, Izv. Akad. Nauk. S.S.S.R. Neorg. Mat. 17(1), 99 (1981).
- B. KLINKERT AND M. JANSEN, Z. Anorg. Allg. Chem. 567, 87 (1988).
- A. V. LAVROV, V. P. NIKOLAEV, G. G. SADIKOV, AND M. YA. VOITENKOV, Sov. Phys. Dokl. 26, 631 (1981).
- L. BENHAMDA, A. GRANDIN, M. M. BOREL, A. LECLAIRE, AND B. RAVEAU, Acta Crystallogr. Sect. C 47, 424 (1991).
- L. BENHAMADA, A. GRANDIN, M. M. BOREL, A. LECLAIRE, AND B. RAVEAU, J. Solid State Chem. 91, 264 (1991).
- A. BENMOUSSA, M. M. BOREL, A. GRANDIN, A. LECLAIRE, AND B. RAVEAU, J. Solid State Chem. 97, 314 (1992).
- YU. E. GORBUNOVA AND S. A. LINDE, Dokl. Akad. Nauk S.S.S.R. 245, 584 (1979).
- K. H. Lii, Y. P. Wang, Y. B. Chen, and S. L. Wang, J. Solid State Chem. 86, 143 (1990).
- Y. P. WANG AND K. H. LII, Acta Crystallogr. Sect. C 45, 1210 (1989).
- L. Benhamada, A. Grandin, M. M. Borel, A. Leclaire, and B. Raveau, Acta Crystallogr. Sect. C 47, 2437 (1991).
- S. J. Hwu and E. D. WILLIS, J. Solid State Chem. 93, 69 (1991).
- S. A. LIND, YU. E. GORBUNOVA, AND A. V. LAVROV, Zh. Neorg. Khim. 28, 29 (1983).
- N. KINOMURA, R. MUTO, AND M. KOIZUMI, J. Solid State Chem. 45, 252 (1982).
- K. K. Palkina, S. I. Maksimova, N. T. Chibiskova, K. Schlesinger, and G. Ladwig, Z. Anorg. Allg. Chem. 529, 89 (1985).
- A. LECLAIRE, H. CHAHBOUN, D. GROULT, AND B. RAVEAU, J. Solid State Chem. 65, 168 (1986).
- C. S. LEE AND K.-H. LII, J. Solid State Chem. 92, 362 (1991).
- G. Costentin, A. Leclaire, M. M. Borel, A. Grandin, and B. Raveau, Z. Kristallogr. 201, 53 (1992).
- V. P. NIKOLAEV, G. G. SADIKOV, A. V. LAVROV, AND M. A. PORAI-KOSHITS, Akad. Nauk Mat. S.S.S.R. Neorg. 22, 1364 (1986).