Crystal Structure of LaMnO_{3+δ} Synthesized Using Poly(Acrylic Acid)

HIDEKI TAGUCHI,* HIDEAKI YOSHIOKA, DAISUKE MATSUDA, AND MAHIKO NAGAO

Research Laboratory for Surface Science, Faculty of Science, Okayama University, Okayama 700, Japan

Received July 2, 1992; in revised form September 8, 1992; accepted October 14, 1992

Poly(acrylic acid) (PAA) was used to make a gel from an aqueous solution of lanthanum and manganese nitrates. In the concentration range 3×10^{-2} to 5×10^{-2} M of PAA, the single phase of perovskite-type LaMnO₃₊₈ was synthesized by firing gels at low temperature. The crystal structure of LaMnO₃₊₈ changes from hexagonal to orthohombic with increasing concentration of PAA. At 5×10^{-2} M of PAA, the crystal structure of LaMnO₃₊₈ changes from orthorhombic to hexagonal with increasing temperature. © 1993 Academic Press, Inc.

Introduction

LaMnO₃ has an orthohombic perovskitetype structure with a = 0.5535 nm, b = $0.5758 \text{ nm and } c = 0.7708 \text{ nm } (1). \text{ LaMnO}_{3}$ is available to be used as an electrode in high temperature solid-state fuel cells or as a catalyst which oxidizes hydrocarbons (2, 3). As LaMnO₃ is generally synthesized above 850°C starting from mixtures of metal acetates, the specific surface area is less than 5 m²/g (4). Taguchi et al. synthesized (La_{1-x}Sr_x)MO₃ through the sol-gel process below 500°C (5). If the firing temperature is low, the specific surface area of (La_{1-r}Sr_r) MnO₃ is about 17.5–23.5 m²/g. Recently, we have noticed that the crystal structure of (La_{1-r}Sr_r)MnO₃ strongly depends on the concentration of poly(acrylic acid) (PAA) in the gef.

In the present study, we tried to synthesize LaMnO_{3+ δ} at low temperatures using gels with varying concentrations of PAA. Thereafter, the crystal structure and oxygen content of LaMnO_{3+ δ} were examined. These

* To whom all correspondence should be addressed.

results will provide some information with which to improve the perovskite-type catalysis.

Experimental

The powders of La(NO_3)₃ · 6H₂O (2.9686) g) and Mn(NO₃)₂ · $6H_2O$ (2.0314 g) were weighed in a chemical equivalent and dissolved in 5 ml of distilled water. Poly(acrylic acid) (PAA) was used to make a gel. Average molecular weight of PAA used is 2000. By dissolving PAA in distilled water, we obtained aqueous solutions of PAA with 1×10^{-2} to 10×10^{-2} M. The aqueous solution (10 ml) of PAA was added to the aqueous solutions of metal nitrates; then the pH of the aqueous solution was adjusted to 1.0 by adding nitric acid. The resulting solution was mixed with a magnetic stirrer at room temperature. We obtained a viscous gel after mixing for 5-10 min. The gel was dried at 100°C for 12 hr, then fired at 200 to 1200°C in air for 6 hr. The heating rate was 10°C/min.

The crystal structure of the samples was identified by X-ray powder diffraction

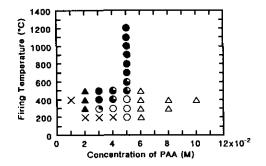


Fig. 1. The relation between the crystal structure of the samples and the synthesis conditions (the concentration of PAA and the firing temperature). The samples were synthesized by firing gels at various temperatures for 6 hr. (\bigcirc : orthorhombic LaMnO₃₊₈; \bullet : hexagonal LaMnO₃₊₈; \bullet : orthorhombic and a trace of hexagonal LaMnO₃₊₈; \bullet : hexagonal and a trace of orthorhombic LaMnO₃₊₈; \bullet : orthorhombic LaMnO₃₊₈ and La₂O₃; \bullet : hexagonal LaMnO₃₊₈ and La₂O₃; \bullet : hexagonal LaMnO₃₊₈ and La₂O₃; x: amorphous).

(XRD) using monochromatic $CuK\alpha$ radiation. The oxygen content in each sample was determined by an oxygen-reduction (redox) method (6). After sodium oxalate solution and perchloric acid were added to dissolve the sample in a flask, the solution was titrated with a standard potassium permanganate solution. Differential thermal analysis (DTA) was performed in the temperature range from room temperature to $1100^{\circ}C$.

Result and Discussion

Figure 1 shows the relation between the crystal structure of the samples and synthesis conditions (the concentration of PAA and the firing temperature). Below 2×10^{-2} or above $6 \times 10^{-2} M$ of PAA, we could not obtain a single phase of LaMnO_{3+ δ}. From XRD patterns, it is obvious that the samples are amorphous or a mixture of LaMnO_{3+ δ} and La₂O₃. In the concentration range 3×10^{-2} to $5 \times 10^{-2} M$ of PAA, we could obtain perovskite-type LaMnO_{3+ δ}. The crystal structure of LaMnO_{3+ δ} is strongly influenced by the concentration of PAA or the firing temperature. At a certain firing tem-

perature, the crystal structure of LaMnO_{3+δ} changes from hexagonal to orthohombic with increasing the concentration of PAA.

At 5×10^{-2} M of PAA, we fired the gel at 200 to 1200°C for 6 hr. The relation between the crystal structure of LaMnO₃₊₈ and the firing temperature is also shown in Fig. 1. The crystal structure of LaMnO_{3+ δ} is orthohombic below 400°C. At 500 and 600°C, both hexagonal and a trace of orthorhombic LaMnO₃₊₈ coexist. Above 700°C, the crystal structure of LaMnO₃₊₈ is hexagonal. Figure 2 shows the DTA curve of La MnO₃₊₈. This sample is synthesized by firing the gel with $5 \times 10^{-2} M$ of PAA at 200°C for 6 hr. LaMnO_{3+ δ} gave an endothermic peak at ca. 475°C on heating. From the results of Figure 1, the endothermic peak in the DTA curve corresponds to the phase transition of LaMnO₃₊₈.

Figure 3A shows the oxygen content of LaMnO₃₊₈. These samples were synthesized by firing gels with $5 \times 10^{-2} M$ of PAA at 200 to 800°C for 6 hr. The oxygen content abruptly increases at 400 to 600°C. The oxygen content of the LaMnO₃₊₈ samples which were synthesized by firing gels with 3×10^{-2} to $5 \times 10^{-2} M$ of PAA at 400°C for 6 hr is also shown in Fig. 3B. With increasing concentration of PAA, the oxygen content abruptly decreases to 3.00. In Fig. 3, the crystal structure of LaMnO₃₊₈ is also shown. From this result, it is obvious there is a close relation between the oxygen con-

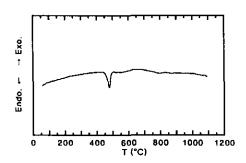


Fig. 2. DTA curve of LaMnO₃₊₈. The sample was synthesized by firing the gel with $5 \times 10^{-2} M$ of PAA at 200°C for 6 hr. Heating rate is 10° C/min.

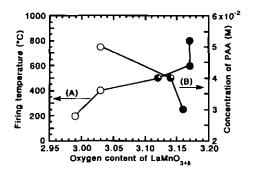


FIG. 3. (A) The oxygen content of LaMnO₃₊₈. The samples were synthesized by firing gels with 5×10^{-2} M of PAA at 200, 400, 500, 600, and 800°C for 6 hr. (B) The oxygen content of LaMnO₃₊₈. The samples were synthesized by firing gels with 3×10^{-2} to 5×10^{-2} M of PAA at 400°C for 6 hr. (\bigcirc : orthorhombic LaMnO₃₊₈, \blacksquare : hexagonal LaMnO₃₊₈, \blacksquare : hexagonal and a trace of orthorhombic LaMnO₃₊₈).

tent and the crystal structure of LaMnO_{3+ δ}. In case that $3+\delta$ is nearly 3.00, the crystal structure of LaMnO_{3+ δ} is orthorhombic. But, in the range ca. $3.12 \le 3+\delta \le 3.17$, the crystal structure of LaMnO_{3+ δ} is hexagonal. According to the data of the Joint Committee on Powder Diffraction Standards, LaMnO_{3.00} is orthorhombic and LaMnO_{3.15} is hexagonal (7). Takeda *et al.* reported the crystal structure and the oxygen content of LaMnO_{3+ δ} ($-0.01 \le \delta \le 0.09$) after annealing at various temperatures (8). The crystal structure of LaMnO_{3+ δ} changes from orthorhombic to hexagonal at ca. $\delta = 0.05$. This agrees with our present results.

Now, we consider the reason the crystal structure or the oxygen content of LaMn $O_{3+\delta}$ changes with the concentration of PAA or the firing temperature. At 400°C (in Fig. 1), for example, the crystal structure changes from amorphous to the mixture of hexagonal LaMn $O_{3+\delta}$ and La₂ O_3 , hexagonal LaMn $O_{3+\delta}$, orthorhombic LaMn $O_{3+\delta}$ and the mixture of orthorhombic LaMn $O_{3+\delta}$ and La₂ O_3 with increasing concentration of PAA. According to Taguchi *et al.* (5), the DTA curve of the gel (x = 0.3) gave both a large and a small exothermic peak at 170°C and 250°C, respectively. These exothermic

peaks correspond to the combustion of PAA. In the present method, PAA burns below 300°C and the combustion heat of PAA is used to synthesize LaMnO₃₊₈. As the combustion heat is insufficient to yield LaMnO₃₊₈ below 2 × 10⁻² M of PAA, the sample is amorphous or includes La₂O₃. Above $3 \times 10^{-2} M$ of PAA, the combustion heat is high enough to yield LaMnO₃₊₈. Kamata et al. reported that the oxygen content of LaMnO₃₊₈ depends on the partial pressure of oxygen (1). At a low partial pressure of oxygen, LaMnO₃₊₈ decomposes into La₂O₃ and MnO. Though, in the present study, the gel is fired in air, the partial oxygen pressure extremely near LaMnO₃₊₈ is considered to decrease with increasing concentration of PAA. The decrease of partial pressure of oxygen results from CO or CO₂ by the decomposition of PAA. It is impossible to know the generated partial pressure of oxygen extremely near LaMnO_{3+ δ}, but both the decrease of the oxygen content of LaMnO_{3+ δ} at high concentrations of PAA (Fig. 3B) and the presence of La₂O₃ above $6 \times 10^{-2} M$ of PAA suggest that the partial pressure of oxygen is low. At $5 \times 10^{-2} M$ of PAA, the oxygen content of LaMnO₃₊₈ increases with increasing firing temperature (Fig. 3A). As CO is easily oxidized on the surface of LaMnO_{3+ δ} at high temperatures (3, 4), the partial pressure of oxygen extremely near LaMnO_{3+δ} is considered to increase with increasing temperature. Consequently, a part of the manganese ions in LaMnO_{3+ δ} oxidize to Mn⁴⁺ions and the crystal structure changes from orthorhombic to hexagonal (8).

It is concluded that we have defined the conditions to synthesize LaMnO_{3+ δ} by using PAA. In the concentration range 3×10^{-2} to 5×10^{-2} M of PAA, hexagonal or orthorhombic perovskite-type LaMnO_{3+ δ} was synthesized by firing gels at low temperature. The crystal structure of LaMnO_{3+ δ} is strongly influenced by the concentration of PAA or the firing temperature. This phase transition depends on the partial pressure of oxygen extremely near of LaMnO_{3+ δ}.

Acknowledgment

This research has been supported by a grant from Nippon Sheet Glass Foundation for Materials Science.

References

- K. KAMATA, T. NAKAJIMA, T. HAYASHI, AND T. NAKAMURA, Mater. Res. Bull. 13, 49 (1978).
- J. H. Kuo, H. U. Anderson, and D. M. Sprain, J. Solid State Chem. 87, 55 (1990).
- T. Arakawa, A. Yoshida, and J. Shiokawa, Mater. Res. Bull. 15, 269 (1980).

- T. NITADORI, S. KURIHARA, AND M. MISONO, J. Catal. 98, 221 (1986).
- H. TAGUCHI, D. MATSUDA, M. NAGAO, K. TANI-HATA, AND Y. MIYAMOTO, J. Am. Ceram. Soc. 75, 201 (1992).
- N. MIZUTANI, A. KITAZAWA, N. OKUMA, AND M. KATO, Kogyo Kagaku Zasshi 73, 1097 (1970). [in Japanese]
- Joint Committee on Powder Diffraction Standards 35-1353 and 32-484.
- Y. Takeda, S. Nakai, T. Kojima, R. Kanno, N. Imanishi, G. Q. Shen, O. Yamamoto, M. Mori, C. Asakawa, and T. Abe, *Mater. Res. Bull.* 26, 153 (1991).