Crystal Structures and Magnetic Properties of CrO₄⁴⁻-Containing Oxides: Sr₂CrO₄, Ba₂CrO₄, and Ba₃CrO₅ ### GUO LIU, J. E. GREEDAN, AND WENHE GONG Institute for Materials Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada Received August 21, 1992; in revised form October 26, 1992; accepted October 28, 1992 Refinement of the crystal structures of Ba₂CrO₄ and Ba₃CrO₅ using powder neutron diffraction data has confirmed that the former is isostructural with β -K₂SO₄ and the latter isostructural with Cs₃CoCl₅. Ba₂CrO₄ is orthorhombic, Pnma (No. 62), Z=4 with a=7.6285(5) Å, b=5.9136(5), c=10.4639(8), and V=472.04(5) Å³; Ba₃CrO₅ is tetragonal, 14/mcm (No. 140), Z=4 with a=7.3033(3) Å, c=11.6704(6), V=622.48(4) Å³ from powder Guinier X-ray diffraction data. Magnetic properties of Sr₂CrO₄, Ba₂CrO₄, and Ba₃CrO₅ were examined down to 2-5 K. The structures and magnetic properties of Sr₂CrO₄ and Ba₂CrO₄ are compared with their vanadium analogues β -Sr₂VO₄ and β -Ba₂VO₄. Unlike isostructural β -Sr₂VO₄ which contains the V₂O₈⁸ dimer, Sr₂CrO₄ contains truly isolated CrO₄⁴ tetrahedra and its magnetic behavior can be best described as a dimerized chain. Ba₂CrO₄ and Ba₃CrO₅ also contain isolated CrO₄⁴ tetrahedra. Ba₂CrO₄ is paramagnetic down to 5 K. Ba₃CrO₅ undergoes longrange magnetic order at ~8 K, a temperature range significantly higher than that of isostructural Rb₃CoCl₅ and Cs₃CoX₅(X = Cl, Br). © 1993 Academic Press, Inc. ## Introduction We recently reported the synthesis and characterization of the Sr₂CrO₄-type $Sr_2VO_4(\beta-Sr_2VO_4)$ (1) and the Ca_2SiO_4 -type Ba_7VO_4 (β - Ba_7VO_4) (2). The β - Sr_7VO_4 structure is related to \(\beta\)-K_2SO_4, and an interesting $V_2O_8^{8-}$ dimer (Scheme I) is found (2). The true symmetry of β -Ba₂VO₄, which was previously thought to be isostructural with the orthorhombic β - K_2SO_4 , is actually monoclinic, isostructural with β-Ca₂SiO₄ and its magnetic behavior can be best approximated as a Heisenberg infinite linear chain (2). These findings raised questions and interest about the Cr(IV) analogues. For example, although Ba2CrO4 had long been thought to be isostructural with β -K₂SO₄, there was no detailed structural information, and not even a powder pattern in the JCPDS files. The structure of Sr₂CrO₄ was solved previously using single crystal X-ray diffraction data. The magnetic properties of these Cr(IV) oxides were unknown. Thus we carried out a comparative study of the Cr(IV) analogues of the V(IV) oxides, Sr₂CrO₄ and Ba₂CrO₄. We were also interested in the magnetic properties of Ba₁MO₅ (M = V, Cr), which have, presumably, the Cs₃CoCl₅ structure, because the cobalt halides $A_3C_0X_5$ (A = Rb, Cs; X = Cl, Br). are well-known two- and three-dimensional Ising systems (3-5). One common feature of these chromium and vanadium oxides is the existence of isolated MO_4^{4-} tetrahedra. In this paper we report the synthesis of phase-pure specimens of the title compounds and present the results of the structure refinement using powder neutron diffraction data and of studies of their magnetic properties. SCHEME I. $V_2O_8^{8-}$ dimer in β -Sr₂VO₄ (bond lengths in Å). ## **Experimental** # Synthesis Sr₂CrO₄. Six to seven grams of polycrystalline Sr₂CrO₄ were synthesized according to Wilhelmi (6). A stoichiometric mixture of SrCrO₄ (prepared by heating a 2SrCO₃ + Cr₂O₃ mixture in O₂ at 800°C for 20 hr), Cr₂O₃ (Fisher Certified), and 5Sr(OH)₂ · 8H₂O (Johnson Matthey Electronics) was ground intimately, pelleted, and heated in a platinum crucible in N₂ at 1000°C overnight and then cooled slowly. Ba_2CrO_4 . This phase was synthesized by two different methods. The first was based on that of Scholder and Sperka (7). Ten to fifteen grams of a stoichiometric mixture of $BaCrO_4$, Cr_2O_3 , and $5Ba(OH)_2 \cdot 8H_2O$ (Fisher Scientific, 99.3%) were ground intimately, pelleted, and evacuated overnight to dehydrate Ba(OH)₂ · 8H₂O, partially. The resulting powder was pelleted again, confined in a Pt crucible, which was secured in an alumina boat, heated in N₂ at 950°C overnight, and cooled slowly. In the second method 8-9 g of a 4:1 molar mixture of BaCO₃ (AESAR, Johnson Matthey Inc., 99.9%) and Cr₂O₃ were heated slowly (within 4 hr) in hydrogen to 900°C for 24 hr, and then 10% more Cr₂O₃ was added to the pulverized product, and the mixture fired in N_2 for 24 hr. Ba₃CrO₅. The compound was synthesized by reducing pellets of either a 1:1 molar mixture of Ba₂CrO₄ and BaCO₃ or a 6:1 mixture of BaCO₃ and Cr₂O₃ with H₂ at 1000°C for 20 hr. ### X-Ray and Neutron Diffraction All specimens were examined routinely using a Guinier-Hägg camera (IRDAB XDC700) with $CuK\alpha 1$ radiation and a Si standard. The Guinier data were read with a computer-controlled automated LS-20 type line scanner (KEJ Instruments, Täby, Sweden). Neutron diffraction data for powder specimens were collected at the McMaster Nuclear Reactor. The refinement was effected on a VAX computer using LHPM1 of Hill and Howard (8) which is a modified version of DBW3.2 due to Wiles and Young (9). Details of the neutron data collection and refinement methods have been described previously ($I\theta$). Neutron scattering lengths (fm) used were 5.25, 3.635, and 5.805 for Ba, Cr. and O, respectively (11). #### Magnetic Susceptibility Measurement Susceptibility data were obtained using a Quantum Design SQUID magnetometer in the temperature range 2-5 to 300 K using pelleted specimens at an applied magnetic field of 0.2 T. Diamagnetic corrections were applied. #### Results and Discussion Guinier X-ray diffraction data suggested that all the Cr(IV) oxide specimens were single phases. The powder pattern of Sr₂CrO₄ matched that reported previously (12). Since a large amount of moisture was released during the reaction involving Ba(OH)₂ · 8H₂O, it is important to heat the mixture slowly. The H₂ reduction product of a stoichiometric mixture of 4BaCO₃ and Cr₂O₃ contained trace amounts of Ba₃CrO₅. When 10% excess Cr₂O₃ was used in the second stage heating in N₂, phase-pure Ba₂CrO₄ was obtained. The synthesis of Ba₂CrO₄ and Ba₃CrO₅ using BaCO₃ and Cr₂O₃ probably involves the initial oxidation of Cr₂O₃ by BaCO₃ and the subsequent reduction of the oxidized chromate by H₂. It is worth noting that the method described by Scholder and Sperka (7) for the synthesis of Ba₃CrO₅, heating in N₂ a stoichiometric mixture of either BaCrO₄, Cr₂O₃, and 8Ba(OH)₂ or even Ba₂CrO₄ and Ba(OH)₂, produced very impure specimens in which Ba₃CrO₅ was observed only as a minor phase. Attempts to synthesize phase-pure Ba₃VO₅ under various conditions were unsuccessful. Ba₃VO₅ was only obtained as a mixture with Ba₂VO₄ and other unidentified impurities when a 3BaCO₃ and Ba₃V₂O₈ mixture was reduced by H₂ at 1200°C in a Mo tube. This problem had been noted by Jansen and co-workers (13), who reported the synthesis of Ba₃VO_{4+x} by a BaO and VO reaction in vacuo. #### Crystal Structures For Ba_2CrO_4 33 reflections were indexed completely by TREOR (14) based on an orthorhombic symmetry with a = 10.466(2) Å, b = 7.627(1), and c = 5.915(1) and reasonably high figures of merit, M(33) = 18 and F(33) = 22. The cell parameters suggested the similarity of the structure with α -Ba₂TiO₄ which is isostructural with β -K₂SO₄ (15). Observed intensities well matched those simulated using the LAZY-PULVERIX programs (16) and the β -K₂SO₄ structure model (17). Final refinement results using powder neutron diffraction data confirmed the structure. Twenty reflections of Ba₃CrO₅ were also indexed completely by TREOR based on a tetragonal unit cell with a = 7.3039(2) Å, c = 11.6704(5), and figures of merit M(20) = 67 and F(20) = 61. The Cs₃CoCl₅type structure (18) for Ba₃CrO₅ has been confirmed from the powder neutron data refinement as well. The similarity of the powder pattern of Ba₃VO₅ with that of Ba₃CrO₅ was obvious. Refined tetragonal lattice parameters for Ba₃VO₅ are a = 7.2987(5) Å and c = 11.8306(9). Data collection conditions and refinement details, including leastsquares refined lattice parameters using Guinier powder data for Ba₂CrO₄ and Ba₃CrO₅, are summarized in Table I. TABLE I Data Collection Conditions and Refinement Details for Ba₂CrO₄ and Ba₃CrO₅ | Parameters | $\mathrm{Ba_2CrO_4}$ | | Ba ₃ CrO ₅ | | | |---------------------------|----------------------|-----------------|----------------------------------|-----------------|--| | Space group | Pnma (No. 62 | () | 14/mcm (No. | 140) | | | Diffraction | Neutron | X-ray (Guinier) | Neutron | X-ray (Guinier) | | | λ (Å) | 1.3913 | 1.5406 | 1.3950 | 1.5406 | | | Cell parameters | | | | | | | a (Å) | 7.626(2) | 7.6285(5) | 7.308(1) | 7.3033(3) | | | b (Å) | 5.913(2) | 5.9136(5) | | | | | c (Å) | 10.457(3) | 10.4639(8) | 11.669(2) | 11.6704(6) | | | $V(\mathring{A}^3)$ | 471.5(2) | 472.04(5) | 623.1(2) | 622.48(4) | | | 2θ range (°) | 10-91 | | 10-113 | | | | Step size (°) | 0.10 | | 0.10 | | | | Nuclear R _N | 0.0212 | | 0.0277 | | | | Weighted profile Rwp | 0.0399 | | 0.0594 | | | | Profile R _P | 0.0317 | | 0.0478 | | | | Expected R _E | 0.0229 | | 0.0310 | | | | No. of profile points N | 811 | | 1031 | | | | No. of parameters refined | 31 | | 202 | | | | Independent reflections | 296 | | 169 | | | Note. $R_{\rm N} = R_{\rm B} = \sum |I_{\rm obs} - I_{\rm cal}|/\sum I_{\rm obs}$. $R_{\rm WP} = \{ [\sum w(Y_{\rm obs} - Y_{\rm cal}/c)^2]/\sum wY_{\rm obs}^2 \}^{1/2}$. $R_{\rm P} = \sum |Y_{\rm obs} - Y_{\rm cal}/c|/\sum Y_{\rm obs} R_{\rm E} = [(N - P)/\sum wY_{\rm obs}^2]^{1/2}$. | Compound | Atom | Site | x | у | z | B (Å ²) | |----------------------------------|-------|------------------------|-----------|-----------|-----------|---------------------| | Ba ₂ CrO ₄ | Ba(1) | 4(c) | 0.147(1) | 0.25 | 0.080(2) | 2.7(4) | | | Ba(2) | 4(c) | -0.011(2) | 0.25 | 0.6942(9) | 1.1(2) | | | Cr | 4(c) | 0.220(2) | 0.25 | 0.431(2) | 2.0(3) | | | O(1) | 4(c) | -0.008(1) | 0.25 | 0.416(1) | 2.7(2) | | | O(2) | 4(c) | 0.314(2) | 0.25 | 0.576(1) | 0.4(2) | | | O(3) | 8(<i>d</i>) | 0.308(1) | 0.006(2) | 0.3500(6) | 1.5(1) | | Ba ₃ CrO ₅ | Ba(1) | 4(a) | 0 | 0 | 0.25 | 1.4(1) | | | Ba(2) | 8(h) | 0.3211(4) | 0.8211(4) | 0 | 0.56(9) | | | Cr | 4(<i>b</i>) | 0 | 0.5 | 0.25 | 1.5(2) | | | O(1) | 4(c) | 0 | 0 | 0 | 1.7(1) | | | O(2) | 16 (<i>l</i>) | 0.1357(3) | 0.6357(3) | 0.1576(3) | 1.65(6) | TABLE II Atomic Parameters for Ba₂CrO₄ and Ba₃CrO₅ from Neutron Powder Diffraction Data Atomic parameters for Ba_2CrO_4 and Ba_3CrO_5 are listed in Table II. Selected bond distances and bond angles are listed in Table III. Neutron diffraction patterns for Ba_2CrO_4 and Ba_3CrO_5 are plotted in Figs. 1 and 2, respectively. Ba_2CrO_4 . To compare with the β -Ba₂VO₄ structure (2), the Ba₂CrO₄ structure is viewed down the less convenient a-axis as shown in Fig. 3. Apparently, the two structures are very similar. Like β -Ba₂VO₄, there exist two types of Ba–O coordination in Ba₂CrO₄, Ba(1)O₁₀ and Ba(2)O₉, both of which are loosely bonded. Ba(2) is relatively more tightly bonded to oxygen as indicated by the shorter average Ba(2)–O bond length and its lower isotropic temperature factor compared with corresponding values for Ba(1). This is characteristic of the β -K₂SO₄-related structures such as β -Ba₂VO₄ (2) and β -Sr₂SiO₄ (19). The average Ba(1)–O and Ba(2)–O bond distances of Ba₂CrO₄ are Fig. 1. The neutron powder pattern for Ba₂CrO₄ with Bragg positions marked with parallel bars below the difference pattern. TABLE III SELECTED BOND DISTANCES AND BOND ANGLES FOR Ba₂CrO₄ AND Ba₃CrO₅ | Ba ₂ Cr | O_4 | Ba ₃ CrC |) ₅ | |--------------------|-----------|----------------------|----------------| | Ba(1)-O(1)f | 2.631(16) | Ba(1)-O(1) | 2.9172(4) | | Ba(1)-O(2)c | 2.972(2) | Ba(1)-O(1)f | 2.9172(4) | | Ba(1)-O(2)d | 2.972(2) | Ba(1)-O(2)c | 3.039(3) | | Ba(1)-O(2)f | 3.019(20) | Ba(1)-O(2)b | 3.039(1) | | Ba(1)-O(3) | 3.401(18) | Ba(1)-O(2)d | 3.039(1) | | Ba(1) $-$ O(3) c | 2.860(18) | Ba(1)-O(2)g | 3.039(2) | | Ba(1) - O(3)f | 3.053(14) | Ba(1)-O(2)h | 3.039(3) | | Ba(1)-O(3)i | 3,401(18) | Ba(1)-O(2)i | 3.039(1) | | Ba(1)-O(3)i | 2.860(18) | Ba(1) - O(2)j | 3.039(1) | | Ba(1)-O(3)k | 3.053(14) | Ba(1)-O(2)k | 3.039(2) | | Average | 3.022(14) | Average | 3.014(2) | | Ba(2)-O(1) | 2.914(17) | Ba(2)-O(1)l | 2.686(1) | | Ba(2) - O(1) g | 3.174(6) | Ba(2)=O(1)o | 2.686(1) | | Ba(2)-O(1)h | 3.174(6) | Ba(2)-O(2) | 2.656(4) | | Ba(2)-O(2) | 2.767(19) | Ba(2)-O(2)m | 2.961(4) | | Ba(2)-O(2)l | 2.750(17) | Ba(2)-O(2)n | 2.961(3) | | Ba(2)-O(3)h | 2.763(14) | Ba(2)-O(2)p | 2.656(4) | | Ba(2)-O(3)b | 2.712(12) | Ba(2)-O(2)q | 2.961(3) | | Ba(2)-O(3)m | 2.763(14) | Ba(2)-O(2)r | 2.961(4) | | Ba(2)-O(3)n | 2.712(12) | | | | Average | 2.859(13) | Average | 2.816(2) | | Cr-O(1) | 1.745(19) | Cr-O(2) | 1.769(2) | | Cr-O(2) | 1.674(24) | Cr-O(2)e | 1.769(4) | | Cr-O(3) | 1.801(14) | Cr-O(2)h | 1.769(2) | | Cr-O(3)i | 1.801(14) | Cr-O(2)s | 1.769(4) | | Average | 1.755(18) | Average | 1.769(3) | | O(1)-Cr-O(2) | 120.7(13) | O(2)-Cr- $O(2)e$ | 111.8 | | O(1)-Cr-O(3) | 109.0(8) | O(2) Cr - $O(2)h$ | 104.9(2) | | O(1)-Cr- $O(3)i$ | 109.0(8) | O(2)- Cr - $O(2)s$ | 111.8(1) | | O(2)-Cr-O(3) | 105.5(8) | O(2)e-Cr-O(2)h | 111.8(1) | | O(2)-Cr- $O(3)i$ | 105.5(8) | O(2)e-Cr-O(2)s | 104.9(1) | | O(3)-Cr- $O(3)i$ | 106.2(10) | O(2)h-Cr-O(2)s | 111.8 | | Average | 109.3(8) | Average | 109.5(1) | close to those in β -Ba₂VO₄. The CrO₄⁴⁻ polyhedra in Ba₂CrO₄ are isolated as the VO₄⁴⁻ in β -Ba₂VO₄ (2) and TiO₄⁴⁻ in Ba₂TiO₄ (20). The average Cr–O bond distance of 1.76(2) Å is slightly shorter than that of Cr(1)O₄⁴⁻ in Sr₂CrO₄ (1.80 Å) and significantly shorter than the Cr(2)O₄⁴⁻ in Sr₂CrO₄ (1.85 Å), but is comparable with the V–O distance in β -Ba₂VO₄ (1.76(3) Å) and the V(1)O₄⁴⁻ in Sr₂VO₄ (1.76(2) Å). The CrO₄⁴⁻ tetrahedron is rather irregular with O–Cr–O bond angles ranging from 105.5 to 120.7°. Even though severe angular distortion was also observed for VO_4^{4-} in β -Ba₂VO₄, there exists a significant difference in the M-O bond lengths between the CrO_4^{4-} and the VO_4^{4-} polyhedra. The CrO_4^{4-} tetrahedra in Ba₂CrO₄ include one short Cr-O bond (1.67 Å) while β -Ba₂VO₄ has one long V-O bond (1.84(3) Å). One short bond (M(1)-O(8)) was also observed for the MO_4^{4-} tetrahedra in Sr_2CrO_4 (1.66-1.67 Å) (6) and β - Sr_2VO_4 (1.65(3) Å) (1). These results suggest that even though Cr(IV) and V(IV) have very Fig. 2. The neutron powder pattern for Ba₂CrO₅ with Bragg positions marked with parallel bars below the difference pattern. similar ionic radii (the value for 4coordinated V(IV) is not available, but $r(V_{CN=6}^{4+}) = 0.72 \text{ Å and } r(Cr_{CN=6}^{4+}) = 0.69 \text{ Å})$ (21), and Ba₂CrO₄ and β-Ba₂VO₄ have similar structures, the coordination environment of the transition metal is sensitive to the small difference in the size of M(IV), and probably to the electronic structure as well. The difference in symmetry and the MO₄⁴ coordination polyhedra between Ba₂CrO₄ and β-Ba₂VO₄ results in a further separation of the CrO₄⁴ tetrahedra in the actually smaller-sized unit cell of Ba₂CrO₄ as compared to the β -Ba₂VO₄. This is evidenced by the fact that the shortest contact distance between oxygens of neighboring tetrahedra CrO₄⁴ (O(3)). . . 3.35-3.37(4) Å) is longer than that between the VO₄⁻ polyhedra in β -Ba₂VO₄ (O(3) · · · O(4h), 3.16(3) Å. Fig. 3). This result is expected to weaken the magnetic exchange interaction between the tetrahedra in Ba₂CrO₄. Sr_2CrO_4 . This structure can be described as a strongly distorted superstructure of β - K_2SO_4 , and is thus related to Ba_2CrO_4 . Details of the Sr_2CrO_4 structure and its relationship with β - K_2SO_4 have been described previously (6). Some crystallographic data of the A_2BO_4 -type compounds (A = Sr, Ba; B = V, Cr) are compared in Table IV. It is worth examining the CrO_4^{4-} polyhedra in Sr_2CrO_4 to facilitate the discussion and comparison of its magnetic properties with those of β - Sr_2VO_4 . The structure is shown in Fig. 4. The two types of distorted TABLE IV CRYSTALLOGRAPHIC DATA OF THE A_2BO_4 Compounds (A = Sr, Ba; B = V, Cr) | Compound | Space group | a (Å) | b (Å) | c (Å) | β(°) | Reference | |-----------------------------------|-------------------|------------|-----------|------------|----------|-----------| | β-Sr ₂ VO ₄ | Pna2 ₁ | 14.092(4) | 5.806(2) | 10.106(3) | | (1) | | Sr ₂ CrO ₄ | Pna2 ₁ | 14.182(10) | 5.788(30) | 10.100(20) | | (6) | | β-Ba ₂ VO4 | $P2_1/n$ | 6.0191(7) | 7.6494(7) | 10.465(1) | 92.39(1) | (2) | | Ba ₂ CrO ₄ | Pmnb | 5.9136(5) | 7.6285(5) | 10.4639(8) | | This work | Fig. 3. The Ba₂CrO₄ (top) and the β -Ba₂VO₄ (bottom, $\beta = 92.39(1)^{\circ}$) structures as viewed along the a- and b-axes, respectively. CrO₄⁻ tetrahedra, as already mentioned above, have apparently different average bond lengths. Similar to the $V(2)O_4^{4-}$ in β -Sr₂VO₄, the Cr(2)O₄⁴ distorts the most. The Cr(2)-O bond lengths range from 1.67 to 1.95 Å, and O-Cr(2)-O angles range from 97 to 126° as compared to the 109.8° for a regular tetrahedron. However. M(2)–O(3) bridge that is responsible for the formation of the $V_2O_8^{8-}$ dimer in β -Sr₂VO₄ is significantly longer for M = Cr (2.74(3))Å) than for M = V(2.37(3)) Å). It is fair to conclude that there is no Cr₂O₈⁸⁻ dimer in Sr₂CrO₄ even though the bridging may still be responsible for the magnetic superexchange in Sr₂CrO₄. Ba_3CrO_5 . The Ba₃CrO₅ structure is also characterized by isolated CrO₄⁴⁻ tetrahedra. The Ba(1)O₁₀ and Ba(2)O₈ polyhedra are similar to those in Ba₂CrO₄. Again the Ba(2) is more tightly bonded with oxygen atoms and thus has a lower temperature factor than Ba(1). But the CrO₄⁴⁻ tetrahedra in Ba₃CrO₅ are far more regular than those in Ba₂CrO₄. The Cr-O bond lengths are uniform. A minor distortion exists only in the O-Cr-O angles, 104.9 and 111.8°, which are about the same as those for CoCl₄²⁻ in Cs₃CoCl₅ (106.0 and 111.2°) (18). A unit cell is shown in Fig. 5 with the CrO₄⁴⁻ tetrahedra outlined. It can be described as a layered structure consisting of layers of nonmagnetic Ba²⁺ ions and magnetic CrO₄⁴⁻ groups separated by nonmagnetic layers of Ba2+ and O2ions. The shortest Cr-Cr distance is a' = $\sqrt{2} \cdot a/2 = 5.1642 \text{ Å}$ within a magnetic layer, and c' = c/2 = 5.8352 Å between two adjacent magnetic layers. Each CrO₄⁴ group has six CrO_4^{4-} nearest neighbors (nn). Due to the closeness of the two distances and the arrangement of the Cr ions, the magnetic sublattice is usually treated as a simple cube (sc). Such a sublattice is outlined in Fig. 5 with dotted lines. The c'/a' ratio is 1.130 for Ba₃CrO₅, 1.146 for Ba₃VO₅, 1.116 for Cs₃CoCl₅, and 1.115 for Cs₃CoBr₃. It can FIG. 4. The Sr₂CrO₄ structure as viewed along the b-axis. The dotted lines indicate a possible dimerized chain. Fig. 5. A perspective view of the Ba₃CrO₅ structure. A magnetic subcell is outlined with the dotted lines. be seen from these values that even though the oxides deviate from a simple cube more than the cobalt halides, the arrangement of magnetic ions in the oxides is still predominantly three dimensional. The superexchange pathways within and between the layers of MO_4^{4-} ions are not equivalent; however, both two-dimensional and threedimensional pathways have been found in the halides as discussed in the following sections. ## Magnetic Properties Sr_2CrO_4 . The temperature dependence of the magnetic susceptibility of Sr₂CrO₄ is shown in Fig. 6. There exists a broad maximum at ~13 K. Neutron scattering experiments at 9 K revealed the absence of longrange magnetic order. Therefore, the observed maximum is indicative of short-range order. This susceptibility maximum temperature is significantly lower than that for β -Sr₂VO₄ (~60 K) (1). Furthermore, the susceptibility curve cannot be fitted satisfactorily to a simple Heisenberg dimer model like that of β -Sr₂VO₄. Attempts to fit the susceptibility data to either a Heisenberg infinite linear chain (1D) or a Heisenberg square plane (2D) also failed. The failure of the dimer model is consistent with the crystal structure of Sr₂CrO₄ as pointed out previously. But the susceptibility data can be fitted reasonably well to a modified dimer model-a dimerized chain also shown in Fig. 6. In this model it is assumed that the magnetic interactions are pseudo-one-dimensional, but due to alternating short Fig. 6. Temperature dependence of the magnetic susceptibility of Sr₂CrO₄. (Cr(2)-O(3)-Cr(1)) and long (Cr(1)-O(5) · · · O(6)-Cr(2)) distances, the interactions retain a certain "dimer" characteristic. Such a mechanism is depicted in Fig. 4 as dotted lines. According to Vasilevesky et al. (22) the analytical form for a dimerized chain is $$\chi_m = \frac{\chi_m(\text{dimer})T}{T - 2ZJ'/3k'},$$ where J' is the inter-dimer exchange parameter, Z the number of nearest neighbors (2 for a dimerized chain), and χ_m (dimer) the susceptibility for 2 mol of Sr_2CrO_4 , which has the expression according to O'Connor (23) $$\chi_m(\text{dimer}) = A \frac{2e^{2x} + 10e^{6x}}{1 + 3e^{2x} + 5e^{6x}}$$ $$A = \frac{N\overline{g}^2 \mu_B^2}{kT}, \quad x = \frac{J}{kT},$$ where J is the intra-dimer exchange parameter, \bar{g} the powder-averaged g-factor, and other symbols have their usual meanings. This relationship holds for $|J| \gg |J'|$. The fit gave $\overline{g} = 1.93$, J/k = -9.07 K, and $J'/k \approx 2.49$ K. The condition $|J| \gg |J'|$ is not quite well satisfied. However, this model is the best approximation we can have thus far. The agreement factor for the fitting, defined as $$R(\%) = 100\sqrt{\sum (\chi_{\rm obs} - \chi_{\rm cal})^2 / \sum \chi_{\rm obs}^2},$$ is 1.29 for the dimerized chain as compared to $R(\%) \approx 3.53$ for the best fit using the simple dimer model. The fitting results indicate that although the antiferromagnetic intra-dimer exchange still predominates, there is a weak inter-dimer ferromagnetic interaction which probably suggests that the "dimers" are closer than those in β -Sr₂VO₄. This can probably be understood by the lengthening of the "dimer" bridge. Relevant bond distances and bond angles are shown below. (°) 127.9 100.2 89.1 103.4 (Å) 2.74 1.83 1.86 2.95 1.95 $$Cr(2)$$ — $O(3)$ — $Cr(1)$ — $O(5)$ · · · $O(6)$ — $Cr(2)$ — $O(3)$ — $Cr(1)$ — $O(5)$ · · · \uparrow The temperature dependence of the inverse susceptibility of Sr₂CrO₄ is rather peculiar (Fig. 7). Above the susceptibility maximum temperature no linear region can be seen clearly. The curve can be fitted to the Curie-Weiss law if a temperature-independent term is included. The fit gave C =0.976(2) cm³ · K/mole, $\theta = -16(1)$ K, $\chi_{\text{TIP}} = 7.3(5) \times 10^{-4} \text{ cm}^3/\text{mole.}$ The magnetic moment estimated from the Curie-Weiss constant C is thus $\mu_{eff} = 2.79$ $\mu_{\rm B}$, which is in good agreement with the theoretical spin-only moment of 2.83 μ_B for a d^2 ion. The field dependence of the magnetic moment of Sr₂CrO₄ is shown in Fig. 8. No spin-flop transition is observed since the curve is nearly a straight line, which suggests that no long-range antiferromagnetic order exists at 5 K, consistent with the low-temperature neutron experiment result. Ba_2CrO_4 . The temperature dependence of the inverse susceptibility is plotted in Fig. 9. The data show a distinct curvature similar to that of Sr_2CrO_4 , but less pronounced. The $40-300~\rm K$ data were fitted to the Curie-Weiss law with a temperature-independent term included. This gave $C=0.818(4)~\rm cm^3 \cdot \rm K/mole$, $\theta=-9.2(3)~\rm K$, and $\chi_{\rm TIP}=2.85(2)~\rm \times~10^{-4}~cm^3/mole$. The estimated effective magnetic moment is 2.56 $\mu_{\rm B}$, slightly lower than the spin-only value for Cr(IV). It is worth noting that even though the Curie-Weiss law fits suggest antiferromagnetic interactions, no suscepti- Fig. 7. Temperature dependence of the inverse susceptibility of Sr₂CrO₄. bility maximum was observed for Ba_2CrO_4 down to 5 K. This is in contrast to β - Ba_2VO_4 which displays a susceptibility maximum at ~ 11 K and pseudo-one-dimensional short-range order (2), and may be due to the increased distances between MO_4^{4-} tetrahedra in the chromium compound relative to the vanadium compound as mentioned earlier. Ba₃CrO₅. Magnetic susceptibility data of the low-temperature range for Ba₃CrO₅ are plotted in Fig. 10. There exists a relatively sharp maximum near 8 K. An attempt to fit the susceptibility data to a Heisenberg square planar lattice similar to that in Cs₃CoBr₅ was unsuccessful. Instead it most likely signals the onset of a long-range mag- Fig. 8. Field dependence of the magnetic moment of Sr₂CrO₄ at 5 K showing the absence of a spin-flop transition. Fig. 9. Temperature dependence of the inverse susceptibility of Ba₂CrO₄. netic order similar to that observed in Cs_3CoCl_5 (4, 5). This effect can be seen clearly in a plot of $d(\chi \cdot T)/dT$ vs T as shown in Fig. 10, which according to Fisher (24) has the same functional form as the magnetic heat capacity near the critical temperature T_c . The lambda (λ) shape anomaly at $T_{\rm c} \approx 8 {\rm K}$ is obvious and indicates a phase transition. The inverse susceptibility data of Ba_3CrO_5 are plotted against temperature in Fig. 11. There appears to be a change in slope at $\sim 120 \text{ K}$. The high-temperature (140–300 K) data were fitted to the Curie-Weiss law. The FIG. 10. Fisher's heat capacity obtained for Ba₃CrO₅ showing a λ anomaly at ~8 K. The corresponding sharp susceptibility maximum is shown in the insert. Fig. 11. Temperature dependence of the inverse susceptibility of Ba₃CrO₅. The calculated curve includes a TIP contribution. fittings gave $C=0.973(6)~{\rm cm^3}\cdot{\rm K/mole}$ ($\mu_{\rm eff}=2.79~\mu_{\rm B}$) and $\theta=-18.4(2)~{\rm K}$. When a temperature-independent term is included, the data between 20–300 K can be fitted to the Curie-Weiss law with $C=0.883(5)~{\rm cm^3}\cdot{\rm K/mole}$ ($\mu_{\rm eff}=2.66~\mu_{\rm B}$), $\theta=-7.4(2)~{\rm K}$, and $\chi_{\rm TIP}=1.70(2)~{\rm \times}~10^{-4}~{\rm cm}^3/{\rm mole}$. The calculated curve shown in Fig. 11 includes the TIP contribution. In view of the observation of TIP terms of similar magnitude in Sr₂CrO₄ and Ba₂CrO₄ this interpretation of the susceptibility curve seems more reasonable at present. The isostructural Cs₃CoCl₅ and Rb₃CoCl₅ Fig. 12. Field dependence of the magnetic moment of Ba_5CrO_5 showing the spin-flop transition at $H \approx 2.25$ T. are 3D Ising systems, while Cs₃CoBr₅ is a 2D Ising system (3, 5). Our magnetic data suggest that Ba₃CrO₅ is not likely an Ising system because a spin-flop transition has been observed, which is usually absent in an Ising system such as Cs₃CoBr₅ (5). The spin-flop transition is suggested by the change in slope at $\sim 2.25 \, \mathrm{T}$ in the field dependence of the magnetic moment of Ba₃CrO₅ (Fig. 12). Also the shape of the Fisher heat capacity, Fig. 10, indicates the absence of short-range correlations above the lambda anomaly. This suggests strongly that Ba₃ CrO₅ is a 3D system like Cs₃CoCl₅. The proposed magnetic structure for the 3D Cs₃CoCl₃ is that there are four nearest neighbors coupled antiferromagnetically in the crystallographic ab plane and two nearest neighbors coupled ferromagnetically between the planes (5), but there are no neutron results to support this. Ba₃VO₅. The unavailability of sufficiently pure Ba₃VO₅ specimens prevented obtaining reliable magnetic susceptibility data for Ba₃VO₅. A small hump at ~55 K was visible as shown in Fig. 13, which is probably an indication of a similar transition to that of Ba₃CrO₅. However, data from better quality specimens are necessary to give any meaningful interpretation of the origin of this local maximum. In summary, the magnetic behavior of Sr_2CrO_4 is more complicated than the isostructural β - Sr_2VO_4 , and its magnetic inter- Fig. 13. Temperature dependence of the magnetic susceptibility of Ba_3VO_5 showing a hump at \sim 55 K. actions are extended into longer ranges probably due to the elongation of the Cr(2)–O(3) bridge. Ba_3CrO_5 undergoes a long-range magnetic order at a rather high temperature compared to those of isostructural Cs_3CoX_5 (X = Cl, Br) and Rb_3CoCl_5 (all below 1.2 K). Thus Ba_3CrO_5 seems to be an appropriate candidate for the elucidation of the magnetic structure of the Cs_3CoCl_5 -type compounds by low-temperature magnetic neutron scattering. ### Acknowledgments The financial support of the Natural Science and Engineering Research Council of Canada and the Ontario Centre for Materials Research is acknowledged gratefully. We thank Professor C. V. Stager for use of the magnetometer. #### References - Wenhe Gong, J. E. Greedan, Guo Liu, and M. Bjorgvinsson, J. Solid State Chem. 95, 213 (1991). - Guo Liu and J. E. Greedan, J. Solid State Chem. 103, 228 (1993). - H. W. J. BLÖTE AND W. J. HUISKAMP, Phys. Lett. A. 29, 304 (1969). - R. F. WIELINGA, H. W. J. BLÖTE, J. A. ROEST, AND W. J. HUISKAMP, *Physica* 34, 223 (1967). - K. W. Mess, E. Lagendijk, D. A. Curtis, and W. J. Huiskamp, *Physica* 34, 126 (1967). - 6. KARL-AXEL WILHELMI, Ark. Kemi. 26, 157 (1966). - R. SCHOLDER AND G. SPERKA, Z. Anorg. Allg. Chem. 285, 49 (1956). - R. J. HILL AND C. J. HOWARD, Australian Atomic Energy Commission Report No. M112, Lucos Heights Research Laboratories, New South Wales, Australia (1986). - D. B. WILES AND R. A. YOUNG, J. Appl. Crystallogr. 14, 149 (1981). - J. N. REIMERS, J. E. GREEDAN, AND M. SATO, J. Solid State Chem. 72, 390 (1988). - V. F. SEARS, in "Methods of Experimental Physics" (K. Skold and D. L. Price, Eds.), Vol. 23a, p. 521, Academic Press, San Diego (1986). - Powder Diffraction File Card 33-1324. JCPDS: International Centre for Diffraction Data, 1601 Park Lane, Swarthmore, PA 19081. - P. W. J. Jansen, U. Spitsbergen, and P. M. De Wolff, Recl. Trav. Chim. 84, 821 (1965). - P. E. WERNER, L. ERIKSSON, AND M. WESTDAHL, J. Appl. Crystallogr. 18, 367 (1985). - J. J. RITTER, R. S. ROTH, AND J. E. BLENDELL, J. Am. Ceram. Soc. 69, 155 (1986); Powder Diffraction File Card 38-1481. JCPDS: International Cen- 751 (1976). - tre for Diffraction Data, 1601 Park Lane, Swarthmore, PA 19081. - 16. K. Yvon, W. Jeitschko, and E. Parthé, J. Appl. Crystallogr. 10, 73 (1977). - 17. M. T. ROBINSON, J. Phys. Chem. 62, 925 (1958). - 18. B. N. Figgis, M. Gerloch, and R. Mason, Acta Crystallogr. 17, 506 (1964). - 19. M. CATTI, G. GAZZONI, AND G. IVALDI, Acta Crystallogr. Sect. C 39, 29 (1983). - 20. J. A. Bland, Acta Crystallogr. 14, 875 (1961). - 21. R. D. SHANNON, Acta Crystallogr. Sect. A 32, - 22. I. VASILEVESKY, N. R. ROSE, R. STENKAMP, AND R. D. WILLETT, Inorg. Chem. 30, 4082 - (1991).23. C. J. O'CONNOR, Prog. Inorg. Chem. 29, 203 - (1982). - 24. M. E. FISHER, Philos. Mag. 7, 1731 (1962).