Electroless Deposition of LaMnO₃ Perovskite Film on Yttria Stabilized Zirconia Substrate

TAKESHI SASAKI, YASUMICHI MATSUMOTO, AND JUKICHI HOMBO

Department of Applied Chemistry, Faculty of Engineering, Kumamoto University, Kurokami 2-39-1, Kumamoto 860, Japan

AND MASANORI NAGATA

Kumamoto Industrial Research Institute, Higasimachi 3-11, Kumamoto 862, Japan

Received June 25, 1992; accepted November 11, 1992

Electroless deposition of LaMnO₃ precursors on YSZ substrate from a solution containing Mn²⁺, La³⁺, and an oxidizing agent was investigated. Peroxydisulfate was used as the oxidizing agent. Pretreatment of the substrate, sensitization in a solution of SnCl₂, and activation in a solution of PdCl₂ were necessary for deposition of the oxide film. The La/Mn atomic ratio in the oxide film increased with increases in the [La³⁺]/[Mn²⁺] ratio and in the pH of the solution. The additives CH₃COONa and AgNO₃ in the solution improved the incorporation of La³⁺ ion into the oxide film during the electroless deposition and the adhesion of the as-deposited oxide film on YSZ. It was judged from the cyclic voltammetry of the as-deposited oxide film and from XPS, IR and XRD measurements that the as-deposited oxide film on YSZ was amorphous hydrous MnO₂ which contained La³⁺ ions by specific adsorption. La³⁺ ions existed in a state similar to that in La₂O₃, according to an XPS measurement. La_{1-x}MnO₃ perovskite film (x = 0.85, 0.96) was prepared by heat treatment of the deposited oxide film at 800°C for 5 hr. The mechanism of the electroless deposition of the LaMnO₃ precursor is discussed. © 1993 Academic Press, Inc.

Introduction

Some complex oxide films can be prepared using electrochemical oxidation. We have electrochemically synthesized perovskite oxides, LaMnO₃ (I-3) and LaCoO₃ (4), where metal cations such as Mn²⁺ and Co²⁺ are electrochemically oxidized in solutions containing La³⁺, followed by some chemical reactions with H₂O and La³⁺.

The process using electrochemical oxidation will be very useful for the preparation of the complex oxide film, compared with other methods such as CVD and spattering, since the film can be prepared easily using a simple apparatus and under simple conditions. However, the substrate will be restricted to a conductor, because of a need for an external electrical current to the electrode substrate.

Some metal oxide films such as PbO₂ (5), MnO₂ (6), Tl₂O₃ (6), and NiO (7) have been electrolessly deposited on glass in solutions containing metal cations, where they are oxidized in heterogeneous reactions by an oxidizing agent, peroxydisulfate. In these cases, metal oxide films will also be formed by similar electrochemical reactions to those in anodic oxidation. Therefore a complex oxide film can be electrolessly deposited on a dielectric substrate, if the solution contains other metal cations and a suitable oxidizing agent.

LaMnO₃ is suitable as an air electrode material for high temperature solid oxide fuel cells (SOFC) because of its chemical

256 SASAKI ET AL.

stability at high temperature, electrocatalytic properties, high electron conductivity, and thermal expansion match with the solid oxide electrolyte yttria stabilized zirconia (YSZ) (8). Some preparation methods for LaMnO₃ on YSZ have been studied (9).

It is known that a manganese dioxide film can be electrolessly deposited in a solution containing Mn²⁺ and S₂O₈²⁻ (6). Therefore, it may be also possible to deposit LaMnO₃ film on YSZ, if the solution containing both metal cations of Mn²⁺ and La³⁺ is oxidized by a oxidizing agent, peroxydisulfate. In this paper, electroless deposition of LaMnO₃ perovskite film on YSZ substrate is demonstrated and its mechanism is discussed.

Experimental

Substrates, 3 mol% Y₂O₃-ZrO₂ disks (14 mmø and 0.5 mm thick), were soaked in 46% HF for 5 min for cleaning and etching the surface. After rinsing in water, these were sensitized in 10 g/liter SnCl₂ + 40 ml/ liter HCl solution for 5 min, followed by activation in 2 g/liter PdCl₂ + 20 ml/liter HCl solution for 3 min. The sensitization and the activation were necessary for the deposition of the oxide film on YSZ. After these pretreatments, the substrate was immersed with a vertical position in a mixed solution of La(NO₃)₃, Mn(NO₃)₂, and $(NH_4)_7S_2O_8$, in which the concentrations of $La(NO_3)_3$, and $(NH_4)_2S_2O_8$ were fixed at 0.5 and 0.167 M respectively and the Mn(NO₃)₂ concentration was changed from 0.0005 to 0.05 M. CH₃COONa and AgNO₃ were added to the solution as supporting electrolyte and catalyst for the persulfate oxidation, respectively. The AgNO3 concentration was fixed at $5 \times 10^{-6} M$ and the CH₃COONa concentration was changed from 0.05 to 1.5 M. The pH of the solution was adjusted to 4-6 by 0.01 M NaOH or 0.01 M HNO₃ titration. After an induction time of several hours, the solution gradually turned brown, and after 24 hr a compact and continuous oxide film was precipitated on the substrate. The induction time for the electroless deposition of oxide film was usually 24 hr. It should be noted that no precipitation of the oxide in the solution containing acetate ions was observed, and the color of the solution remained clear brown even after several days.

Pt plats (99.9%, 10×10 mm) were used as working and counter electrodes for the current/potential measurements, and a Ag/AgCl electrode was used as the reference. Electrode potential was referred to Ag/AgCl unless otherwise stated. Stationary current was measured after the electrode was polarized for a few decades of seconds. All experiments were carried out at room temperature.

The as-deposited oxide films prepared on YSZ were washed by immersion in distilled water for 1 min, followed by drying at room temperature. The as-deposited oxide films were examined by infrared absorption spectroscopy (IR) and X-ray photoelectron spectroscopy (XPS). All the samples were heated in air at 800°C for 5 hr for the purpose of crystallization, since the as-deposited oxide films were always amorphous. The structures of the oxide films after the heattreatment were examined by X-ray diffraction analysis (XRD) using monochromatic $CuK\alpha$ radiation. The oxide films were dissolved in HCl and then analyzed by inductively coupled plasma (ICP) spectroscopy to determine the La/Mn atomic ratios in the oxide films. Morphological observations of the oxide films were carried out with a scanning electron microscope (SEM).

Results and Discussion

Figure 1 shows typical stationary current/potential curves in the solutions, which demonstrate the mixed potential $E_{\rm MP}$ on the electroless deposition. Curve 1 was measured in the mixed solution of 0.5 M La(NO₃)₃-0.0005 M Mn(NO₃)₂ at pH 6. In this solution, anodic current is observed at the more positive potential than 0.6 V,

which is due to the formation of MnO₂. The anodic reaction is

$$Mn^{2+} + 2H_2O \rightarrow MnO_2 + 4H^+ + 2e^- + 2$$
 (1)

with the adsorption of La³⁺ ion onto the oxide, as stated in Ref. (1). Curve 2 was measured in 0.167 M (NH₄)₂S₂O₈ at pH 6. Cathodic current was observed at the more negative potential than 0.95 V, which result from the reduction of S₂O₈²⁻, i.e.,

$$S_2O_8^{2-} + 2e^- \rightarrow 2SO_4^{2-}$$
. (2)

The mixed potential E_{MP} demonstrated by the current/potential curves was in the region 800 to 950 mV for all the solutions used for the experiments. The potential during the electroless deposition of the oxide films on Pt electrode was measured to be in this potential region, suggesting that the anodic and the cathodic partial reactions are based on reactions (1) and (2), respectively. The solution containing CH3COONa changed color to clear brown without precipitation of the oxide in it during the electroless deposition, suggests that other anodic partial reactions to form the highly oxidized manganese complex ions maybe also exist during the electroless deposition. Perhaps ligands

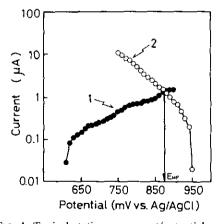


FIG. 1. Typical stationary current/potential curves of Pt electrode in solutions at pH = 6. Curves 1 and 2 were measured in solutions of $0.5 M \operatorname{La(NO_3)_3-0.0005} M \operatorname{Mn(NO_3)_2}$ and of $0.167 M (\operatorname{NH_4)_2S_2O_8}$, respectively. E_{MP} denotes the mixed potential on the electroless deposition of the oxide film.

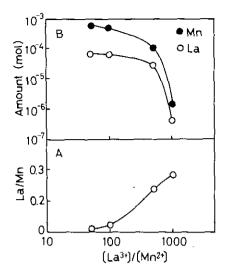


Fig. 2. La/Mn atomic ratio (A) and amounts of Mn and La (B) in the oxide film deposited on YSZ as a function of the $[La^{3+}]/[Mn^{2+}]$ ratio in the solution.

such as CH_3COOO^- , NO_3^- , $S_2O_8^2^-$, and SO_4^{2-} in the solution contribute to the formation of the complex ions.

Figures 2A and B show the La/Mn atomic ratio and the amounts of Mn and La in the oxide film deposited on the YSZ as functions of the $[La^{3+}]/[Mn^{2+}]$ ratio in the solution without the additives such as CH3COONa and AgNO₃, where the La³⁺ concentration was fixed at 0.5 M. The La/Mn atomic ratio in the oxide film increases, while the amounts of Mn and La in the oxide film decreases, with an increase in the [La³⁺]/ [Mn²⁺] ratio in the solution. This phenomenon is similar to the case of the oxide films prepared by electrochemical oxidation (1). Figure 3 shows the pH dependence of the La/Mn atomic ratio in the oxide film deposited in the solution with $[La^{3+}]/[Mn^{2+}]$ ratio of 0.5 M/0.0005 M, which did not contain CH₃COONa and AgNO₃. The La/Mn atomic ratio in the oxide film increases with an increase in the pH of the solution. Such a pH dependence of the La/Mn atomic ratio in the oxide film was not observed in the case of the oxide film prepared by electrochemical oxidation. These results suggest that the La is incorporated into the oxide 258 SASAKI ET AL.

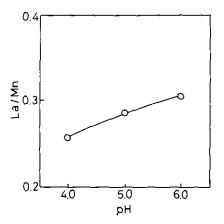


Fig. 3. pH dependence of the La/Mn atomic ratio in the oxide film deposited from the solution of 0.5 M La(NO₃)₃-0.0005 M Mn(NO₃)₂-0.167 M (NH₄)₂S₂O₈.

films deposited on YSZ in a slightly different manner from that of the oxide film prepared by electrochemical oxidation, where La3+ ions were incorporated into the oxide film by adsorption with the weak chemical bond (1). The La/Mn atomic ratios of the oxide films deposited in the solution without CH3COONa and AgNO3 never went over 0.35. Consequently, the effect of the additives such as CH₃COONa and AgNO₃ on the incorporation of La into the oxide films was determined for the solution with the $[La^{3+}]/[Mn^{2+}]$ ratio of 0.5 M/0.0005 M at pH = 6. Figures 4A and B show the La/Mn atomic ratio and the amounts of Mn and La in the oxide film as a function of the CH₃COONa concentration in the solution. The La/Mn atomic ratio in the oxide film increases, while the amounts of Mn and La in the oxide film decrease with an increase in the concentration of CH₂COONa. Perhaps the formation of the complex ions by reaction with CH₃COO⁻ may suppress the deposition of the oxide, resulting in the slow deposition of MnO₂. This may contribute to the improvement of the incorporation of La³⁺ ion into the oxide film. In the case of the oxide films electrolessly deposited in the solution containing AgNO₃, the La/Mn atomic ratio in the oxide film became progressively greater as shown in Fig. 4A. It is well known that Ag+ is the catalyst for the

persulfate oxidation, where Ag+ is oxidized by $S_2O_8^{2-}$ and the generated Ag^{3+} acts as an oxidizing agent. The pH of the solution containing AgNO₃ before the pH adjustment was always higher than 6.0. The rise in pH of the solution may also contribute to the improvement of the incorporation of La³⁺ ion into the oxide film. These results indicate that additives such as CH3COONa and AgNO₃ improve the incorporation of La³⁺ ion into the oxide film. These additives have also improved the adhesion of the as-deposited oxide film onto the substrate. However, the details of these mechanisms have not been clear. As can be seen from Fig. 4A, the oxide films with La/Mn atomic ratio of 0.8 to 1.0 are electrolessly deposited, which are expressed as La_{1-x}MnO₃ precursor because of the nonstoichiometry of the LaMnO₃ perovskite (1θ).

Figure 5 shows a typical cyclic voltammogram of the $La_{1-x}MnO_3$ precursor film elec-

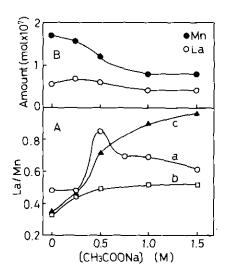


Fig. 4. La/Mn atomic ratio (A) and amounts of Mn and La (B) in the oxide film deposited in the various solutions, in which the concentrations of Mn(NO₃)₂, La(NO₃)₃, and (NH₄)₂S₂O₈ were 0.0005, 0.5, and 0.167 M, respectively, as a function of CH₃COONa concentration in the solution. a and b denote solutions with $5 \times 10^{-6} M$ AgNO₃ at pH = 6 and with no AgNO₃ at pH = 6, respectively. c denotes the solution containing $5 \times 10^{-6} M$ AgNO₃ whose pH was not adjusted. Amounts of Mn and La were illustrated only for the oxide film in solution a.

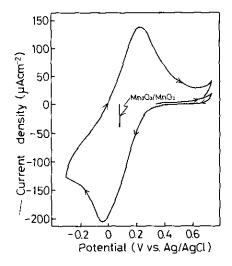


Fig. 5. Voltammogram of the La_{0.85}MnO₃ precursor film on the Pt electrode in 0.05 M NaOH, which was prepared in a solution of 0.5 M La(NO₃)₃-0.0005 M Mn(NO₃)₂-0.167 M (NH₄)₂S₂O₈-0.5 M CH₃COONa-5 × 10⁻⁶ M AgNO₃ at pH = 6.

trolessly deposited on the Pt electrode in 0.05 M NaOH (pH = 12.5), where the equilibrium potential of Mn₂O₃/MnO₂ (0.09 V) is also shown. The La_{0.85}MnO₃ precursor was prepared in a mixed solution of 0.5 M $La(NO_3)_3-0.0005$ M $Mn(NO_3)_2-0.167$ M $(NH_4)_2S_2O_8-0.5 M CH_3COONa-5 \times 10^{-6}$ $M \text{ AgNO}_3$ at pH = 6, whose La/Mn atomic ratio was 0.85, as shown in Fig. 4A. In the first potential sweep from the rest potential (0.35 V) to 0.75 V, no other anodic current is observed except for the current caused by the evolution of O₂. In the subsequent potential sweep, both anodic and cathodic currents are observed and its redox potential agrees with the equilibrium potential of Mn₂O₃/MnO₂, indicating that Mn in the $La_{1-r}MnO_3$ precursor exists as MnO₂. This result is supported by XPS measurement of the La_{0.85}MnO₃ precursor, whose binding energy of Mn2p_{3/2} level of 641.9 eV reflects that of Mn4+. In the infrared absorption measurement of the La_{0.85}MnO₃ precursor on YSZ, a small absorption band based on the O-H bending vibration in the adsorbed water was observed at 1600 cm⁻¹, suggesting that the La_{0.85}MnO₃ precursor consists of hydrous MnO₂ containing La³⁺ ions.

The amorphous LaMnO₃ precursor on the Pt electrode prepared using electrochemical oxidation at room temperature was determined to be an amorphous $MnO_{2-\delta}$ containing La(OH)₃ and water (1). However, it is judged from the following result that the state of La in the La_{1-x}MnO₃ precursor deposited on YSZ is different from that in the above $MnO_{2-\delta}$. La in the $La_{1-x}MnO_3$ precursor deposited on YSZ is hardly released into water by immersion in water for 30 min, while that in the LaMnO₃ precursor electrochemically prepared on the Pt electrode is easily released by this immersion (1), suggesting that the La3+ ions in the electrolessly deposited oxide film strongly combine with hydrous MnO₂. The XPS spectra of $La3d_{5/2}$ in the $La_{0.85}MnO_3$ precursor and La₂O₃ are shown in Fig. 6. The binding energies in the La_{0.85}MnO₃ precursor on YSZ of 838.2 eV and 834.6 eV were close to those in La₂O₃ of 838.0 eV and 834.9 eV, suggesting that La in the La_{0.85}MnO₃ precursor on the YSZ exist in a state similar to that in La_2O_3 .

Figures 7A and B show the La/Mn atomic ratio and the amounts of La and Mn in the oxide film deposited on YSZ as functions of the induction time for the electroless deposition of the oxide film, where the oxide films were deposited in the mixed solution of 0.5

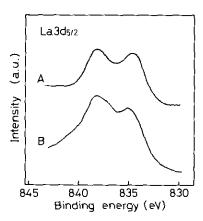


FIG. 6. XPS spectra of La3 $d_{S/2}$ in the La_{0.85}MnO₃ precursor (A) and La₂O₃ (B). The La_{0.85}MnO₃ precursor was prepared in a solution of 0.5 M La(NO₃)₃–0.0005 M Mn(NO₃)₂–0.167 M (NH₄)₂S₂O₈–0.5 M CH₃COONa-5 × 10⁻⁶ M AgNO₃ at pH = 6.

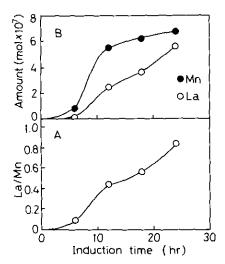


Fig. 7. La/Mn atomic ratio (A) and amounts of Mn and La (B) in the oxide film deposited in the solution of 0.5 M La(NO₃)₃-0.0005 M Mn(NO₃)₂-0.167 M (NH₄)₂S₂O₈-0.5 M CH₃COONa-5 × 10⁻⁶ M AgNO₃ at pH = 6 as a function of the induction time for the electroless deposition of the oxide film.

 $M \text{ La(NO}_3)_3 - 0.0005 M \text{ Mn(NO}_3)_2 - 0.167 M$ $(NH_4)_2S_2O_8-0.5 M CH_3COONa-5 \times 10^{-6}$ $M \text{ AgNO}_3$ at pH = 6. The La/Mn atomic ratio in the oxide film increases with the induction time. However, the amount of Mn in the oxide film is saturated after 12 hr, while the amount of La in the oxide film increases even after 12 hr. In order to evaluate the contribution of simple adsorption of La³⁺ ion to the incorporation, MnO₂ films prepared on the YSZ in the mixed solution of 0.005 M Mn(NO₃)₂-0.167 M (NH₄)₂S₂O₈ at pH = 6 were immersed in $0.5 M \text{ La}(\text{NO}_3)_3$ at pH = 6 for 1-24 hr. La/Mn atomic ratios of the above oxide films were always 0.12 ± 0.02 . These results suggest that the incorporation of La³⁺ ion into the oxide films is mainly based on specific adsorption, while the contribution of the simple adsorption of La³⁺ on the oxide films to the incorporation is very small. It should be noted that the incorporation of La³⁺ ion into the oxide film depends on the pH in the solution, as shown in Fig. 3. This phenomenon was also observed in the case of the oxide film deposited on YSZ in the solution containing CH₃COONa and AgNO₃. It is known that manganese dioxide has an ion-exchange property, where the some metal cations were exchanged for H⁺ ions on the MnO₂ (11, 12). The amount of adsorbed metal cations on MnO2 depends on the pH of the solution, as well as our case as shown in Fig. 3. Thus, the incorporation of La³⁺ ions into the oxide film may be based on ion exchange, where La3+ ions in the solution were exchanged for H⁺ ions on the deposited MnO₂. Consequently, the formation of La_{1-x}MnO₃ precursor on YSZ occurs through two steps as follows. The first step is the formation of MnO₂ resulting from the oxidation of Mn²⁺ by peroxydisulfate; i.e. reactions (1) and (2) proceed, where the bonding water in the MnO₂ is neglected, but the MnO₂ in the oxide film must have some water. The second step is the incorporation of La³⁺ ion into the amorphous and hydrous MnO₂ by an ion-exchange reaction,

$$Mn_2O_4nH_2O + 2(1-x)La^{3+}$$

 $\rightarrow Mn_2O_4(2n-3+3x)H_2O (3-3x)O$
 $(2-2x)La + 3(1-x)H^+, (3)$

where x must be 0.15 and the value of n is not apparent as for the La_{0.85}MnO₃ precursor deposited in the mixed solution of 0.5 M La(NO₃)₃-0.0005 M Mn(NO₃)₂-0.167 M (NH₄)₂S₂O₈-0.5 M CH₃COONa-5 × 10⁻⁶ M AgNO₃ at pH = 6.

SEM micrographs of the La_{0.85}MnO₃ precursor on YSZ (A) and film after heat treatment at 800°C for 5 hr (B, C) are shown in Fig. 8. The La_{0.85}MnO₃ precursor consists of $0.5-1.0 \mu m$ grains, but was determined to be amorphous by X-ray analysis. The grain size and the thickness of the heat-treated film were about $0.2-0.5 \mu m$ and $1.0 \mu m$, respectively. The x-ray diffraction pattern of the oxide film on YSZ heat-treated at 800°C for 5 hr is shown in Fig. 9. The oxide film consists of a perovskite single phase, which was prepared by heat treatment of the precursor at a lower temperature than the preparation temperature (ca. 1200°C) in the ceramic technique. LangeMnO₃ porovskite film was also prepared by heat treat-

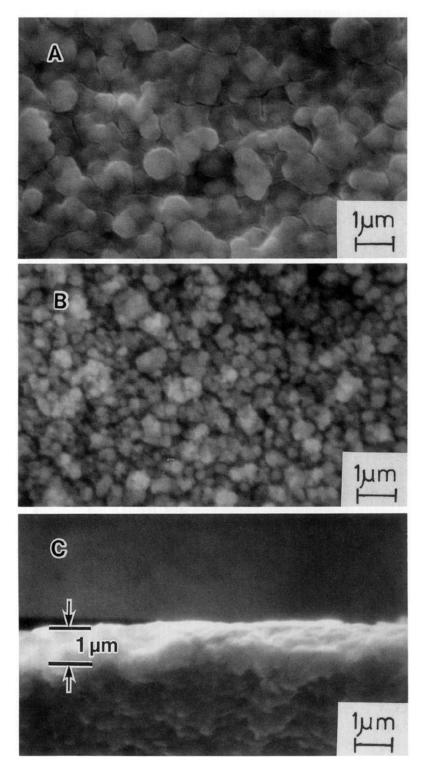


FIG. 8. SEM micrographs of La_{0.85}MnO₃ precursor (A) and La_{0.85}MnO₃ perovskite (B, C) prepared by heat treatment of the La_{0.85}MnO₃ precursor at 800°C for 5 hr. The La_{0.85}MnO₃ precursor was prepared in a solution of 0.5 M La(NO₃)₃-0.0005 M Mn(NO₃)₂-0.167 M (NH₄)₂S₂O₈-0.5 M CH₃COONa-5 \times 10⁻⁶ M AgNO₃ at pH = 6.

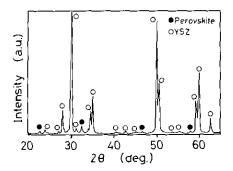


Fig. 9. X-ray diffraction pattern of the $La_{0.85}MnO_3$ perovskite film on YSZ which was prepared in a solution of 0.5 M La(NO₃)₃-0.0005 M Mn(NO₃)₂-0.167 M (NH₄)₂S₂O₈-0.5 M CH₃COONa-5 \times 10⁻⁶ M AgNO₃ at pH = 6 and then heated at 800°C for 5 hr.

ment of La_{0.96}MnO₃ precursor, which was deposited from the mixed solution of 0.5 $M \text{ La(NO}_3)_3 = 0.0005 \ M \text{ Mn(NO}_3)_2 = 0.167 \ M$ $(NH_4)_2S_2O_8-1.5 M CH_3COONa-5 \times 10^{-6}$ M AgNO₃ at pH \approx 6.9. The thickness of La_{0.96}MnO₃ perovskite film was very thin compared with that of La_{0.85}MnO₃ perovskite film, since the deposited amount of the La_{0.96}MnO₃ precursor was less than that of La_{0.85}MnO₃ precursor. Thus, a thin film of $La_{1-x}MnO_3$ perovskite on YSZ was easily prepared by the present method, and its composition could be controlled by the composition of the solution and/or some additives. Therefore the present method will be very useful for the preparation of La_{1-x} MnO₃ electrodes in SOFC. A study of the capabilities of the oxide film prepared by the present method as an air electrode in SOFC is in progress.

Summary

The oxidation of the mixed solution of Mn(NO₃)₂-La(NO₃)₃ with peroxydisulfate resulted in the formation of the oxide. The oxide film was deposited only on the YSZ substrate sensitized in a solution of SnCl₂ and activated in a solution of PdCl₂. The atomic ratio of La/Mn in the oxide film increased with increases in the [La³⁺]/[Mn²⁺] ratio and in the pH of the solution. The oxide

film with an La/Mn atomic ratio of 0.8-1.0 (La_{1-x}MnO₃ precursor) was electrolessly deposited in a solution containing both CH₃COONa and AgNO₃. These additives improved the incorporation of La³⁺ ion into the oxide film and the adhesion of the asdeposited oxide film on YSZ. From cyclic voltammetry of the as-deposited oxide film, XPS, IR, and XRD measurements indicated that the La_{1-x}MnO₃ precursor was amorphous hydrous MnO₂ which contained La³⁺ ions by specific adsorption. It can be presumed that the La³⁺ ion was incorporated into amorphous hydrous MnO₂ by an ionexchange reaction, where La³⁺ ion in the solution is exchanged for H+ ions on the electrolessly deposited MnO₂. La_{0.85}MnO₃ perovskite film (1.0 μ m thick) was prepared by heat treatment of the electrolessly deposited oxide film with La/Mn = 0.85 at $800^{\circ}C$ for 5 hr. The grain size of its film was 0.2-0.5 μm. La_{0.96}MnO₃ perovskite film was also prepared by the same method.

Acknowledgment

The authors are grateful for the ICP analysis carried out by the laboratory of Professor H. Egawa and Professor A. Jyo, and the IR measurement carried out by the laboratory of Professor I. Taniguchi.

References

- T. SASAKI, Y. MATSUMOTO, J. HOMBO, AND Y. OGAWA, J. Solid State Chem. 91, 61 (1991).
- T. Sasaki, T. Morikawa, J. Hombo, and Y. Matsumoto, Denki Kagaku 58, 567 (1990).
- 3. Y. MATSUMOTO, T. SASAKI, AND J. HOMBO, J. Electrochem. Soc. 138, 1259 (1991).
- Y. Matsumoto, T. Sasaki, and J. Hombo, *Inorg. Chem.* 31, 738 (1992).
- 5. W. MINDT, J. Electrochem. Soc. 117, 615 (1970).
- 6. W. MINDT, J. Electrochem. Soc. 118, 93 (1971).
- P. PRAMANIK AND S. BHATTACHARYA, J. Electrochem. Soc. 137, 3869 (1990).
- A. HAMMOUCHE, E. SIEBERT, AND A. HAMMOU, Mater. Res. Bull. 24, 367 (1989).
- H. MICHIBATA, T. NAMIKAWA, AND Y. YAMA-ZAKI, Denki Kagaku 57, 1010 (1989).
- H. Yokokawa, N. Sakai, T. Kawada, and M. Dokiya, *Denki Kagaku* 58, 162 (1990).
- 11. A. Kozawa, J. Electrochem. Soc. 106, 552 (1959).
- M. TSUJI AND M. ABE, Bull. Chem. Soc. Jpn. 58, 1109 (1985).