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We describe the development of a three-dimensional (3D) model which provides a simple explanation
of virtually all the features that occur in the complex diffuse X-ray diffraction patterns of an yttna-
stabilized cubic zirconia. The model consists of two stages: a scheme for ordering the oxygen vacancigs,
followed by the relaxation of the cations around these vacancies, Monte Carlo simulation is used in
both these stages, followed by direct computation of the diffraction patterns from the resuiting lattice
realizations. The model which at present best fits the observed scattering patterns is one in which the
oxygen vacancies order in such a way as {o avoid nearest-neighbor %1 0 0} pairs, next-nearest 3{1 1 0}
pairs, and third-nearest (1 1 1) pairs across empty cubes of oxygens, but allows third-nearest {1 1 1)
pairs across cubes of oxygens containing the cations. These vacancy pairs, which essentially provide
octahedral coordination of the enclosed cation, are therefore present almost entirely as either single
isolated octahedra or neighboring {1 1 0} pairs of octahedra. A comparison of the diffuse patterns with

those from a calcia-stabilized zirconia is made.

1. Introduction

In a previous paper (/) we reported the
experimental measurement and preliminary
interpretation of the complex diffuse X-ray
scattering patterns that were obtained from
an ytiria-stabilized cubic zirconia (Y-CSZ)
of composition Zryg Ygi3 O s (space
group Fm3m, a = 5.175 A). In Figs. la—Ic
we reproduce for convenience the 0.1¢* and
0.5¢c* sections of the observed data and also
show more recently collected data obtained
from the A,k,!, (h + k + 1) = 0.5 reciprocal
section. Of all the recorded sections, these
latter two appear to be the most informative.
For comparison we also show recently re-
corded data from the same reciprocal sec-
tions of a calcia-stabilized zirconia, compo-
sItion Zry g75 Cag 15 Oy 475 -

Our approach in trying to understand
these complex diffraction patterns in CS5Zs
is dictated by the simple fact that for Y-CSZ
cation-ordering is not directly observable in
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the diffraction experiment, because of the
similarity of the scattering powers of Y and
Zr. Even for Ca-CS8Zs the diffraction pat-
terns are so similar in form to those for Y-
(CS57s that it is clear that, for this system
too, the direct diffraction-contrast between
the cations is still a relatively unimportant
component of the scattering. The Laue
monotonic  scattering for the oxygen/
vacancy disorder may be shown by simple
calculation to be similarly relatively unim-
portant, and so we may therefore assume
that the diffraction patterns arise¢ almost en-
tirely from cation displacements due to
strains induced by the disorder. It is the aim
of the present work to formulate a model
for these strain fields from which inferences
can be made regarding the distribution of
oxygen vacancies and of the two types of
cation. To do this we utilize a two-stage
process in which a distribution of oxygen
vacancies is first set-up and then subse-
quently the cations are allowed to relax
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FiG. 1. Sections of the 3D diffuse X-ray diffraction patterns of yttria-stabilized cubic zirconia (a,
b, ¢) and calcia-stabilized cubic zirconia (d, e, f). The sections are: (a, d), ik, 0.1; (b,e), h,k,0.5;
(a,d), h,k1(h + k + 1) = 0.5. The maximum value of the diffraction angle shown is ~117° of 28. The
sections were recorded using a position sensitive linear detector. The digital data are displayed as
gray-scale images to facilitate visual comparison with the calculated patterns of Fig. 8.
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around them. The diffraction pattern of such
a distribution may then be computed for
comparison with the observed X-ray diffrac-
tion patterns. We do not wish to imply that
this describes the sequence of events in the
formation of CSZs in nature, for it is more
likely that ordering of the cations drives the
ordering of the vacancies. It is simply a
means to an end. By this means we are able
to investigate how different distributions of
vacancies affect the diffraction patterns,
and similarly how different ways in which
the cations may relax around the vacancies
also affect the diffraction patterns.

In our previous study it was shown that
most of the characteristic features of the
observed diffraction pattern could be repro-
duced by a simple model, representing one
two-dimensional {2D) layer of the structure,
in which local distortions were imposed ac-
cording to the rule that the distance between
neighboring cations along {110) directions
was increased if either of the two bridging
oxygens was missing and relatively de-
creased if both were present. These size-
effect-like distortions give rise to a number
of very characteristic features in the diffrac-
tion patterns. The most important of these
is a set of dark lines (actually planes normal
to {110). This has been attributed (2) to the
correlations that are induced, by the local
distortions, between the displacements of
cations running in chains along the {110} di-
rections. A second prominent feature of the
patterns is the bow-tie-shaped regions of
scattering, present in some reciprocal sec-
tions. These have been found to be closely
associated with the same correlated dis-
placements of cations (2). A particularly im-
portant consequence of these bow-tie fea-
tures is that their polarity or azimuthal
variation of intensity indicates that a local
expansion of the lattice along [1 1 0] say is
accompanied by a contraction along
[1 —1 0]. For this condition to be satisfied
for the proposed relaxation mechanism, it
is necessary that nearest-neighbor (3(1 0 0))
oxygen vacancies be avoided. Although the
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observed scattered intensity is purely dis-
placive in origin, the details of the patterns
were found to be very sensitive to the oxy-
gen vacancy ordering scheme. In particular
the diffuse peaks that occur in the vicinity
of the G + ¥11 I} reciprocal position
(where G is a reciprocal lattice vector) must
result indirectly from short-range ordering
of the vacancies.

Although in our previous study much was
learned of the origins of the different fea-
tures of the diffraction patterns using the 2D
single-layer model, a completely satisfac-
tory description of the ordering was not
forthcoming, and moreover it was unclear
how the basic ideas encompassed in the 2D
model could be incorporated into a fully 3D
one. In the present paper we describe subse-
quent work in which we have extended the
ideas developed in the earlier paper to ob-
tain a 3D meodel for the vacancy ordering
and cation relaxation which can account
qualitatively for the observed diffraction
patterns. Although the main purpose of this
paper is to present a description of this 3D
model, the further development of the 2D
model provided the crucial clues which led
to the 3D model and we first describe these
developments. As before, we use Monte
Carlo methods to obtain realizations of a
model and then directly compute its diffrac-
tion pattern using the algorithm developed
by Butler and Welberry (3), for comparison
with the observed patterns.

2. Two-Dimensional Simulations

In our previous paper (/) we used a 2D
model system as shown in Fig. 2. The main
reason for using such a simplified represen-
tation of the cubic-stabilized zirconia struc-
ture was to reduce, to manageable propor-
tions, the length and complexity of
computer simulations. A fully realistic 3D
system using interaction potentials suffi-
ciently general to allow exploration of differ-
ent possible ordering and relaxation
schemes, and of a size sufficiently large that
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FiG. 2. The 2D model structure used in the simula-
tions.

high-quality diffraction patterns can be com-
puted, requires prohibitive computational
resources if more than a few examples are
to be produced. Consequently, we contin-
ued to use the simplified 2D system in the
present work to develop our ideas concern-
ing the origins of different features of the
diffraction pattern until such a time that we
were confident that these ideas could be
transferred into a 3D system. In this section
we describe the developments of this 2D
model which led to the formulation of a real-
istic and manageable 3D model.

The 2D model system shown in Fig. 2 may
be thought of as representing a single layer of
the stabilized zirconia structure. Each small
circle represents a superposed pair of oxygen
atoms, one above and one below the plane of
the cations {depicted by the large circles). A
black circle represents a superposed pair of
oXygen atom sites, one (at least) of which is
a vacancy. We suppose that the intercation
site vectors A-B, A-D, etc., haveadifferent
length according to whether there is an oxy-
gen vacancy (black circle) between the two
sites. This is justified on the grounds that re-
moval of an oxygen will reduce the shielding
between the positive charges on the two cat-
ions which would therefore tend to move
apart. For example in Fig. 2 we assume that
A-B would be longer than average while
A-D, B-C, D-C, etc. would be shorter than
average. The condition that nearest-neigh-
bor (3[1 0] or 30 I]) vacancies are not
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allowed, guarantees that the displacements
in the [1 1] and [1 — 1] directions around an
atom such as A are out of phase, A-B being
longer while A=D is shorter.

In order to apply this distortion we first
need to establish the distribution of oxygen
vacancies. In our previous paper this order-
ing was carried out by assigning energies to
cach of the configurations on the elementary
square, a high energy being used to exclude
unwanted configurations. We show in Fig.
3a the example G1_B (Fig. 6a of Ref. (1)),
which we considered to be the most promis-
ing of the simulations produced in this ear-
lier work. In this example the Monte Carlo
energies that were used not only guaranteed
that nearest-neighbor {1 0) vacancy pairs
were energetically unfavorable, but so were
those next-nearest-neighbor {1 1)} pairs
which included a cation. The features of this
pattern which were considered to corre-
spond well to the observed patterns {see
Fig. Ib) were:

(i} The dark lines normal to [1 1] and
[1-—-11.

(ii) The bow-rie-shaped features occurring
around the positions (02), (04), (20),
4 0), etc.

(iii) The transfer of intensity across the
dark lines, the region on the high-angle side
is always more intense than that on the low
angle side.

(iv) The broad diffuse nature of the pat-
terns, indicating a rather short range of or- ~
der, other more ordered examples displayed
more highly structured diffraction patterns.

On the other hand the feature of this pattern
which was evidently quite unsatisfactory
was the absence of the diffuse peaks that are
present int the 0.5¢* section of the observed
data. These are seen (Fig. 1b) to occur in
pairs at the extremities of the bow-tie-
shaped features, but also along rows in the
[11] and [I —1] directions as asymmetric
pairs straddling the dark lines. In the simula-
tion pattern, Fig: 3a, there is a line of re-
duced intensity at this position, indicated
by the white arrows. In order to see what
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FiG. 3. Diffraction patterns calculated from the 2D
model described in the text for the examples whose
correlation details are given in Table L. The small white
dots mark the positions of integral reciprocal lattice po-
sitions.

465

sort of vacancy ordering scheme might give
rise to peaks at this position we first consider
this example in more detail.

With reference to Fig. 2 it may be seen that
in this 2D model there are two quite distinct
sublattices of oxygen sites, The sites labeled
**2'" are seen to occur between cation sites
inthe [1 — I]direction (e.g., between A and
B), and hence only influence the atomic dis-
placements in this direction. Those labeled
**1"* on the other hand occur between cation
sites in the [1 1] direction (e.g., between A
and D) and hence only influence the atomic
displacements in this direction. The pres-
ence of two sublattices in this 2D model is
analogous to the situation in the 3D structure
of CSZs in which, although each oxygen site
istetrahedrally coordinated by 4 cation sites,
inone half of these the top edge of the tetrahe-
dron points along [1 1 0] while in the other
half the top edge points along [1 —1 0].

Since the scattering which occurs in say
the [1 — 1] direction results only from com-
ponents of displacements along [1 — 1], and
that in the [I 1] direction correspondingly
from components in the [1 1] direction, to
understand the details of the scattering in
each of these directions it is necessary to
consider the distribution of vacancies on
each individual sublattice. (The bow-tie fea-
tures visible in the [1 0] and [0 1] directions
result from the strong coupling between the
two sublattices caused by the avoidance of
nearest-neighbor vacancy pairs.) Let us de-
fine axes, wand v, on the sublattice **2°" such
that wis the vector between adjacent sublat-
tice sites in the [1 — Il direction and v s the
vector between adjacent sublattice sites in
the[l []direction. Note that only the compo-
nents of the cation displacements along
[1 — E] are affected by the “*2”" sublattice.

In Table I we give the values of correla-
tion coefficients C, ,, between sites on this
sublattice. The index n measures the dis-
tance between sites in the w direction and
m in the v direction. C, . is defined by

P, .- 0

Crm =50 =0

(1
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TABLE 1

CORRELATIONS BETWEEN SITES WITHIN ONE SUBLATTICE OF THE
OXYGEN ARRAY IN THE 2D SIMULATIONS

Nearest Second Nearest Second Between

neighbor  neighbor  neighbor neighbor two

along v along v along u along u sublattices
Fig. 3a 0.15 —-0.02 —-0.25 0.07 -0.25
Fig. 3b —-0.20 0.20 0.20 0.00 —-0.25
Fig. 3c -0.20 0.20 0.20 -0.20 —-0.25
Fig. 5 —-0.20 0.20 0.40 0.16 -0.25

Note. The diffraction patterns of the first three examples are shown in
Fig. 3. A portion of the real-space distribution of the last example is shown

in Fig. 5. Note that for a vacancy concentration ¢
negalive correlation that is possible is —8/(1 — 8) =

where P, ., is the probability that sites
separated by a vector, n,m are both vacan-
cies, and @ is the overall fraction of vacant
sites. A positive value for C, ,, indicates
that there is a greater than average likeli-
hood for two sites to be both vacant while
a negative value indicates a less than aver-
age likelihood.

One significant piece of information in
this table is that along the v direction
the nearest-neighbor correlation is positive
(0.15). This means that if there is a vacancy
in a given [1 —1] row then there will be
a more than average likelihood of there
being a vacancy at the same position in
the neighboring row. This in turn will tend
to mean that the displacements of the cat-
ions in the two rows will tend to be posi-
tively correlated also. This is the reason
for the line of low intensity in Fig. 3a. It
is consequently clear that the observed
patterns must correspond to a negative
correlation between such adjacent cation
displacements and this in turn implies that
there must be a corresponding tendency for
the vacancies to be negatively correlated in
this direction.

In view of this observation a more so-
phisticated ordering scheme was set up to
allow realizations to be produced in which
necarest-neighbor and  second-nearest-
neighbor correlations along w and v could

= 0.2, the maximum
—-0.25.

be controlled, while at the same time main-
taining the strong coupling between the two
sublattices, necessary for the exclusion of
(1 0) vacancy pairs.

2.1. 2D Vacancy Ordering Scheme

We use spin variables, a,, to represent
the occupancy of a site, a, on the oxygen
array, where o, +1 for a vacancy and
o, = —1 for an occupied site. With refer-
ence to Fig. 4 for the definition of the site
labeling around a given site, we then sup-
pose that the energy of the system is
given by,

FiG. 4. The local arrangement of variables used in
Eq. (2).
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E=2 o, [Ht oyt oyn+opmt+aw
sub 1

T Koy to)+ Koy togn)
+ Kilog t og) + Kyloy +op)l
+ 2 Cra[H+J(CTbl+0'b2+0'b3+CTM)
sub 2
+ K3(0'cl + O-CZ) + K4(Ud1 + O'dz)

+ K](Uel + 0‘:2) + Kz(o'“ + Uﬂ)] (2)

The first summation includes all site vari-
ables o, falling on sublattice *‘1’” and the
second those sites falling on sublattice *‘2,”’
Note that only the K terms link a particular
variable with variables in the same sublat-
tice, while the J term provides the coupling
to the other sublattice. The H term provides
the means of controlling the number of va-
cancies. Note also that the Ks for the two
sublattices have been interchanged to main-
tain overall square symmeiry.

The wvalues of the constants H, J, and
K; necessary to produce lattice realizations
with a given correlation structure are in
general unknown quantities. Consequently
in performing the Monte Carlo simulation
we adopted a feed-back mechanism in
which, after each cycle of iteration, lattice
averages are computed and the values of
H, J, and K; adjusted accordingly. After
a large number of Monte Carlo cycles (200
cycles were used in this case) the values
of H, J, and K, settle down to constant
values and the lattice averages reach the
desired values. This method has been used
in other studies (4) where it is described
in somewhat more detail. A Monte Carlo
cycle is defined as that number of individ-
ual steps required so that each site is
visited once on average.

We show in Figs. 3b and 3¢, for compari-
son with the original Fig. 3a, two examples
generated by the new ordering scheme. For
each of these examples we have made the
correlations in the v direction — 0.2 for the
nearest neighbor and +0.2 for the second-
nearest neighbor (see Table I also). In the
u direction the nearest-neighbor correlation
is +0.2 in each case. The only difference
between the two examples is the second-
nearest neighbor along u. For Fig. 3b the

467

value is 0.0 while for Fig. 3¢ the value is
-0.2.

We see from these figures that the inclu-
sion of the negative nearest-neighbor and
positive second-nearest-neighbor correla-
tion along u results in intensity being trans-
ferred to the positions indicated by the
arrows in Fig. 3a. For Fig. 3b this intensity
appears as a fairly weak line of intensity,
but in Fig. 3¢ distinct peaks are to be seen.
It is worth noting also that the nearest-
neighbor correlation along v has also
changed sign, compared to the example in
3a. If this correlation is maintained as nega-
tive, then putting in the new u correlations
results in intensity appearing midway be-
tween the dark lines instead of straddling
them.

Figure 3c now shows practically all of the
features observed in the real X-ray patterns.
It is of course only a 2D model and does
not take account of the fact that many of the
observed features are present in the 0.5¢*
section and not the zero-level section that
would correspond to a straight projection of
the structure. Nevertheless this 2D study
provided indispensible clues on how to pro-
ceed in formulating a 3D model.

With the small correlation values used to
produce Figs. 3b and 3c it is difficult to rec-
ognize in the disordered real-space structure
any substantive microdomains. In Fig. 5,
however, we show a portion of a further
example in which the nearest-neighbor cor-
relation along u has been increased to 0.4
and the second-neighbor to 0.16. In this real-
ization there are clearly visible microdo-
mains of a structure in which chains of va-
cancies along [1 1] {or[1 — 1])alternate with
chains of complete oxygen strings parallel
to them. Two such regions in different orien-
tations have been outlined in the figure.
These microdomains are reminiscent of
the pyrochlore structure (stoichiometry
A,B, X, Y, or A, B, 0, for oxide pyrochlores
(5)). This fact, together with the fact that in
the 3D diffraction patterns the peak features
occur in the region of the G + i1 1 1}*
reciprocal positions (where G is a reciprocal
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FIG. 5. A smal] portion of the distribution of oxygen
vacancies for the example described in the text in which
the nearest-neighbor correlation along u is 0.4, With
this degree of correlation microdomains of a pyro-
chlore-like structure (indicated) are visible. Open cir-
cles represent a superposed pair of oxygen atoms, one
above and one below the plane of the catiens (indicated
by a cross, X). Black circles represent a superposed
pair of oxygen atom sites; one of which is a vacancy.

lattice vector), and that the pyrochlore
structure is a fluorite-related structure in
which superlattice peaks are present at
G + {1 1 1}* (6), suggested that a disor-

E= S

sub1,sub2
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dered pyrochlore-like structure might be a
suitable model on which to base the 3D
structure. Our initial aim in building a 3D
model, therefore, was to generate such a
disordered pyrochlore-like structure.

3. Three-Dimensional Simulations

Following similar methods to those uti-
lized in 2D, we sought first of all to obtain
a model! for the oxygen vacancy ordering.
Spin variables, o;; ,, were used to represent
the oxygen array with o;;, = +1 to repre-
sent a vacancy and o;;, = —1 to represent
an oxygen. (i,j,k) are indexes defining the
simple primitive cubic array of O sites. For
acomplete unit cell of the stabilized zirconia
structure an increment of 2 in each of the
axial directions is required. Computer simu-
lations were carried out on an array of
64 x 64 x 64 oxygen sites corresponding
to 32 x 32 x 32 unit cells. Cyclic boundary
conditions were employed. As for the 2D
model, two distinct sublattices of oxygens
must be considered: those sites for which
i+ j+ k = even (sub 1) and those for
which i + j + k& = odd (sub 2). The energy
of interaction between sites that was used
in the Monte Carlo vacancy ordering
scheme was then of the form:

CaulH + 10y e+ e T i T 0w ¥ Tijuor + Tijper)

ookt Cirjmta T Tk T O icijere T ikt T Tiinjk-1

O T ikt VO T O T Tk T T jka)]

+ Eb] Uijk[Js(o'i—l.j—l,k—l T O gt T T ekt T 0'f-1,j+|,k—1)
Ssul

(3)

Ikt T T jok—1 T Tkt T Tirtjmnke1))

+ 2 T 3o i jrraer F Timjmrkmr T Tisp ket T Fivnjorket)
sub2

ookt Y ikt T ek T Tis a1l

J, and J, are thus seen to represent pair
interactions  between nearest-neighbor
31 0 0) and next-nearest {1 10) oxygen
sites respectively, while J; and J, are inter-
actions between third-nearest (1 1 1) sites.

Jy acts along the body-diagonal of cubes of
oxygens which contain a cation, while J,
acts along the body-diagonal of empty
cubes. H is a variable acting only on a single
site (analogous to a magnetic field in Ising
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TABLE II

VALUES FOR THE CORRELATIONS BETWEEN PAIRS OF OXYGEN SITES SEPARATED BY VARIOUS VECTORS FOR
Two EXAMPLES DESCRIBED IN THE TEXT

Model 1 Model 2
Correlation Correlation
Interaction
vector Interaction Attempted Achieved Interaction Attempted Achieved

Concentration H —-0.64 +1.26
H100] A +2.65 —~0.108 —0.105 +2.45 —0.108 —-0.106
110 I +2.58 —1.108 —0.106 +2.37 -0.108 -0.107
i J; -0.30 0.35 0.349 —4.36 0.35 0.336
11T A +2.45 —0.108 —0.106 +2.51 —0.108 0.106

[100) —0.054 -0.067
3210} —0.007 0.004
H211] —0.002 0.030

[110] Js 0.177 +1.85 0.00 0.006
H221] —~0.067 —0.080
H22 1% 0.002 0.056

{111] —0.054 —0.040

Nore. For a vacancy concentration of § =

0.0975, the maximum negative correlation possible is —@/

(1 — 8) = —0.108 which corresponds to the number of vacancy pairs being zero. Also given are the final values
obtained for the interaction parameters, H, J, J,, J,, J4, etc. (see Eq. (3)).

spin systems). This is used to control the
overall fraction of vacancies present, This
Hamiltoman may readily be modified to in-
clude longer range terms. To avoid undue
complexity in the model and to minimize
computer time the minimum number of
these has been used to date. For the first of
the examples discussed below the Hamilto-
nian was used as shown, but for the second
example one additional interaction was
added. Correlations out to the full extent of
one unit cell, i.e., {111} were, however,
monitored during the course of the va-
cancy ordering.

As for the 2D examples the interaction
parameters H, J,, J;, J;, J, are initially un-
known quantities and a similar feed-back
mechanism was employed in the Monte
Carlo process in order o achieve different
desired degrees of ordering between neigh-
boring sites. Monte Carlo iteration was car-
ried out for 300 cycles. Little change in the
lattice averages was detected after about
100 cycles.

In Table 11 we list the interactions that

were used and the correlations that were
achieved in the two examples which are de-
scribed below. It should be noted that for
#(1 1 1) vectors there are two different inter-
actions, the first (unlabeled) corresponding
to interaction, J;, along the diagonal of a
cube of oxygen sites containing a cation; the
second (indicated by 1) along the diagonal
of an empty cube. Similarly, there are two
distinct 3{2 2 1) vectors for which different
correlation values are obtained.

Imposing the condition that vacancy pairs
are avoided completely on all nearest-neigh-
bor 1 0 0}, all second-nearest 3(1 1 0}, and
those third-nearest {1 1 1)T neighbor pairs
which span empty cubes, a pyrochlore-like
structure can be produced simply by having
a positive interaction between third-nearest-
neighbor pairs in cubes containing a cation
site. With a value of 0.35 for this correlation
distinct pyrochlore-like regions can be seen
in realizations. In Fig. 6a we show a plot of
two consecutive layers of oxygen sites from
such a realization. The second layer is set
slightly up and to the right of the first, so
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models described in the text. {a) model 1; (b) model 2.
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dral coordination. In model 1 a microcrystal of a pyro-
chlore-like structure can be seen (outlined).

that the chains of vacancies that occur in
the indicated regions are seen to zigzag up
and down between the two layers, in a man-
ner analogous to that in the pyrochlore
structure (see Fig. 7).
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Fi1G. 7. Schematic drawing showing the zigzag chains
of vacancies along {1 1 0} in the pyrochlore structure.

The relaxation of the cation positions was
carried out using essentially the same algo-
rithm used for the 2D simulations. The dis-
tance between any two cation sites was as-
sumed to increase to above the average if
either of the two bridging oxygen sites was
vacant, or correspondingly decrease if both
were filled. This was achieved via Monte
Carlo simulation using harmonic (Hooke's
law) potentials of the form £ = k(d — ),
where d; was ~1.12 x the average intercat-
ion vector when a vacancy occurred in the
bridging oxygens and ~0.97 x the average
intercation vector when no vacancy oc-
curred. The ~12% increase compared to
~3% decrease is to take account of the fact
that the ratio of cation pairs including a va-
cancy to pairs with no vacancy is approxi-
mately 1:4.

Fifty cycles of Monte Carlo iteration were
found sufficient to obtain a degree of relax-
ation close to equilibrium, and this number
of cycles was used in alt the examples in
this paper.

Some sections of the 3D diffraction pat-
tern obtained from this example are shown
in Figs. Ba-8c. These are the 0.5¢*, 0.1c*,
and k&I, (h + kK + ) = 0.5 sections, corre-
sponding to the observed sections shown in
Fig. 1. These patterns were calculated using
only the relaxed cation positions and using
a single cation scattering factor (Zr) for all
the cations.

These diffraction patterns show a number
of promising features:

(i) The dark lines occur in the right places.

(ii) There are diffuse peaks in the vicinity
of the G+ 3(1 1 1)* reciprocal positions,
where G is a reciprocal lattice vector.

(iii) These diffuse peaks are split in two
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FiG. 8. Calculated diffraction patterns for the two 3D models described in the text. (a, b, ¢} are
from model 1; (d, e, ) are from model 2. The sections are; (a, d), Ak, 0.1; (b,e}, h .k, 0.5; (c, £}, h k!
th + & + D = 0.5. The small white dots mark the positions of integral reciprocal lattice positions in
the corresponding zero-level section.
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by the dark lines, giving the appearance of
pairs of peaks straddling the lines.

(iv) The intensity on the high-angle side
of the dark lines is greater than that on the
low-angle side.

There are however some features which
are evidently quite wrong:

(i) The pairs of split peaks are too close
to the dark lines, pinching into the dark lines
and giving them a wavy appearance. The
experimental dark Jines are much straighter
and the peaks more clearly separated from
the line.

(ii) The central horizontal and vertical in-
tensity minima (i.e., along & = 0 and along
h = 0), which are clearly visible in all ¢*
sections in the experimental data, are en-
tirely missing.

The clue to the way in which these two
incorrect features can be rectified is given
by the 2D example of Fig. 3c where both
the clearly separated pairs of peaks and the
central horizontal and vertical intensity min-
ima are present. In this 2D case these effects
were achieved by decreasing the second-
neighbor interaction along v (i.e., more neg-
ative correlation), thereby esscntially re-
ducing the length of the pyrochlore-like
chains of vacancies. In 3D the length of the
pyrochlore-like chains clearly visible in Fig.
6a can correspondingly be reduced by in-
cluding an interaction between oxygen sites
separated by (1 1 0). In the second example,
shown in Fig. 6b, the correlation along this
vector has been decreased to zero. This ex-
ample was one of a series carried out in
which it was attempted to obtain a value for
the {1 1 0) correlations varying between the
value of 0.177 of model 1 to a value ap-
proaching —0.]08 (the maximum possible
negative correlation) while maintaining the
same value for the {1 1 1) correlations.
However, it was apparent that negative val-
ues could only be achieved at the expense
of areduction in the ${I11} correlations, and
the example shown as model 2 represents
something close to the limit of what can be
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TABLE IH

THE FREQUENCIES WITH WHICH A VacaNcY [s SUR-
ROUNDER BY 0, 1, 2, 3, oR 4 OTHER YACANCIES AT A
DisTance oF #1 1 1}

Number of surrounding vacancies

Model 0 1 2 3 4
Model 1 0.16 0.31 0.29 0.16 0.07
Model 2 0.0 0.39 0.60 0.01 0.0

achieved, given the need to maintain the
value of the ¥1 1 1) correlations.

The plot of two layers of this example in
Fig. 6b shows a preponderance of isolated
vacancy pairs with the occasional short
chain of two or three zigzag units. This pic-
ture is somewhat misleading since a vacancy
pair within these two layers can continue
as an out-of-plane chain either to the layer
above or to the layer below. A truer picture
is revealed if we make a count over the
whole 3D lattice of the number of times a
vacancy occurs with a single, two, three, or
more #(1 1 1) neighboring vacancies. In the
perfect ordered pyrochlore structure a given
vacancy always has four %I 1 1) neigh-
boring vacancies. In Table III we show the
statistics corresponding to the two models
shown in Fig. 6. Note that in model 2 there
are no isolated vacancies and very few
chains longer than two units.

Diffraction patterns corresponding to
model 2 are shown in Figs. 8d—8f. Figs. 8¢
and 8f in particular are now seen to be quali-
tatively in good agreement with the ob-
served data shown in Fig. 1. The two fea-
tures which were unsatisfactory in model 1
are now much more satisfactorily modeled.
Figure 8d, though in better agreement than
Figure 8a, since the minimum of intensity
along the k = 0 and h = 0 lines is better
modeled, is deficient in that the scattering
close to the (0 4 0} and (4 0 0) Bragg posi-
tions is missing entirely, at points indicated
by the arrows in Fig. 1a. Note, we might
also expect to see similar features near
(0 2 0) and (2 0 0) but the experimental in-
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tensities here have been drastically reduced
by absorption. We believe this scattering,
which represents the very narrow part of
the bow-tie features discussed earlier, that
are also visible on sections 0.2¢*, 0.3¢¥, and
0.4¢* (see Ref. (1)), originates from the oxy-
gen array, which at present is not included
in our scattering model.

The main reason for our belief that this
scattering originates from displacements of
the oxygen array, whether directly or indi-
rectly (as the result of the constraint it pro-
vides to the movement of the cations), is
as follows. The lattice parameter of cubic
zirconia is such that the mean oxygen—oxy-
gen separation is close to the normally ex-
pected minimum interatomic distance (~2.5
A). Consequently any local relaxation of the
oxygen atoms which accompanies the cat-
ion relaxations would also be subject to the
constraint that this minimum distance be
maijntained. The result of this is that oxygen
motion is likely to be of the **string-pulling”’
mode type in which rows of oxygen along
{1 0 0} directions move in concert. Such mo-
tion gives rise to planes of scattering normal
to the chains, and occurs most strongly in
planes passing through the (0 2 0), (0 4 0),
(20 0), and (4 0 0) Bragg positions,

4, Conclusion

Although the ultimate aim of the present
work was to obtain a fully 3D model of the
sructure of cubic-stabilized zirconias which
would explain all of the observed features
of the diffuse X-ray scattering patterns, the
2D single layer model described in section
2 played a crucial role in its development,
This 2D model was very much simpler, com-
putationally less expensive and quicker to
use, than a 3D model, but nevertheless con-
tained the essential elements of the problem
that could eventually be incorporated into
a 3D model. These essential elements were:

(i) That the dark lines observed in the
diffraction patterns come from the corre-
lated motion of cations along (1 1 Q) direc-
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tions, resulting from size-effect-like differ-
ences in length of intercation vectors.

(i) That the simple mechanism by which
this distortion arises is one in which two
cations move apart if one or other of the
bridging oxygen atoms is missing. Note that
in 3D a vacancy will thus affect the four
cations surrounding it. These will locally
move out from the vacancy along (11 I)
but the effect of this motion will then be
transmitted along the {1 1 0} rows of cations
as noted in (i).

(iii) That the diffuse spots arise from
short-range ordering of the vacancies (and
hence presumably the cations), Without the
resulting distortion field this short-range or-
dering would not be detectable in Y-CSZ,
as the scattering contrast between Y and Zr
is minimal.

(iv) That the asymmetry in the intensity
of these spots across the dark planes arises
naturally from the distortion model (ii). The
detailed mechanism for this is discussed
eilsewhere (7) but in simple terms it may be
considered to arise because there are more
shorter-than-average intercation vectors
and fewer longer-than-average ones.

The 3D model described in section 3
which was developed as aresult of extensive
investigation of the 2D model provides a
simple explanation of virtually all the fea-
tures 1hat occur in the complex diffuse X-
ray diffraction patterns of a cubic-stabilized
zirconia. As for the 2D case the 3D model
consists of two parts: a scheme for the or-
dering of oxygen vacancies, followed by the
relaxation of cations around these vacan-
cies. The version of the model (model 2)
which at present best fits the observed scat-
tering patterns is one in which the oxygen
vacancies order in such a way as to avoid
nearest-neighbor {1 0 0} pairs, next-nearest
#(1 1 0} pairs and third-nearest {1 1 1} pairs
across empty cubes of oxygens, but allows
third-nearest (1 1 1) pairs across cubes of
oxygens conlaining the cations. These va-
cancy-pairs which essentially provide octa-
hedral coordination of the enclosed cation
are therefore present almost entirely as ei-
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ther single isolated octahedra or neighboring
{1 1 0) pairs of octahedra. The tendency for
such vacancy pairs to form chains as in the
pyrochlore structure is avoided as far as
possible.

At this stage it is important to note that in
all the known fluorite-related superstructure
phases (with the one exception of the C-
type rare-earth oxide structures which cor-
respond to 25% oxygen vacancies) all anion
vacancies occur in pairs separated by
#1 1 1) with a cation in between (8). These
cation/vacancy pair units may be isolated
(as in M;0,), in linear chains (as in M;0,,),
linked into zig-zag chains (as in the pyro-
chiore structure), helical chains (as in
Ca Hf,,0,,) or into clusters {as in CaZr,Q,).
Furthermore, cation ordering in these su-
perstructure phases is usually linked to the
oxygen vacancy ordering in that it is the
smallest available cation that is octahe-
drally coordinated.

The calculated scattered intensily pat-
terns shown in the paper are derived entirely
from the cation displacements, and do not
include contributions from either the con-
trast between the two types of cation or
from the oxygen atoms. This is clearly a
good approximation for the yttria-stabilized
material, -but for the calcia-stabilized mate-
rial the contrast between Ca and Zr needs
to be included. For example the transfer of
intensity across the dark lines which is so
characteristic and consistent in the yttria, is
sometimes in the oppasite direction for the
calcia. Nevertheless, the fact that the dark
lines are still visible in the calcia, and that
the patterns of the two are very similar,
strongly indicates that for the calcia-stabi-
lized material too the major part of the scat-
tering originates from the cation displace-
ments, induced by relaxation around a
similar distribution of oxygen vacancies.
The particular calcia-stabilized material for
which we have recorded data {(shown in Fig.
1) has an oxygen vacancy concentration
only approximately half of that in the yttria
material. It is possible that the extra sharp-
ness of the diffuse peaks in the calcia mate-
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rial arises because of the extra freedom that
the fewer vacancies have to avoid each
other, rather than being a property of the
particular cation. Work is in progress to in-
vestigate materials of different composi-
tions in both the yttria- and the calcia-stabi-
lized series.

Although the diffraction patterns calcu-
lated from the present model cannot be said
to be in fully quantitative agreement with
experiment, we believe that the model has
all the essential features qualitatively cor-
rect. The model also has the advantage that
it is simple and consistent with known fluo-
rite-related superstructure phases. In re-
spect of the magnitude of the local intercat-
ion displacements we believe that the
asymmetry across the dark lines that is ob-
served, unequivocally requires that root
mean square atomic displacements of ~3%
must be present (7). In its present form the
model] is capable of further refinement so
that a better match to experiment might be
obtained by small adjustments of either the
vacancy ordering procedure or the cation
relaxation scheme. Perhaps of more impor-
tance, though, is the necessity to incorpo-
rate into the model the oxygen atom dis-
placements and the distribution of the two
types of cation.

In the present model 2 ~389%% of the cation
sites have [8]-fold coordination, ~46% have
[7]-fold coordination and ~16% have [6]-
fold coordination. Since it is known that zir-
conium is able to tolerate a whole range of
different coordination environments and in
particularis frequently found in [ 7]-fold sites
(9), a particularly simple solution to the
question of how to distribute the two species
of cation would be to place the Y atoms
(~39% of the cations) in the [8)-fold sites
and the Zr atoms in the [6] and [7] sites.
Such an ordering scheme is not required by
the diffraction data but would be in accord
with known fluorite-related superstructures
in that the [6]-fold sites are invariably occu-
pied by the smallest available cation (in our
case the Zr**) while the [8]-fold sites are
usually occupied by the larger cations. In
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the case of calcia-stabilized zirconia, the
question as 1o whether anion vacancies are
preferentially associated with Zr’s or Ca’s
remains a controversial point. Rossell et ai.
({0) argue strongly for the former while
Morinaga et al. {11) on the basis of a fit
to measured diffuse data, claim the latter.
While the measured diffuse intensity distri-
bution, in the case of the calcia stabilized
zirconia {see Fig. 1), is clearly still domi-
nated by displacive effects rather than
chemical ordering, there is some indication
that effects due to chemical ordering may
be present in the data. Further work on this
aspect of the problem is in progress.
Following the allocation of cations to the
different coordination sites, oxygen atoms
could then be placed in each available tetra-
hedral coordination site, and their positions
adjusted iteratively to satisfy bond-valence
requirements with the four cations. Any
model must not only fit observed diffuse
scatlering data but also be locally chemi-
cally plausible. Calculation of apparent va-
lences (AVs) is a good way of checking for
local chemical plausibility. For example the
microdomain of type Al recently reported
to occur in calcia-stabilized zirconia (12)
gives a calculated AV for Ca®** of ~3.7
rather than 2.0 and hence would appear not
to be chemically plausible, Similarly, mod-
els requiring O-0 separation distances less
than ~2.5 A are also chemically implausi-
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ble. Further systematic work along these
lines is being undertaken.
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