Solid-State Synthesis, Structure, and Vibrational Spectra of NaGdP₂O₇*

M. KIZILYALLI† AND M. DARRAS‡

Department of Chemistry, Middle East Technical University, Ankara 06531, Turkey

Received July 14, 1992; in revised form March 12, 1993; accepted March 17, 1993

NaGdP₂O₇ was synthesized by the solid-state reaction of Gd₂O₃ with Na₂CO₃ and 4(NH₄)₂HPO₄ at 650°C. The X-ray powder diffraction data of NaGdP₂O₇ was indexed in the orthorhombic system with the approximate unit cell dimensions of a = 12.44, b = 15.00, and c = 15.87 Å and the space group is Pmm2. Analysis of the vibrations of the P₂O₇⁴⁻ ion according to C_{2v} symmetry and approximate band assignments for IR spectra are also reported in this work. The P-O-P band was found to be nonlinear, and some coincidences in the infrared and Raman spectra suggest that the most probable space group is noncentrosymmetric. © 1993 Academic Press, Inc.

Introduction

Work performed by Konak and Kizilyalli (1, 2) showed the importance of lanthanide double diphosphates as ceramic materials. Quite recently, Kizilyalli (3) prepared $HGdP_2O_7 \cdot nH_2O$ from sodium diphosphate and an acidic solution of gadolinium chloride. Giesbrecht and Perrier (4) claimed to have obtained NaCeP₂O₇ · 4.5H₂O by adding sodium diphosphate solution to a solution of cerium(III) chloride. The same method was applied for the preparation of NaGdP₂O₇ · 4.5H₂O in our laboratory. However, after correction for loss of water at 700°C, the chemical analysis of the prepared product showed that it contained only 0.11% Na₂O, whereas the theoretical percentage of Na₂O should be 8.71. This work indicated that compounds obtained by the use of this method and which were previously believed to be alkaline lanthanide diphosphates were

in fact hydrogen lanthanide diphosphates retaining some alkali metal. It was established that it was impossible to introduce sodium in a diphosphate precipitated at about pH 1–2. As had been demonstrated earlier (5), the amount of Na₂O introduced was 1.17% at pH 4.6. It is not convenient to work at a pH higher than 4.6 because the precipitation of gadolinium hydroxide will interfere.

Some double diphosphates of rare earths have been synthesized by several researchers (4, 6, 7). Tananaev et al. (8) reported the preparation of some rare earth alkali double diphosphates through solution reactions and gave some complex X-ray powder diffraction patterns in the case of LiLaP₂O₇, KLaP₂O₇, and α and β-NaLaP₂O₂ (J.C.P.D.S. Nos. 21-502, 21-651, 21-1131, and 21-1133). They were not indexed. Investigation of NaGdP₂O₂ and solid-state methods of preparation have not been reported in the literature.

Because of the failure to prepare NaGdP₂O₇ in solution, the following solid-solid reaction was attempted:

(i) $Gd_2O_3 + 4(NH_4)_2HPO_4 + Na_2CO_3 \rightarrow 2NaGdP_2O_7 + CO_2 + 6H_2O + 8NH_3$. The X-ray powder diffraction patterns of

0022-4596/93 \$5.00

^{*} Presented at the 35th IUPAC Congress, Solid State Chemistry Section, Stockholm, Sweden, 2-9 August

[†] To whom correspondence should be addressed.

[‡] Based on a thesis submitted by M. Darras for the M.Sc. degree in chemistry.

several products prepared under different conditions, in air, showed the formation of a new phase in addition to GdPO₄. It therefore appeared necessary to investigate this reaction very carefully. In the course of these investigations, two other solid-state reactions were also studied:

(ii) $Gd_2O_3 + P_2O_5 + Na_2CO_3 \rightarrow 2NaGd$ $P_2O_7 + CO_2$,

(iii) GdPO₄ + NaPO₃ → NaGdP₂O₇. For the third reaction, pure GdPO₄ also has to be prepared and X-ray powder diffraction has to be recorded and compared with the published data (Ref. (9) and J.C.P.D.S. No. 32-386) since it does not exist as a commercial product.

In light of all these experiments, a solidstate method of preparation was suggested for this new compound, and an attempt was made to determine its structure by X-ray powder diffraction and to identify the new compound through its vibrational spectra.

Experimental

Materials and Instrumentation

The chemicals used were reagent grade Gd_2O_3 (99.9% pure, Fluka), Na_2CO_3 , P_2O_5 , $NaPO_3$, and $(NH_4)_2HPO_4$ (Merck). $GdPO_4$ was prepared in the laboratory by the method of Buyers *et al.* (10).

Spectroscopic grade KBr was used as a pellet material and for Perkin–Elmer 1430 ratio recording; an FTIR (Nicolet and Hitachi Model 270-30) spectrophotometer was employed to record infrared spectra. Far-IR data were recorded with PE pellets and an IFF/113V Bruker spectrometer. For Raman spectra, Spect./1877 equipment with a triple monochromator, in combination with PSD and an argon ion laser (515 nm) was used. A Philips diffractometer with a PW 1050/25 goniometer and CuK_{α} radiation was used for taking X-ray powder diffraction patterns.

The purity of GdPO₄ was confirmed through X-ray powder diffraction and IR methods which were in close agreement with our previous work (9) and the vibra-

tional modes described by Hezel and Ross (11).

Chemical Analysis of the Products

The method described by Vogel (12) was adopted with several modifications to determine the percentages of gadolinium and phosphorus.

Reaction of Gd_2O_3 + Na_2CO_3 + $4(NH_4)_2HPO_4$. Na₂CO₃ and $(NH_4)_2HPO_4$ were dried at 80°C to constant weight. $(NH_4)_2HPO_4$, Gd_2O_3 , and Na₂CO₃ were weighed separately and ground together in an agate mortar, then the mixture was weighed and was put in a porcelain crucible for heating. The reactions were carried out in air at several temperatures ranging from 500 to 1000°C using variable time intervals. Different reactant compositions were also tried using the same temperature.

Reaction of GdPO₄ + NaPO₃. The reaction was carried out at 500 to 1000°C for several time intervals.

Reaction of $Gd_2O_3 + Na_2CO_3 + 2P_2O_5$. Utmost care was taken in weighing and grinding the samples to avoid absorption of water. The optimum temperature range was found to be around 550-650°C.

Results and Discussion

X-Ray Powder Diffraction Results of the Reaction Products Obtained from GdPO₄ + NaPO₃ Solid-State Reactions

This reaction was performed at 250, 500, 600, and 700°C for about 8 hr. It was found that no appreciable reaction took place at 250°C. In the X-ray powder data of the product, synthesized at 500°C, some strong undefined lines were observed (together with GdPO₄ and NaPO₃), resembling those of NaLaP₂O₇ (J.C.P.D.S. Nos. 21-1131 and 21-1133). The product was assumed to be Na GdP₂O₇. For the 600°C product, intensities of the unidentified lines in the X-ray powder pattern increased and those of GdPO₄ and

NaPO₃ were quite weak. At 700°C the product which was predicted to be NaGdP₂O₇ decomposed into GdPO₄ + NaPO₃, but since NaPO₃ melted at this temperature and became amorphous, its lines did not appear in the pattern. X-ray diffraction data of NaPO₃ used in this reaction were recorded also (after heating at 600°C) for comparison purposes.

X-Ray Powder Diffraction Results of the Reaction Products Obtained from $Gd_2O_3 + Na_2CO_3 + 2P_2O_5$ Solid-State Reactions

The experiment was performed at 600°C since it was observed that after several initial experiments this was the optimum temperature for the formation of the desired product. The X-ray powder pattern was quite complicated, but the product presumed to be NaGdP₂O₇ was again observed together with GdPO₄ and a double phosphate, X-phase, reported by Sungur (13) and Kizilyalli (14), which resembled Na₁Gd(PO₄)₂.

X-Ray Powder Diffraction Results of the Reaction Products Obtained from $Gd_2O_3 + Na_2CO_3 + 4(NH_4)_2HPO_4$ Solid-State Reactions

First the mixture was heated at 650°C for 3 hr in air. The calcined sample was repowdered and heated again at the same temperature for 4 hr, followed by an additional repowdering. This procedure was repeated several times to obtain a more homogeneous sample. Powder X-ray diffraction studies indicated that the product was essentially a single phase. The reactions were repeated and reproducible results were obtained. Some lines of GdPO₄ and (NaPO₃)₃ seem to be present in the X-ray data, but their intensities were not consistent with the reported data for GdPO₄ (J.C.P.D.S. No. 32-386) and the NaPO₃ pattern obtained at 600°C. This powder data, which are given in Table I, were indexed in the orthorhombic system, and the approximate lattice constants were found to be a = 12.44, b = 15.00, and c = 15.87 Å. The space group was Pmm2.

The weight loss during the reaction was also studied and it was observed that in a period of about 3 hr the experimental and theoretical losses agreed quite well. They were calculated on the basis of the following reaction:

$$Gd_2O_3 + Na_2CO_3 + 4(NH_4)_2HPO_4 \rightarrow$$

 $2NaGdP_2O_7 + 8NH_3 + CO_2 + 6H_2O.$

The average weight percentages of Gd, P, and Na obtained through the analysis of the three products (which were prepared separately) and theoretical results for NaGdP₂O₇ are given in Table II.

These results proved that the product is essentially NaGdP₂O₇, but it is probable that some GdPO₄ or NaPO₃ may be present in small amounts, which explains the discrepancies between the theoretical and analytical results.

IR Studies

Corbridge and others (15–18) examined the spectra of a number of diphosphate salts and found strong characteristic absorptions from 950–910 and 670–735 cm⁻¹.

 C_{2v} symmetry and a bent bridge eclipsed orientation of the two PO₃ groups through the P-O-P bridge of the P₂O₇⁴⁻ ion was supported by Palmer (18) and MacArthur and Beevers (19). The number of normal modes of vibrations is 21, but only 17 are IR active (20), hence the number could be increased both by the appearance of combinations and overtones. In a few cases, such as the study of Savoie and Giguere (21) on Cl₂O₇, all 21 modes are described and assigned.

Most of the work carried out on molecules of the X_2Y_7 type involves approximate assignments; that is, the modes are simply classified as $V_{\rm as}PO_3$, $V_{\rm s}PO_3$, $V_{\rm as}$ OPO, $V_{\rm s}$ OPO, δ PO₂, and δ POP, which are terminal and bridge stretching and bending frequencies (22–26).

The crystallographic investigations of

 $TABLE\ I$ X-Ray Powder Diffraction Data of NaGdP₂O₂

I/I_0	S.G. $Pmm2$ Rad. CuK_{α} $d_{calc.}$		hkl
	- 008.	carc.	
9	12.19	12.44	100
9	10.98	10.90	011
10	9.46	9.58	110
11	8.19	8.20	111
6	7.94	7.94	002
10	7.48	7.50	020
5	7.08	7.02	012
5	6.81	6.78	021
5	6.46	6.42	120
100	6.22	6.22	200
5	5.80	5.79	201
5	5.75	5.75	210
5	5.46	5.44	022
6	5.29	5.29	003
18	5.00	5.00	030,013
28	4.77	4.77	031,220
5ª	4.57	4.58	221
5	4.32	4.32	023
50	4.21	4.23	032
18	4.162	4.147	300
10^a	4.086	4.086	123,222
37ª	3.978	3.967	004,310
16	3.909	3.897	230,213
8	3.845	3.835	014
3	3.794	3.785	231,104
14	3.730	3.751	040
13	3.655	3.650	041,114
10	3.580	3.591	140
1	3.507	3.507	024,141
12	3.482	3.488	133
66	3.277	3.271	142
50	3.209	3.212	240
84	3.175	3.174	005
78	3.153	3.146	241
42	3.110	3.110	400
31^a	3.063	3.060	043
18^{a}	3.015	3.015	134
18^{a}	2.997	3.000	050
_	. —	2.961	332
20	2.954		_
		2.948	051
16 ^a	2.917	2.917	150
12	2.885	2.873	420
14 ^a	2.803	2.806	052
18	2.734	2.733	333
5	2.710	2.703	250
4	2.640	2.645	006,430
45	2.608	2.610	053,431,016
26	2.589	2.588	106
25^a	2.552	2.554	153,116

TABLE I-Continued

20 2.501 2.500 060 30 2.491 2.488 500,334 40 2.433 2.433 206,350 18a 2.387 2.389 325,062 7a 2.326 2.327 424 13a 2.276 2.277 344 12 2.268 2.267 007 12 2.242 2.17 415 12 2.242 2.242 017 27 2.218 2.222 405 16 2.194 2.197 415 12 2.178 2.180 055,442 18 2.154 2.156 523 11a 2.138 2.139 127,326 12 2.0490 2.0492 444,227 14 2.0149 2.0148 406 10 1.9955 1.9971 416 31 1.9725 1.9722 317 12 1.9509 1.9486 460		sombic: $a = 12$. S.G. Pm	m2 Rad. Cul	
30 2.491 2.488 500,334 10 2.433 2.433 206,350 18a 2.387 2.389 325,062 7a 2.326 2.327 424 13a 2.276 2.277 344 12 2.268 2.267 007 12 2.242 2.17 415 12 2.218 2.222 405 16 2.194 2.197 415 12 2.178 2.180 055,443 12 2.178 2.180 055,443 12 2.138 2.139 127,326 13a 2.138 2.139 127,326 15a 2.0490 2.0492 444,227 14 2.0149 2.0148 406 15a 1.9955 1.9971 416 31 1.9725 1.9722 317 12 1.9509 1.9486 460 25 1.9407 1.9403 047 14 1.8769 1.8754 080 27 <th>I/I_0</th> <th>$d_{\mathrm{obs.}}$</th> <th>$d_{\mathrm{calc.}}$</th> <th>hki</th>	I/I_0	$d_{\mathrm{obs.}}$	$d_{\mathrm{calc.}}$	hki
10 2.433 2.433 206,350 18a 2.387 2.389 325,062 7a 2.326 2.327 424 13a 2.276 2.277 344 12 2.268 2.267 007 12 2.242 2.242 017 16 2.194 2.197 415 12 2.178 2.180 055,443 16 2.194 2.156 523 11a 2.138 2.139 127,326 12 2.0492 444,227 13 2.0745 2.0734 600 14 2.0149 2.0148 406 15a 1.9955 1.9971 416 11 1.9509 1.9486 460 12 1.9509 1.9486 460 25 1.9407 1.9403 047 14 1.8769 1.8754 080 27 1.8614 1.8618 632 14 1.7790 1.7772 700,318 11 1.7664	20	2.501	2,500	060
18a 2.387 2.389 325,062 7a 2.326 2.327 424 13a 2.276 2.277 344 12 2.268 2.267 007 12 2.242 017 2.218 16 2.194 2.197 415 12 2.178 2.180 055,443 12 2.178 2.180 055,443 12 2.138 2.139 127,326 13a 2.138 2.139 127,326 15a 2.0490 2.0492 444,227 14 2.0149 2.0148 406 10 1.9955 1.9971 416 31 1.9725 1.9722 317 42 1.9509 1.9486 460 25 1.9407 1.9403 047 14 1.8769 1.8754 080 27 1.8614 1.8618 632 14 1.7890 1.7892 308	10	2.491	2.488	500,334
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	2.433	2.433	206,350
13a	18^{a}	2.387	2.389	325,062
12 2.268 2.267 007 12 2.242 2.242 017 27 2.218 2.222 405 16 2.194 2.197 415 12 2.178 2.180 055,443 18 2.154 2.156 523 11a 2.138 2.139 127,326 5a 2.0490 2.0492 444,227 14 2.0149 2.0148 406 10 1.9955 1.9971 416 31 1.9725 1.9722 317 42 1.9409 1.9486 460 25 1.9407 1.9403 047 14 1.8769 1.8754 080 27 1.8614 1.8618 632 14 1.7890 1.7892 308,350 6 1.7776 1.7772 700,318 11 1.7664 1.7661 701	7ª	2.326	2.327	424
12 2.242 2.242 017 27 2.218 2.222 405 16 2.194 2.197 415 12 2.178 2.180 055,443 18 2.154 2.156 523 11a 2.138 2.139 127,326 5a 2.0490 2.0492 444,227 14 2.0149 2.0148 406 10 1.9955 1.9971 416 31 1.9725 1.9722 317 42 1.9509 1.9486 460 25 1.9407 1.9403 047 14 1.8769 1.8754 080 27 1.8614 1.8618 632 14 1.7890 1.7892 308,350 6 1.7776 1.7772 700,318 11 1.7664 1.7661 701	13^{a}	2.276	2.277	344
27 2.218 2.222 405 16 2.194 2.197 415 12 2.178 2.180 055,443 18 2.154 2.156 523 11a 2.138 2.139 127,326 5a 2.0490 2.0492 444,227 14 2.0149 2.0148 406 10 1.9955 1.9971 416 31 1.9725 1.9722 317 42 1.9509 1.9486 460 25 1.9407 1.9403 047 14 1.8769 1.8754 080 27 1.8614 1.8618 632 14 1.7890 1.7892 308,350 6 1.7776 1.7772 700,318 11 1.7664 1.7661 701	12	2.268	2.267	007
166 2.194 2.197 415 12 2.178 2.180 055,443 18 2.154 2.156 523 11a 2.138 2.139 127,326 5a 2.0490 2.0492 444,227 14 2.0149 2.0148 406 10 1.9955 1.9971 416 31 1.9725 1.9722 317 12 1.9509 1.9486 460 25 1.9407 1.9403 047 14 1.8769 1.8754 080 27 1.8614 1.8618 632 14 1.7890 1.7892 308,350 6 1.7776 1.7772 700,318 11 1.7664 1.7661 701	12	2.242	2.242	017
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27	2.218	2.222	405
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	2.194	2.197	415
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	2.178	2.180	055,443
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	2.154	2.156	523
5a 2.0490 2.0492 444,227 14 2.0149 2.0148 406 10 1.9955 1.9971 416 31 1.9725 1.9722 317 12 1.9509 1.9486 460 25 1.9407 1.9403 047 14 1.8769 1.8754 080 27 1.8614 1.8618 632 14 1.7890 1.7892 308,356 6 1.7776 1.7772 700,318 11 1.7664 1.7661 701	11^{a}	2.138	2.139	127,326
14 2.0149 2.0148 406 10 1.9955 1.9971 416 31 1.9725 1.9722 317 12 1.9509 1.9486 460 25 1.9407 1.9403 047 14 1.8769 1.8754 080 27 1.8614 1.8618 632 14 1.7890 1.7892 308,356 6 1.7776 1.7772 700,318 11 1.7664 1.7661 701	68^{a}	2.0745	2.0734	600
10 1.9955 1.9971 416 31 1.9725 1.9722 317 12 1.9509 1.9486 460 25 1.9407 1.9403 047 14 1.8769 1.8754 080 27 1.8614 1.8618 632 14 1.7890 1.7892 308,356 6 1.7776 1.7772 700,318 11 1.7664 1.7661 701	5 ^a	2.0490	2.0492	444,227
31 1.9725 1.9722 317 12 1.9509 1.9486 460 25 1.9407 1.9403 047 14 1.8769 1.8754 080 27 1.8614 1.8618 632 14 1.7890 1.7892 308,356 6 1.7776 1.7772 700,318 11 1.7664 1.7661 701	14	2.0149	2.0148	406
12 1.9509 1.9486 460 25 1.9407 1.9403 047 14 1.8769 1.8754 080 27 1.8614 1.8618 632 14 1.7890 1.7892 308,356 6 1.7776 1.7772 700,318 11 1.7664 1.7661 701	10	1.9955	1.9971	416
25 1.9407 1.9403 047 14 1.8769 1.8754 080 27 1.8614 1.8618 632 14 1.7890 1.7892 308,356 6 1.7776 1.7772 700,318 11 1.7664 1.7661 701	31	1.9725	1.9722	317
14 1.8769 1.8754 080 27 1.8614 1.8618 632 14 1.7890 1.7892 308,356 6 1.7776 1.7772 700,318 11 1.7664 1.7661 701	12	1.9509	1.9486	460
27 1.8614 1.8618 632 14 1.7890 1.7892 308,350 6 1.7776 1.7772 700,318 11 1.7664 1.7661 701	25	1.9407	1.9403	047
14 1.7890 1.7892 308,350 6 1.7776 1.7772 700,318 11 1.7664 1.7661 701	14	1.8769	1.8754	080
6 1.7776 1.7772 700,318 11 1.7664 1.7661 701	27	1.8614	1.8618	632
11 1.7664 1.7661 701	14	1.7890	1.7892	308,356
	6	1.7776	1.7772	700,318
13 1.6980 1.6987 381	11	1.7664	1.7661	701
	13	1.6980	1.6987	381

^a Matching GdPO₄ lines.

some diphosphates proved that the diphosphate ion is nonlinear. The terminal and bridging bonds are unequal in length and the two PO_3 groups are imperfectly staggered. This being the case, the symmetry is either C_s or C_1 , and in both cases all 21 vibrations are both IR and Raman active. A normal coordinate analysis of C_s or C_1 was found

TABLE II
EXPERIMENTAL AND THEORETICAL WEIGHT
PERCENTAGES FOR NaGdP₂O₇

	%Na	%Gd	%P	P/Gd
Theoretical	6.49	44.44	17.49	2.00
Experimental	6.02	42.81	16.83	2.02

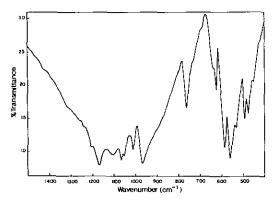


Fig. 1. IR spectrum of NaGdP₂O₇ in the region 1500-400 cm⁻¹.

to be difficult to compute since there was a large number of force constants which would need to be estimated. Therefore a D_3 , D_{3h}) and D_{3d} model was considered by Mooney et al. (27). This would give a general picture of vibrational assignments and it would be possible to predict the effects of lower symmetry (20).

On the other hand, the IR and Raman spectra of monoclinic α -Mg₂P₂O₇, β -Mg₂P₂O₇, and α -Ca₂P₂O₇, orthorhombic α -Sr₂P₂O₇ and α -Ba₂P₂O₇, and triclinic Ca₂P₂O₉ · 2H₂O were predicted using the C_{2v} free ion group symmetry species (28–30). Cubic SiP₂O₇ was reported earlier (31). Recently, infrared, and Raman spectra of cubic and monoclinic SiP₂O₇ were measured and interpreted by Chakraborty *et al.* (32) using coordinate analysis.

The infrared and Raman spectra of the

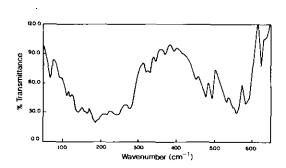


FIG. 2. IR spectrum of NaGDP₂O₇ in the region 50-650 cm⁻¹.

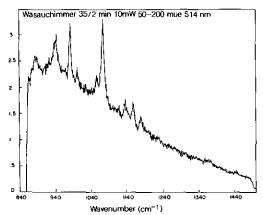


Fig. 3. Raman spectrum of NaGdP₂O₇ in the region 1440-840 cm⁻¹.

product obtained in this research and predicted to be NaGdP₂O₇ are given in Figs. 1–4. The large number of infrared bands observed (more than 17) support the assumption of distorted C_{2v} symmetry. In Table III the distribution of modes among symmetry classes for the P₂O₇⁴ ion were determined on the basis of Cornilsen's discussions on Ca₂P₂O₇, Mg₂P₂O₇, and Sr₂P₂O₇ (29), and Walrafen's calculations (26) for the C_{2v} free ion group symmetry.

Infrared spectra obtained in this work indicate a peak at 1200 cm^{-1} which was considered of a_2 type by Simon and Wagner

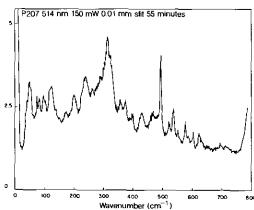


Fig. 4. Raman spectrum of NaGdP₂O₇ in the region $800-50 \text{ cm}^{-1}$.

TABLE III
BAND ASSIGNMENTS FOR NaGdP ₂ O ₇ (cm ⁻¹) [S. G. Pmm2]

IR	Intensity ^a	Approximate assignments	Intensity	Raman
1205	w)	<u> </u>	M	1181
1167	s		M	1160
_	}	$V_{ m as}~{ m PO_3}$	M	1137
1110	м		W	1120
1067	м		S	1075
1050	M	$V_{\rm s}~{ m PO}_3$	M	1056
1010	S	$V_{\rm as}$ PO ₃	M	1002
996	S	V _{as} POP	S	981
		23	M,S	940
_		Combination	M	884
765	S	$V_{\rm s}$ POP	S	775
670	W	Combination band	_	
625	s)		M	623
_	ì		M	603
585	s		M,S	576
559	s l		M	551
531	w		M.S	536
_	}	δ PO ₂ terminal bending	M	522
492	w		S	494
478	s		-	_
455	M		M	469
431	w		M	431
392	м		M	400
369	м		M	375
342	M J		M	356
329	м	δ POP bridge bending	S	329
318	м (5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	S	315
278	s '	Gd-O stretching (32)	M	275
243	S)	2 \	S	239
218	w			_
197	s l	External lattice modes	M.S	201
188	м		ŕ	_
162	м		M	173
157	s			_
118	M		S	121
112	-		-	_
91	w		M	96
69	ŝ	Torsional mode (33)	M	70

[&]quot; W, weak; M, medium; S, strong.

(25). It should be IR inactive; so, it is concluded that some slight deviations from C_{2v} symmetry exists in NaGdP₂O₇. Such deviations result in a structure of C_2 symmetry where infrared-forbidden $4A_2$ become IR active, so all 21 vibrations were observed.

Examination of Table III shows that there are some coincidences in infrared and Raman spectra, which suggests that the most

probable space group is noncentrosymmetric (29). X-ray data also gave a noncentrosymmetric space group, which is Pmm2. The bridge frequencies V_s POP and V_{as} POP are (ii) type as given by Ross (33) where V_a is about 200 cm⁻¹ greater than V_s (966 cm⁻¹ \sim 765 + 200 cm⁻¹) and δ POP bridge bending (329–318) is around 1/3 to 1/2 of V_s (765/2 or 3 \times 382–282 cm⁻¹). This

suggests that the bridge is nonlinear (33), since as the bridge becomes more nearly linear the separation between frequencies increasing such as in Si-O-Si (34).

The infrared and Raman bands observed are in good agreement with the reported values for diphosphate compounds of divalent and tetravalent cations such as α -Mg₂P₂O₇ (28), α -Ca₂P₂O₇ (29), or SiP₂O₇ (32), although their space groups are not the same. Especially for α -Sr₂P₂O₇, a noncentrosymmetric orthorhombic structure is reported (29).

Conclusion

NaGdP₂O₇ was synthesized through the following solid-state reaction at 650°C:

$$Gd_2O_3 + Na_2CO_3 + 4(NH_4)_2HPO_4 \rightarrow$$

 $2NaGdP_2O_7 + 8NH_3 + 6H_2O + CO_2.$

Over 650°C it decomposes into GdPO₄ + NaPO₃ · NaGdP₂O₇ dissolves by boiling in dilute nitric acid solution. The undissolved part was found to be GdPO₄ (around 5%). The X-ray powder diffraction data reported by Tananaev *et al.* (6) for NaLaP₂O₇ have some common reflections with the data of NaGdP₂O₇, but it appears that the two structures are not isostructural. On the other hand, the NaLaP₂O₇ prepared in our laboratory is isostructural with NaGdP₂O₇. The findings of investigations on double pyrophosphates of lanthanum and other rare earths will be published later.

Acknowledgments

The authors thank Dr. A. Gudat from THD Darmstad and Dr. M. Somer from MPI Stuttgart for checking the X-ray data through the STOE Powder Diffraction computerized system, and for far-infrared and Raman spectra, respectively. They are also grateful to the (AFP) Research Project Fund of the Middle East Technical University, Contract 89-01-03-05, for supporting this study.

References

 R. KONAK AND M. KIZILYALLI, "Chemistry and Chemical Eng. Symp., Ankara University, Türkiye Abs.," Vol. III, p. 61 (1986).

- M. KIZILYALLI, in "Proceedings, Technical Congress and Exhibition of Ceramics. pp. 315-323, Atatürk Cultural Center, Istanbul, Turkey (1987).
- M. KIZILYALLI, J. Less-Common Met. 127, 147 (1987).
- E. GIESBRECHT AND M. PERRIER, Anais Ass. Brasil de Quim. 19-20, 121 (1960-1961).
- M. KIZILYALLI, in "Proceedings, 6th Science Cong. Scientific and Technical Research Council of Turkey, Ankara," p. 167 (1977).
- I. V. TANNANAEV AND V. P. VASIL'EVA, Russ. J. Inorg. Chem. 9, 1141 (1964).
- V. G. KUZNETSOV AND V. P. VASIL'EVA, *Inorg. Mater*, 3, 316 (1967).
- I. V. TANANAEV, V. G. KUZNETSOV AND V. P. VASIL'EVA, Inorg. Mater. 3, 87 (1967).
- M. KIZILYALLI AND A. J. E. WELCH, J. Appl. Crystallogr. 9, 413 (1976).
- A. G. BUYERS, E. GIESBRECHT, AND L. F. AU-DRIETH, J. Inorg. Nucl. Chem. 5, 133 (1957).
- A. HEZEL AND S. D. Ross, Spectrochim. Acta 22, 1949 (1966).
- A. I. VOGEL, "Quantitative Inorganic Analysis," third ed., p. 576 Longmans, Green, NY (1961).
- A. SUNGUR, Ph.D. Thesis, Middle East Technical Univ., Ankara, Turkey (1981).
- M. KIZILYALLI, "Rare Earths in Modern Science and Technology," Vol. II, p. 59, Plenum Press, New York (1978).
- D. C. CORBRIDGE AND E. J. LOWE, J. Chem. Soc., 4555 (1954).
- D. C. CORBRIDGE, M. GRAYSON, AND E. J. GRIF-FITH, "Topics in Phosphorus Chemistry," Vol. 3, p. 235, Interscience, New York (1966).
- R. B. HARWEY AND J. E. MAYHOOD, Can. J. Chem. 33, 1152 (1955).
- 18. W. G. PALMER, J. Chem. Soc., 1552 (1961).
- D. M. MACARTHUR AND C. A. BEEVERS, Acta. Crystallogr. 10, 428 (1957).
- A. HEZEL AND S. D. Ross, Spectrochim. Acta Part A 23, 1583 (1967).
- R. SAVOIE AND P. A. GIGUERE, Can. J. Chem. 40, 991 (1962).
- T. I. HANWICK AND P. O. HOFFMANN, J. Chem. Phys. 19, 708 (1951).
- A. SIMON AND H. RICHTER, Z. Anorg. Allg. Chem. 301, 154 (1960).
- E. STEGER AND G. LEUKROT, Z. Anorg. Allg. Chem. 303, 169 (1960).
- A. SIMON AND H. WAGNER, Z. Anorg. Allg. Chem. 311, 102 (1961).
- G. E. WALRAFEN, D. E. IRISH, AND T. F. YOUNG, J. Chem. Phys. 37, 662 (1962).
- 27. R. W. MOONEY, S. Z. TOMA, AND J. BRUNVOLL, Spectrochim. Acta. Part A 23, 1541 (1967).
- B. C. CORNILSEN AND R. A. CONDRATE, J. Phys. Chem. Solids 38, 1327 (1977).
- B. C. CORNILSEN AND R. A. CONDRATE, J. Solid State Chem. 23, 375 (1978).

23, L631 (1967).

31. R. Hubin and B. Tarte, Spectrochima Acta Part

A 23, 1815 (1967). 32. I. N. CHAKRABORTY, R. A. CONDRATE, JR.,

J. R. FERRARO, AND C. F. CHENUIT, J. Solid State

Chem. 68, 94 (1987).

30. B. C. Cornilsen, J. Mol. Struct. 117, 1 (1984).

33. S. D. Ross, "Inorganic, Infrared, and Raman Spectra," McGraw-Hill, London(1972).

W. Wojchiechowski Spectrochim. Acta Part A

34. B. Jezowska-Trzebiatowska, J. Hanuza, and