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The crystal field parameters for the actual coordination symmetries of the uranium ions in UF,, C,
and C|, and for their idealizations to D, Cy,, Dy, Dy, and the Archimedean antiprism point symmetries
are given. They have been calculated by means of both the perturbative ab initio model and the angular
overlap model and are referenced to the recent results fitted by Carnall’s group. The equivalency of
some different sets of parameters has been verified with the standardization procedure. The adequacy
of several idealized approaches has been tested by comparison of the corresponding splitting patterns
of the 3H, ground state, Our results support the parameterization given by Carnall. Furthermore, the
parameterization of the crystal field potential and the splitting diagram for the symmetryless uranium
ion U(C)} are given. Having at our disposal the crystal field splittings for the two kinds of uranium
ions in UF,, U(C,) and U(C;), we calculate the model plots of the paramagnetic susceptibility x(7)

and the magnetic entropy associated with the Schottky anomaly AS(T) for UF,.

1. Introduction

The crystal field effect in the actinide tet-
rafluorides and especially in UF, has eluded
effective parametenzation for several dec-
ades. From the crystallographic data and
general characteristics of the absorption
spectra of AnF,, it has been concluded that
the degeneracies of the free ion multiplets
are completely lifted and that the strength
of the effect depends on the position of the
fluoride ligand in the spectrochemical se-
ries. This corresponds to a splitting on the
order of 2000 cm ™' in the case of the *H,
ground state of the uranium (4 + ) ion (I, 2).

The low-temperature paramagnetic be-
havior and the entropy under the Schottky
specific heat anomaly suggest that two
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close-lying singlets form the ground state,
at least for one type of the uranium ions
(3). Despite this analysis, the crystal field
patterns of nine singlets originating from the
*H, state of the uranium ions remain un-
known. Undoubtedly, the exceptionally low
coordination symmeltries of the uranium
ions in this compound have been the main
reason for the lack of a crystal field effect
interpretation.  Of two  crystallographic
types of uranium ions, one has C, symmetry
(U(I)} and the second has C; symmetry
(U(2)}, i.e., no symmetry clements at all.
Recently, Carnall ef al. (4), using results
from analysis of the optical spectra of UF,,
NpF,, and PuF, and some theoretical data
(5), have achieved effective crystal field fit-
tings within the ground electronic configu-
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rations 5/, 5%, and 5f*, respectively, and
obtained consistent parameterizations of
the crystal field potential in these isostruc-
tural compounds. Despite the assumption
of approximate C,, symmetry, these results
are highly reliable and are a good reference
for comparison with theoretical values cal-
culated in different models. Unfortunately,
the interpretation covers only one-third of
the actinide ions {(only U(1) ions), although
the spectrum of the second type of ion (U(2))
roughly coincides with that for U(1) (4). The
most important result of the Carnall inter-
pretation in the case of UF, is, apart from
the excellent total fitting, the independent
confirmation of the pseudodoublet charac-
ter (~20 cm ! gap) of the ground state for
one type of uranium ion. Such a pattern was
expected, but its disclosure authenticates
our explanation of the somewhat mysterious
magnetic and heat capacity properties of
UF, at low temperatures.

In this paper the crystal field parameters
for the two types of uranium ions in UF,
calculated in different models are presented.
Two different approaches have been used:

—the perturbative ab_initio quantum
chemical method (6, 7) supplemented by the
generalized electrostatic contributions (8),
and

—the phenomenological version of the

angular overlap model (9, 10).
The calculations have been carried out both
for the real coordination symmetries C; and
C, and for several idealized coordinations
of D,, Cy,, D,, D, and the Archimedean
antiprism point symmetry.

Based on the different sets of crystal field
parameters, the corresponding energy lev-
els of the ground states, mainly those of *H,
origin, are given. This is an instructive test
of the adequacy (or inadequacy) of variously
idealized models described by a different
number of parameters—27 for C,, [5for C;,
9. for D, and C,,, 5 for D,, 3 for D,,, and 2
for the Archimedean antiprism symmetry.

Considering the ambiguity of the crystal
field parameterizations in low-symmetry
systems, the standardization procedure
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given by Rudowicz (/1, 12) has been ap-
plied.

Finally, the low-temperatur¢ paramag-
netic susceptibility and the Schottky effect
in UF, in light of the new crystal field data
are briefly discussed.

2. Crystallographic Data and
Coordination Symmetry

UF, crystallizes in the monoclinic system
(13). The unit cell, in the more convenient
so-called 1st setting with the z axis unique,
has the dimensions ¢ = 12.73, b = 10.75,
¢ = 843 A, and v = [26°20'; space group
C%, — C2/c. It contains 12 formula units per
unit cell (/4). UF, is isostructural with the
whole series of tetrafluorides of Th to Bk
(15) as well as with ZrF, and HfF, (I4). It is
noteworthy that electron diffraction studies
on gaseous UL, suggest a C,, symmetry for
the molecule with a U-F distance equal to
2.06 A (I6).

Of the 12 U atoms in the unit cell, four
U(1) have C; site symmetry, and eight U(2)
have C,. In both cases the nearest neighbor-
hood of the uranium ion consists of eight
fluorine ions arranged in a distorted antipris-
matic (2, coordination, rather slightly for
U(1) (see Table Ila, Fig. 1b) and more seri-
ously for U(2) (see Table IIIb, Fig. 2b).

The exact point group of symmetry of
U(1) is the C, group with the 2-fold axis
directed along the crystallographic ¢ axis
(Table Ia, Fig. 1a). The coordinates of the
fluorine sites in the initial rectangular coor-
dinate system spanned on the monoclinic
unit cell and rotated about the z (¢) axis by
39.10° are shown in Table Ia and in Fig. la.
In this system the coordination polyhedron
reveals an approximate D, point symmetry
(exact 2-fold axis along 7' = z, two approxi-
mate 2-fold axes along the x" and ¥’ direc-
tions). The idealized polyhedron may be ob-
tained by averaging the x’, y’, and z7’
coordinates of the fluorine ligands (1, 2, 7,
8) and (3, 4, 5, 6), respectively (Table Ib).
In turn, the rotation around the new y’ axis
by 90° gives the coordinate system (bis) with
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TABLE I

(a) ExacT COORDINATES OF THE U(l) FLUORINE
LIGAND IN THE RECTANGULAR SYSTEM (z|c¢)
RoTATED IN  RELATION To THE  INITIAL
(CRYSTALLOGRAPHIC) ONE BY D(39.10°, 0, 0) AND (b}
IDEALIZED COORDINATES FOR THE D,
APPROXIMATION IN THE SAME SYSTEM IN A, U(1) AT
0,0,

Ligand
number x' y' z' R
(@)
1 —1.2729 1.7580 0.9105  2.3537
2 1,.2729 —1.7580 0.9105  2.3537
3 —1.2824 0.7439 —1.7211  2.2716
4 1.2824  —0.7439 —-1.7211 2.2716
5 —-1.1912 —0.6758 1.8232  2.2803
6 11912 0.6758 1.8232  2.2803
7 —1.2362 —1.7633 —0.6633  2.2533
g 1.2362 1.7633 —0.6633 2.25313
R = 2.2897
(b
I —1.2546 1.7606 0.7869  2.3006
2 1.2546 - 1.7606 0.7869  2.3006
3 —1.2368 0.7099 -1.7722  2.2747
4 1.2368 —0.7099 —-1.7722 2.2747
5 —1.2368 —0.7099 1.7722 22747
6 1.2368 0.7099 1.7722 2.2747
7 —-1.2546 —1.7606 —-0.7869  2.3006
8 1.2546 1.7606 —-0.7869  2.3006
R = 2.2877

(ARP)'™ = 0.1037
(JARP = 0.0354

the z” axis perpendicular to the ¢ axis and
to the plane of Fig. 1b (x' — 2", y' = y",
-z = x").

After this transformation, the coordina-
tion polyhedron manifests an approximate
D, or even D, point symmetry (Fig. 1b).
By means of transformation D{39.10°, 90°,
22.5°), where the Euler angles are in paren-
theses, one may also achieve the system in
which the polyhedron in its particular *‘ca-
nenical’’ position displays approximate C,,
point symmetry with the vertical symmetry
plane y"z" (Table 1la). The idealization re-
quires the averaging of the x™, y”, and z"
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coordinates of ligands (1,3,5,7), (2, 8), and
(4, 6), respectively (Table IIb).

Assuming the coordination polyhedron to
be in the shape of two identical square pyra-
mids of parallel basal planes and twisted
one toward the other by an angle « gives a
polyhedron of D, point symmetry. In the
case of U(1) in UF,, the angle @ =~ 43° is
close to 45°, as it takes place in the antiprism
(D). The coordinates of the D, polyhedron
apexes that differ from those of the D, anti-
prism are given in Table Ilc in parentheses.
The Archimedean antiprism is the ex-
tremely idealized UJ{1) coordination polyhe-
dron (Tables ITa and I1d}. This is the twisted
cube of the angle o« = 45°, the height of
which is equal to the basal edge.

The adequacy of the given geometrical
idealizations is characterized by the mean
square deviations of vector R and scalar R
of the apexes of the idealized polyhedrons
in_relation to the real ones, (AR[)"? and
(|AR[Y'2, respectively. The main and com-
mon reason for the discrepancies observed
in the idealization procedures (Tables I and
I, Fig. 1a) is a shift of the uranium ion
center by 0.12 A along the ¢ axis inside the
approximate antiprism in relation to its me-
dian point. The two basal planes of the anti-
prism are not strictly parallel and the shift
takes place in the direction of their diver-
gence,

The second type of uranium ion, U(2),
has no symmetry element at all. There is
only an approximate 2-foid axis lying in the
xy plane at an angle of ~22.5° to the x axis
(Fig. 2a). The coordinates of eight ligands
of U(2) in the rectangular coordinate system
spanned on the crystallographic unit cell and
in the system transformed by D(22.5°, 90°,
17°} rotation are presented in Table III. Pro-
jections of the coordination polyhedron are
shown in Fig. 2. Comparison of the trans-
formed coordinates (Table IIIb) of ligands
l1and 7,2 and 5, 3 and 4, and 6 and 8 shows
the presence of the approximate 2-fold axis.
Inlight of the inadequacy of symmetry ideal-
izations higher than C,, or I, in the case
of U(1) (4), an analogous approach to U(2)
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—
1A

b

F1G. 1. Projection of the U(1} coordination polyhedron (a) to the x'z" plane of the transformed
coordinate system (D¢39.10°, 0, 0))—the ligand identification numbers and the ¥’ coordinates (according
to Table Ia) are given; (b) to the x"y" plane of the transformed coordinate system (D(39.10°, 90°,
0))—the ligand identification numbers and the z” coordinates are given.

seems futile. Nevertheless, a roughly ap-
proximate coordination antiprism may also
be shown for this uranium ion (Fig. 2b). Its
approximate B-fold axis forms in the initial
coordinate system the angles § = 73° and
& = 112.5°

3. Crystal Field Parameters

In this work, we follow the standard pa-
rameterization of the crystal field potential
in tensor notation (17),

Hep = E éBi;ézw,-, b, ()

where { runs over the two 5f electrons of
the uranium ion and &, g over all effective
g components of the spherical tensor opera-
tors of rank k.

The B! parameters are, in general,
complex,

B$=Rer1+iImB’q‘,, 2)

and from the reality and hermiticity of the
potential,

Re Bf = Z(Bf + (—1)9B-)

b =

3)

1
Im B = - (B4 — (= 1)B~).

There are several methods for calculating
the crystal field parameters (6-8). In gen-
eral, they differ in the sets of contributing
mechanisms that must be taken into ac-
count, as well as in their ways of formula-
tion. One of the generalizations of the naive
point charge model which takes into account
not only the point charges of the nearest and
further neighbors but also their dipole and
quadrupole polarizations is the extended
electrostatic approach intreduced by
Faucher and Garcia (8). However, even in
the case of markedly ionic compounds, re-
sults obtained with this method are far from
those expected (8). The essential mecha-
nisms of the metal-ligand interaction that
were omitted in the electrostatic model have
been taken into account in another approach
developed by Newman (6).

The calculations presented are based on
a perturbative model (7) derived in a natural
way from the general quantum-chemical for-
mulation of the problem (/8) which com-
bines both of the above approaches. In this
method, in addition to the electrostatic con-
tributions comnsidered by Faucher and Gar-
cia (8) and the space distribution of the ¢lec-
tron density effect (Kleiner correction) (19,
20y, many other mechanisms are taken into
account: the interatomic exchange effect
(7); the effects generated by the nonorthogo-
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TABLE 11

{a} ExacTt COORDINATES OF THE U(1) FLUORINE
LIGANDS IN THE RECTANGULAR SYSTEM (z L )
ROTATED IN RELATION TO THE INITIAL
(CRYSTALLOGRAPHIC) ONE BY D(39.10°, 90°, —22.5%)
AND IDEALIZED COORDINATES FOR (b) Cy,,, (c) Dy 4(Dy),
AND (d) ARCHIMEDEAN ANTIPRISM APPROXIMATIONS
1N THE SAME COORDINATE SYsTEM IN A, U(1) AT {0,
0,0

Ligand
numbel‘ ‘xlu ym Zm R
(a)
1 1.5140 1.2757 1.2729  2.3537
2 0.1685  —1.9726 —12729 2.3537
3 —1.3054 1.3459 1.2824 22716
4 —1.8747  —0.0286 —1.2824 22716
5 1.4258 —1.3220 1.1912 2.2803
6 1.9430  —0.0734 —1.1912 2.2803
7 —1.2875  —1.37%93 1.2362  2.2533
8 0.0620 1.8829 —1.2362 2.2533
R = 2.2897
(b)
! 1.3832 1.3297 1.2456 2.2875
2 0 ~1.9320 —1.2546 2.3036
3 —1.3832 1.3297 1.2456 2.287%
4 - 1.9097 0 —1.2368  2.3036
5 1.3832 —1.3297 1.2456  2.2875
6 1.9097 0 —1.2368 2.3036
7 —1.3832 -1.3297 1.2456  2.2875
8 0 1.9320 1.2546  2.303&
R = 2.2956
(AR = ¢.1109
(JARFY™ = 0.0395
)
1 1.3584 1.3584 1.2457  2.2897
2 0 —1.9212 -1.2457 2.2897
(—0.0670) (~1.9200)
3 —1.3584 1.3584 1.2457  2.2897
4 —-1.9212 0 —1.2457 2.2897
(—1.9200) (~0.0670)
5 1.3584  —1.3584 1.2457  2.2897
6 1.9212 0 —1.2457  2.2897
(L9200}  (0.0670)
7 —1.3584  ~1.3584 1.2457  2.2897
8 0 1.9212  —1.2457 22897
(—0.0670)  (1.9200)
R = 2.2897
(AR = 0.1127 (AR} = 0.1084
(JARPY = 0.0381 \ (AR = 0.0381
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TABLE I1—Continued

Ligand
numbcr _Im ym Zm R
(d)
1 1.3220 1.3220 13220 2.2897
2 0 —1.8695 —1.3220 2.2897
3 -1.3220 1.3220 1.3220  2.2897
4 —1.8695 0 -13220 2.2897
5 B3220 - 1.3220 13220 2.2897
6 1.8695 0 —1.3220 2.2897
7 —1.3220 -1.3220 13220 2.2897
8 0 1.8695 —1.3220 2.2897
R = 22897
(ARPDY = 0.1442
(AR = 0.0381

Note. In pani {¢) only the different coordinates for
the D, approximation are given in parentheses.

nality of the central ion and ligand states,
i.e., contact covalency or overlap (19), con-
tact shielding (27), and contact polarization
(22); and the effects resulting from the main
inter- and intraatomic excitations, i.e., the
covalency (19) and the shielding (23), re-
spectively. Application of the method has
been described previously (7).

The parameters obtained in this way for
both U{1) and U(2) ions are presented in
Table 1V. The calculations for the actual
coordination symmetries, C, and €, for U(1)
and U(2), respectively, have been per-
formed in the common coordinate system
rotated with respect to the initial system by
39.10° about the ¢rystallographic ¢ axis. In
this system the coordination polyhedron of
U(1) reveals its approximate D, point group
syminetry (see Table I).

The results of three different variants of
the ab initio calculations of the crystal field
parameters for the U(1) ion are presented
in Table IV:

—the model values M in which all the
above mechanisms have been taken into ac-
count except for the polarization effects.
The corresponding contributions remain in
proportions similar to those from other cal-
culations of this kind (6, 7). Due¢ to the mu-
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F16. 2. Projections of the U(2) coordination polyhedron (a) to the xy plane of the initial coordinate
system—the ligand identification numbers and the z coordinates (according to Table Illa) are given
and the approximate twofold axis is shown; (b) to the x”z" plane of the transformed coordinate system
(D(22.5°, 90°, 17°))—the ligand identification numbers and the ¥ coordinates (according to Table HIb)

are given.

TABLE I

{(a) ExacT CoORDINATES OF THE U(2) FLUORINE
LIGANDS IN THE INITIAL RECTANGULAR SYSTEM
(z | ¢} AND (b) AFTER ITs ROTATION BY D(22.5°, 90°,
179y 18 A, U(D) a1 (0,0, 0)

(&)
Ligand
number x ¥ z R
1 -0.2626 —1.1497 —-1.9146  2.2486
2 —2.1964 0.5480 -0.2172 2.2741
3 0.1800 1.7765 —1.4061 2.2728
4 1.1453 —1.4614 1.3373  2.2882
5 —1.2935 —1.8696 0.4526  2.3181
6 1.2038 1.5260 1.0933  2,2300
7 —0.8458 0.3212 2.0392  2.2310
B 2.0972 —0.0407 —0.8493  2.2630
R = 2.2657
(b)
x" ¥ " R
1 1.5447 —1.4838 ~0.6826 2.2486
2 0.6051 1.2227 —1.8196 2.2741
3 1.8259 1.1464 0.8462 22728
4 —1.8057 —1.3139 0.4988 2.2882
5 —{0.8002 —1.0437 -1.9106 2.3181
6 —0.7643 1.2296 1.6962  2.2300
7 —-1.7651 1.1948 ~0.6585  2.2310
8 0.5634 —1.0534 1.9220  2.2630
R = 2.2657

tual cancellation of many of the contribu-
tions, the resultant M value comes mainly
from the overlap and covalency effects,

—the M values supplemented by the in-
duced dipole contributions, M + D,

—the M values supplemented by both the
induced dipole and the quadrupole contribu-
tions, M + D + O,

The electrostatic contributions have been
calculated by the program CHLOE (8, 20,
24). The free ion electronic data have been
found by using the ATOM program (25)
based on the Dirac—Slater method. In the
calculations for the fluorine anion, a stabiliz-
ing potential well has been applied. Its depth
has been estimated as the mean Madelung
potential at a fluorine site in UF,, —0.8 a.u.,
and its radius has been assumed to be equal
to the effective ionic radius, 1.3 A (26). The
dipole and quadrupole polarizability coeffi-
cients of the fluorine anion, ay = 0.731 A3
and a, = 0.631 AS, have been taken from
(27). The dipole polarizability of uranium
has been estimated by the semiempirical
Kirkwood method (28) to be equal to ay =
1.5 A%, whereas the quadrupole polarizabil-
ity coefficient has been assumed to be oy =
0.5 A’. The Sternheimer shielding factors
have been taken from (29).

The M values have been calculated from
the first principles in the purely ab initio
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TABLE 1V

CrYSTAL FIELD PARAMETERS OF THE U(1) AND U(2) IoNs 1N UF, CALCULATED FOR THE REAL COORDINATION
SYMMETRIES IN THE COORDINATE SYSTEM ROTATED IN RELATION TO THE INITIAL SYSTEM ABOUT THE z(c)

Ax1s BY 39.10°%¢

U U@
Parameter M+ D

B! = (kq) M M+D stand M+D+0Q AOM exp M+D AOM
20) 1657 1720 —2702 1778 836 1183 1050 526
Re(21) 0 575 251
Im(21) — 484 - 160
Re(22) — 8§38 —760 —295 — 891 - 366 29 2065 —705
Im{22) —-12712 1306 —1396 — 547 —630 —634
(40) —3483  —3627 — 540 —4792 —2976 2714 - 1453 —924
Re(41) 3949 2990 2498
Im(41) 1419 1290
Re(42) 3546 3635 — 5038 4937 2984 3024 —148 —224
Im(42) 1307 1509 1783 982 3082 2567
Re(43) 1027 — 687 -627
Im(43) —4054  —2908
Re(44) —4480  —4467 566 —-6127 -3665 —3791 922 803
Im{44) 1060 1087 1614 784 —2909 2367
(60) —-1272 —1214 - 1817 — 2087 —1119 -1433 526 48
Re(61) -1271 2245 1545
Im{61) —416 -173
Re(62) 1444 1489 1558 2084 1261 1267 1144 598
Im(62) —762 —-813 —928 —1738 —554 —308
Re(63) —1622 166 —63
Im(63) —974 —874
Re(64) -1500  —1477 531 —2256 —-1329 —1391 180 113
Im(64) —133 -26 241 -117 —55 -5
Re(65) —642 — 1457 —~918
Im(65) 915 564
Re(66) 1888 1850 417 2832 1553 1755 —2316  -2377
Im({66) 282 414 383 165 813 9

Note, M, main model contributions without polanization effects; D, induced dipole contribution; Q, induced
quadrupole contribution; stand, standardized values—after rotation of the initial coordinate system by D(68.97°,
90°, 90°); AOM, phenomenological one-parameter angular overlap model (AOM-{ (9) estimation for e, = 1800
cm™!; exp, Carnall fitting to the U(1) absorption spectrum for D, idealized coordination symmetry (4).

¢ Only for the axial (¢ = 0) and tetragonal (g = 4) paramecters are the signs determined absolutely.

5 Incm™?,

method, whereas those of M + Dand M +
D + @ comprise the polarizability coeffi-
cients—empirical macroscopic parameters
characteristic of particular ions. Therefore,
the approaches are not strictly ab initio.
Moreover, in contrast to the quadrupole
ones, the dipole polarizabilities are better
determined, less lattice dependent, and, in
general, much more reliable. What should
be noted in comparing the sets of M, M +

D,and M + D + @ parameters is the unex-
pected role of the quadrupole polarization
contributions, especially for the sixth- and
fourth-order parameters. From a methodi-
cal standpoint, so large a contribution from
the quadrupole pelarization is even a little
striking. One can conclude that switching
on the quadrupole part probably leads to
overestimated results (a similar feature was
observed for some rare earth compounds
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(8)) and that the M + D set is the most
reliable one.

The above results are compared in Table
IV with the parameters estimated within
the simple one-parameter version of the
angular overlap model (AOM) (9). In this
model both the ¢, and e, parameters are
assumed to be simply proportional to the
square of the corresponding metal-ligand
overlap integrals. The ¢; parameter is ne-
glected. As a consequence, the ratio of
e./e, and the exponents @, and a, in
the distance dependencies of ¢, and e_,
respectively, are fixed and the e, parameter
remains the only free parameter. On the
grounds of data gathered for several ura-
nium compounds and their general regulari-
ties (9), the e, parameter for the
U(4+)-F(—) bond should be within the
range 1700-1900 ¢m~!. The values given
in Table TV are calculated for ¢, = 1800
cm™!. The remaining fixed parameters are
e, = 625 cm™!, &, = 6.78, and a, =
7.98 (9).

It is interesting that this simple AOM esti-
mation turns out to be closer to the experni-
mental values than the theoretical sets in-
cluding M + D (see Table IV). It is just that
the AOM has been applied to simulate the
crystal field effect for the idealized coordi-
nations of the U(1) ion considered earlier.
On the other hand, using the AOM instead
of the M + D model seemed to us to be not
so important from the symmetry point of
view. In fact, we have verified that the anal-
ogous simulation carried out within the
M + D model has led to the same con-
clusions.

Depending on the choice of the main sym-
metry axis (the z axis) two kinds of symme-
try idealizations are possible:

(i) C, — D, with the model z axis along
the real ¢, axis (Tabie I) and

(if) C3 — Cy, D, — D, — Arch.anti-
prism with the main symmetry axis (2-, 4-
and 8-fold respectively) perpendicular to the
real ¢, axis (Table II).
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It should be noted that the idealization of
the C,, type automatically desiroys the
real C, axis lying in the plane perpendicular
to the model C, axis. Therefore the next
step of the idealization is at once D,,
symmetry and not D,. The crystal field
parameters obtained for the coordinations
considered here are presented in Table V.
In columns C, and C;, the AOM parame-
ters from Table 1V and their transformed
set after the D(0, 90°, 0) rotation are given.
Their evolution along the idealization pro-
¢ess is instructive, The dominant role of
parameters that survive the process, i.¢.,
the real ones in the first process and the
axial ones in the second, is characteristic.
The values of the remaining parameters
which vanish for the idealized symmetries
can be a measure of deviation of the real
coordination symmetry from its idealiza-
tions.

A clear agreement between the experi-
mental and the AOM sets in Table V is
obvious, given that the symmetry approxi-
mation applied by Carnall is of D, type
and not C,,. Some problem is connected
with the B} parameter. According to the
Carnall fitting (4) and his opinion (30), a
very small value of B} is absolutely neces-
sary for obtaining a satisfactory fit. This
requirement evidently breaks the ratio
B3/B?, which for the dominating crystal
field mechanisms depends only on coordi-
nation geometry (9). In addition, as seen
in Table IV, no sufficiently strong off-
superposition contribution is present {(com-
pare the polarization effects), Table V
shows that the idealization also does not
discriminate the B3 parameter.

For the U(2) ion only the most interest-
ing values, i.e., M + D and AOM, are
presented in Table IV. Judging from the
U(l) results, the parameters for U(2)
should be equally adequate. As expected,
they are of the same order as those for
U(D). In the coordinate system in which
U(1) has an approximate D, symmetry,
the U(2) parameters are rather uniformly
distributed over all &, g values.
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TABLE V

EvoLuTION® OF THE CRYSTAL FIELD PARAMETERS® oF THE U(1) Ion IN UF, FOLLOWING THE IDEALIZATION
oF ITs COORDINATION SYMMETRY IN THE COORDINATE SYSTEMS (a) (z || ) ROTATED 1N RELATION TO THE
INITIAL SYSTEM BY [}(39.10°, 0, 0)° anD (b) (z Lc} ROTATED IN RELATION TO THE INITIAL SYSTEM BY D(39.10°,

90°, —22.5°)¢
(a) (b}
Parameter
B = (kq) C, D, exp’ c; Cyy D, Dy Aal
(20) 836 952 1183 — 866 - 873 —-876 —873
Re(21} 209
Im{21) —505
Re{22) — 366 —-325 29 232 289
Im(22) — 547 232
(40) —20976 3224 —2714 —7308 —-7264  —T7265 —-T247  —B013
Re(41) - 148
Im(41} 357
Re(42) 2984 2923 3024 173 251
Im{42) 982 173
Re(43) — 1105
Im{43) 458
Re(44) —3665  —3584 -3791 0 13 -373
Im(44) 784 —40
(60) —-1119  —i0i0 ~ 1433 3565 3580 3583 3517 2844
Re(®61) —19
Im(61} 47
Re(62) 1261 1325 1267 — 124 — 157
Im{(62) -~738 — 124
Re(63) —1380
Im(63) 157
Re(64) -1329  —1420 —1391 0 11 —~1351
Im{64) -117 =77
Re(65) 571
Im(65) 237
Re(66) 1553 1496 1755 -~ 40 - 94
Im{66) 165 40

¢ Simulation based on the AOM-1.
®Incm~L.

¢ See Table I.

4 See Table I1.

¢ As in Table 1V.

I Archimedean antiprism.,

4. Ambiguous Parameterizations:
Standardization of the Low-Symmetry
Crystal Field Hamiltonian

In crystallographic systems of lower sym-
metries: orthorhombic, monoclinic, and tri-
clinic, there is no univocal choice of co-
ordinate system, There may be several
apparentily different, but in fact equivalent,
sets of crystal field parameters. Therefore,
the problem of suitable standardization of

the crystal field Hamiltonian arises. An ex-
cellent guide in this field are papers on stan-
dardization and algebraic symmetry of crys-
tal field Hamiltonians in low-symmetry
systems by Rudowicz ({/, 12, 31).

The standardization procedure suggested
by Rudowicz consists of two steps. In the
first, one of the imaginary parameters,
namely, Im B%, is removed by appropriate
rotation of the coordinate system about the
z axis by the angle
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¢ = }arctan(Im B3/Re B3). (4)

The second step is based on a strictly de-
fined transformation of a coordinate system
to one of the six possible systems (11), cho-
sen to reduce the ratio of B3/B3 to the range
(0, 1/V6) without changing the number of
parameters, The standardization procedure
for the orthorhombic and monoclinic sys-
tems is in principle the same and gives univ-
ocal parameterization. It results from the
fact that the orthorhombic parameters trans-
form themselves separately and indepen-
dently from the monoclinic ones. For the
triclinic point groups the ratio can be re-
duced to the required interval but it is not
the unique solution.

In the case of the parameters M + D for
U(l) from Table IV, ¢ = 29.87° and the
new B2 parameter is equal to 1506 cm™" (its
sign is immaterial). Hence, the ratio of
BYB} = 0.88; i.c., it lies in the range
(1/A/6, 3//6). It denotes that the required
transformed system to the range (0, 1/‘\/6)
is §2 in the Rudowicz notation (/[). Thus,
the second-order parameters after the stan-
dardization take the values B} = —2702 and
B} = —295 ¢cm~'. The fourth- and sixth-
orders parameters are transformed similarly
according to the conversion refation given
in (11, 12). How some actually equivalent
parameterizations may apparently differ
from each other can be seen by comparing
the initial (M + D) and standardized (M +
D stand) parameters in Table IV,

During the fitting process to any experi-
mental data not all parameters are determin-
able simultaneously (all but one), and not all
the signs of the parameters can be assigned
absolutely. For the monoclinic potential, in
the case Im B2 = 0, the following informa-
tion can be determined during fitting (12):

(i) the magnitudes and the absolute signs
of three axial parameters;

(ii) the magnitudes of 11 (of 12) off-axial
parameters, e.g., B3, ReB!, and ImB?% for
k=4,6andg = 2, 4, 6

(iii) the absolute signs of ReB] and ReBS;

(iv) the relative signs of ReB3, ReB?,
ReRS, and ReRE,

GAJEK, MULAK, AND KRUPA

(v) the relative signs of ImB3 and Im&B¢,
as well as ImBj and Im&B¢;

(vi) the relative signs of ImB% and ImB?,
as well as ImB} and ImB¢, with respect to
the sign of B2.

The standardization used by Rudowicz
has proved the equivalency of many appar-
ently different parameterizations and has
demonstrated the incorrectness of some of
them, resulting most often from different
local minima attained during fitting proce-
dures ({1, 12).

The transformation expressions to stan-
dardize the crystal field parameters (Table
Tin Ref. ({/) and Table I in Ref. {({2)) are
formulated for the Stevens operator nota-
tion. Therefore, the parameters originating
from the tensor notation should be properly
transformed (31, 33).

5. Crystal Field Splitting

Based on the crystal field parameters
given in Tables IV and V for both real and
idealized symmetries and the free ion pa-
rameters F¥, {5, o, B, v, M*, and P* used
by Carnall et al. (4) for U(1) in UF,, the
simultaneous diagonalization of the stan-
dard model Hamiltonian

H= Y F¥+iy2ls+alll +1)
k=0,2,46 i

+ BG(Gy) + YGRy) + >, M*my (5)
k=0,2,4

+

k=2,4.6

Ptp, + AéiB‘;CE(i)

within the 5f° configuration has been carried
out. The operators f,, 1. s;, G(Gy), G(R),
my, Py, and C% keep their usual meaning (4,
32). Calculations for C, and C, crystal fields
were performed at Laboratoire des Ele-
ments de Transition dans les Solides CNRS,
Meuden, Bellevue, France, courtesy of Dr.
P. Porcher by means of his newest program
BOULIL. Calculations for the higher sym-
metries were performed at Laboratoire de
Radiochimie IPN Orsay, France, with the
THI program.

The lower portions of the energy specira
corresponding to the *H, manifold splittings
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F1G. 3. ’H, part of splitting diagrams for U(2) and different approximations of U(I) coordination in
UF, calculated from the parameters given in Table Vb and VI. Links between the levels reveal their

principal genealogy.

are shown in Fig. 3. All patterns including
the Carnall fitting diagram are consistent:
they reveal a common antiprismatic origin
and display a similar total splitting (~ 1800
c¢m™!). Only the positions of I'; and TP lev-
els of [M, = 0) and |M; = =1) origin for
the Archimedean antiprism symmetry differ
distinctly from their lower symmetry coun-
terparts. For the D, model pattern which is
the best approximation of the experimental
one, some downshift of three singlets T'{?Y,
'Y, T'®in D, notation, lying between 1000
and 1500 cm~!, by about 150 ¢m~! and in-
version of the sequence in pairs of close
lying levels, T{" — [V, T — {0, T@ —
r?, and 'Y -~ T'P, should be noted.

As seen in Fig. 3, the doublet of |M, =
+3) origin is the ground state for the
U(4+)-8F(—) antiprismatic coordination.

Similarly, ground states of such origin were
previously found in other uranium com-
pounds of U(4+)-80(2—) approximately
antiprismatic coordinations: U(80,), ' 4H,0
(34, 35), U(CH,CO0Q), (36), and U(CH,CO
CHCOCH,), (34).

The model patterns for U(1) and U(2) are
roughly in line, except perhaps for the level
at 818 cm™! for U(2) mainly of [M, = 0)
origin. The total splitting in the case of U(2)
is somewhat stronger and the antiprismatic
character, i.e., the doublet separation, is
less pronounced, which is consistent with
the smaller mean value of the U-F distance
{2.2657 opposed to 2.2897 A) and lower co-
ordination symmetry.

The coincidence of U(1) and U(2) energy
spectra may cause some false assignments
of the levels and hence incorrect interpreta-
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tion of the optical spectrum. To estimate
how the idealization of the coordination
symmetry changes the level pattern, the
mean square differences of energy of levels
Ajg.sym between the idealized E;(Id.sym) and
the real £(C,) symmetries have been calcu-
lated by

AId.s).fm /
n 172
= [n% 22 (E(Id.sym) — E,-(Cz))z] ’
(6)

where r is the number of levels {(*}) = 91).
Since the energy is measured from the
ground singlet, { = 1 is excluded. For the
3H, part of the spectrum, it yields

Ap, =47cm™!, A =S55cm7,
Ap,=70cm !, Ap =73cm™', and
AArch.am =233 cm—t‘

We strongly believe that the numbers are
representative of the whole spectrum of the
5f? configuration.

The accuracy of the successive idealiza-
tions measured by 4, .. is consistently
correlated with ((ARJ?)'2, the mean square
deviations of vector R of the apexes of
the idealized coordination polyhedrons in
relation to the real ones (Tables I and
II). The best approximation is that of D,
symmetry, whereas the Archimedean anti-
prism idealization differs markedly from
the others.

By analogy, the mean square difference
between the energies of the corresponding
levels of U(1) and U{(2) ions can be found.
Taking in both cases the real symmetries
C, and C,, respectively (the third and first
patterns in Fig. 3), one obtains Ayqy_yp) =
91 e¢m~', This value is comparable with
Ap,,» which means that the error resulting
from the D,, idealization is of the same
order as that resulting from replacing the
U(1) pattern with the U(2) one. For com-
parison, the mean standard deviation of
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TABLE VI

EIGENFUNCTIONS*? AND ENERGIES OF THE Four
LowesT SINGLETS oF URaNIUM Tons iN UF,: (a)
U(1), (b) U(2), AND (c) U(1) ACCORDING TO CARNALL

, 30

Energy (cm™)

Main components

(a)

0 0.612{514 £ 2), 0.251|514 = 4)
20 0.512|514 = 3y, 0434|514 = |)
573 0.624|514 = 3, 0.218/404 = 3)
591 0.490(514 = 4), 0.417|5140)
(b)
0 0.390/514 £ 2), 0.333|514 = 3)
81 0.401/514 £ 3), 0,382|5140)
426 0.562|514 + 1), 0.205/514 = 2)
528 0.442|514 = 4, 0.338514 + 3)
(c)
0 0.594|514 = 23, 0.313]514 = 4)
23 0.536/514 = 3y, 0.403|514 = 1)
563 0.559(514 + 43, 0.289|5140)
656 0.628/514 £ 3), 0.227/404 = )

¢ Functions are given in |LSSM,) notation.
b The absolute values of the coefficients of only the
three or four top components are presented.

the Carnall fitting (calculated from o = 31
fem™")is 29 cm ~* and is smaller than 4, =
47 cm~!, i.e., smaller than the error induced
by the idealization of symmetry (). This fact
again suggests the possibility of a “‘mixed”’
assignment. Some sets of levels originating
from both the U(1) and U(2) ions may better
fit the D, model than the purely U(1) sets,

The calculated eigenfunctions and ei-
genenergies of the four lowest singlets of
U(1yand U(2}ions in UF, for the real coordi-
nation symmetry, C; and C,, respectively,
are given in Table VI. Figure 3 and Table
VI are good illustrations of the adequacy
and usefulpess of different symmetry ap-
proximations for describing the electronic
eigenstates of uraniun ions in UF,. As can
be seen, the idealizations to higher symmet-
ries, especially to D,, I}, and the Archi-
medean antiprism, are not acceptable when
details of the ¢rystal field splitting are essen-
tial, as in the case of magnetic or heat capac-
ity properties.
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MOLAR PARAMAGNETIC SUSCEPTIBILITY OF UF, up To 300 K in

emu/mol x 10°

Calculated for

Experimental
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T un U@ sU) + 3U(2) estimated from (3)
0 48,680 12,090 24,290 24,000
5 48,390 12,090 24,190 21,600
10 43,750 12,090 22,640 17,200
20 30,640 12,030 18,230 12,400
30 22,490 11,650 15,260

50 14,540 10,170 11,630

100 7940 6940 7280 6400

150 5660 5240 5380

200 4480 4240 4320 4200

250 3750 3590 3640

300 3240 3120 3160 3260

6. Low-Temperature Paramagnetic
Susceptibility and the Schottky Effect in
Light of the New Crystal Field Data

Having at our disposal the splitting dia-
grams and the corresponding cigenfunctions
for both U(I) and U(2} ions and applying
Van Vleck’s formula, we can calculate the
weighted value (in the ratio 1 : 2) of the para-
magnetic susceptibility of UF, for any crys-
tallographic direction and within any tem-
perature range. Qur calculations relative to
powdered material were carried out for all
singlets lying below 1000 ¢m™', and the
high-frequency contributions coming from
all those lying below 5000 cm~! were taken
into account. The program BOULI given by
Porcher was used.

The calculated susceptibilities together
with estimated experimental values (3) are
presented in Table VII and Fig. 4. As can
be seen, a satisfactory consistency between
the calculated and the measured susceptibil-
ities has been obtained. Some discrepancies
at low temperatures result from relatively
small differences in theoretical and actual
energy gaps between the lowest levels.

UF, is distinguished by the very short
range of temperature-independent paramag-
netism (~5 K) and simultaneously a rather

large Curie constant, C = 1.36(37)and 1.18
(38), and Weiss constant, 8 = 100 K (37,
38). This is an atypical feature for the non-
Kramers ion in a low-symmetry crystal field
and has been the main problem in interpre-
ting the magnetic properties of the com-
pound. The reason for this is that at the

300

-1

x,, (emu/mol}

7

100 200 0

T (Ki

FiG. 4. Calculated x5! versus T plot for UF, in the
range 0-300 K: (O) estimated experimental values (3);
(--) high-temperature Curie—-Weiss approximation of
the theoretical plot.
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TABLE VI

MoLar MAGNETIC ENTROPY OF UF, ASSOCIATED WITH THE SCHOTTKY
ANoMALY UP TO 300 K, IN R

Calculated for

T u U@) () + §U@) Experimental (39)
10 0.220 0.000 0.073
20 0.497 0.021 0.180 ~0.20
30 0.595 0.100 0.265
50 0.655 0.301 0.419
100 0.686 0.565 0.605
150 0.716 0.707 0,710
200 0.775 0.842 0.819
250 0.848 0.966 0.927
00 0.923 1.072 1.023 ~1.10

lowest temperatures the relative contribu-
tion of the more abundant species of ura-
nium is distinctly small and only at higher
temperatures does it become proportional
to its abundance.

In turn, the temperature dependence of
the heat capacity shows that the two low-
est singlets of U(1) are distant from 15.4
K (10.7 cm~1) (39). The magnetic entropy
associated with the Schottky specific heat
anomaly was found to be approximately
iR In 2 = 0.2310R at 20 K, i.c., as ex-
pected for a two-level system in the U(I)
ion, and on the order of R In 3 = 1.0986R
at 300 K, as expected for an effective
population of three singlets (3, 39).

The magnetic entropy associated with the
Schottky anomaly for a system of singlets
may be expressed in the form

AS(T) = RIn 2 exp(—68,/T)

T E,‘ Cxp(—S,fT) ’

)]

where { runs over all singlets taken into ac-
count, including the ground state for which
8, = 0; §; are given in K.

The, weighted average changes in the en-
tropy for both types of uranium ions, U(l)
and U(2),

AS = JAS(1) + 3AS(2), (8)
calculated in the range 0-300 K for the four
lowest singlets of U(1) and the lowest five
of U(2) (see Fig. 3) are presented in Table
VIII. As can be seen, the calculated AS val-
ues correspond fairly well to the data given
by Burns ef al. in 1960 (39). Thus, the inter-
pretation of the magnetic and heat capacity
properties of UF, proposed by Leask, Os-
born, and Wolf in 1961 (3) is still up to date
and has been independently confirmed in
this paper.
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