Cation Distribution in the $(Mg_{1-x}Cu_x)_3(PO_4)_2$ Solid Solution, x = 0.46 and 0.79^1

A. Mogine,* A. Boukhari,* and E. M. Holt†

*Laboratoire de Chimie du Solide Appliquée, Département de Chimie, Faculté des Sciences, Université Mohammed V, Avenue Ibn Batouta, Rabat, Morocco; and †Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078

Received July 30, 1992; in revised form June 1, 1993; accepted June 3, 1993

Cation distributions in two related structures, $(Mg_{0.54}Cu_{0.46})_3$ $(PO_4)_2(I)$ and $(Mg_{0.21}Cu_{0.79})_3(PO_4)_2(II)$ belonging to the system $Mg_3(PO_4)_2-Cu_3(PO_4)_2$ have been determined by single-crystal X-ray diffraction. $(Mg_{0.54}Cu_{0.46})_3(PO_4)_2$ I is isotypic with $Mg(PO_4)_2$: a=7.608(3), b=8.026(5), c=5.116(3)Å, $\beta=92.73(4)^\circ$, monoclinic, $P2_1/n$, V=312.0(3)Å 3 , Z=2, $D_{\rm calc}=3.374$ g cm $^{-3}$, R=5.8% for 549 observed reflections. $(Mg_{0.21}Cu_{0.79})_3(PO_4)_2$ II, is isotypic with $Cu_3(PO_4)_2$, a=4.845(3), b=5.265(3) c=6.246(2)Å, $\alpha=71.98(4)$, $\beta=93.04(4)$, $\gamma=111.42(4)^\circ$, triclinic, P1 bar, V=140.7(1)Å 3 , Z=1, $D_{\rm calc}=4.198$ g cm $^{-3}$, R=8.5% for 645 observed reflections. Both structures show mixed Mg/Cu trigonal bipyramidal sites $(31\% Mg^{2+}/69\% Cu^{2+})$. In I, additional positions of octahedral symmetry are occupied uniquely by Mg^{2+} ions. In II, square planar sites contain only Cu^{2+} ions.

INTRODUCTION

The distribution of bivalent cations Me^{2+} (Me^{2+} = Mg, Mn, Fe, Co, Ni, Cu, Zn and Cd) between five-coordinate (trigonal bipyramidal) and six-coordinate (octahedral) sites in orthophosphates has been the focus of recent research (1-4). The apportionment of ions between the two environments in a structure depends generally upon the nature of the element and its ability to adopt a deformed coordination geometry.

The substitution for Mg^{2+} ions of the cations Mn^{2+} , Fe^{2+} , Co^{2+} , Cu^{2+} , Cd^{2+} , and Zn^{2+} in the orthophosphate $Mg_3(PO_4)_2$, as studied by Nord *et al.*, shows a preference

¹ See NAPS document No. 05051 for 19 pages of supplementary material. Order from ASIS/NAPS. Microfiche Publications, P. O. Box 3513, Grand Central Station, New York, NY 10163. Remit in advance \$4.00 for microfiche copy or for photocopy, \$7.75 up to 20 pages plus \$.30 for each additional page. All orders must be prepaid. Institutions and Organizations may order by purchase order. However, there is a billing and handling charge for this service of \$15. Foreign orders add \$4.50 for postage and handling, for the first 20 pages, and \$1.00 for additional 10 pages of material, \$1.50 for postage of any microfiche orders.

for substitution in the site of five-coordination following the order $Zn^{2+} > Co^{2+} > Fe^{2+} > Mn^{2+}$ (1, 2, 5, 6). Distribution of the ions Mg^{2+} , Fe^{2+} , Mn^{2+} , and Zn^{2+} in the compounds $(Mg_{0.5}Fe_{0.5})_3(PO_4)_2$, $(Mg_{2/3}Mn_{1/3})_3(PO_4)_2$, and $(Zn_{2/3}Mg_{1/3})_3(PO_4)_2$ has been determined for powder samples using the Rietveld method. The increase in the intensities of certain peaks in the electronic reflectance spectra of the solid solution $(Mg_{1-x}Co_x)_3(PO_4)_2$ has been correlated with the presence of increased amounts of Co^{2+} in the trigonal bipyramidal sites of five-coordination (7).

The maximum molar solubility of Cu^{2+} observed by Nord *et al.* in the structure of $Mg_3(PO_4)_2$ was 15% at 1070 K (2). The probability of finding Cu^{2+} preferably in the more distorted site (five-coordination) has been suggested by these authors; however, no proof of this hypothesis has been shown.

In a previous article (8), we have shown that the solid solution $(Mg_{1-x}Cu_x)_3(PO_4)_2$ is more extended than observed by Nord *et al*. We have studied the solubility of Mg^{2+} in $Cu_3(PO_4)_2$ in the range $0.77 \le x \le 1$ (9). The structure of $Cu_3(PO_4)_2$ (Shoemaker *et al*. (10)) has Cu^{2+} in positions of square planar or trigonal bipyramidal coordination. We report here single crystal structures of $(Mg_{0.54}Cu_{0.46})_3(PO_4)_2$ I, x = 0.46, isotypic with $Mg_3(PO_4)_2$, and $(Mg_{0.21}Cu_{0.79})_3(PO_4)_2$ II, x = 0.79, isotypic with $Cu_3(PO_4)_2$, which permits determination of the distribution of Mg^{2+} and Cu^{2+} in the metallic sites of the two orthophosphates.

EXPERIMENTAL

Sample Preparation

The preparation of powder samples of the solid solution $(Mg_{1-x}Cu_x)_3(PO_4)_2$ has been previously reported (8). Single crystals of I and II have been prepared by heating to fusion a powder sample corresponding to x = 0.5 in the following manner. The temperature of a mixture of the starting materials (99% purity) MgO, CuO, and $(NH_4)_2HPO_4$ corresponding to x = 0.5 was raised slowly

TABLE 1 Crystal Data

	$(Mg_{0.54}Cu_{0.46})_3(PO_4)_2$ I	$(Mg_{0.21}Cu_{0.79})_3(PO_4)_2$ II
Empirical formula	Mg _{1.62} Cu _{1.38} (PO ₄) ₂	Mg _{0.21} Cu _{0.79}) ₃ (PO ₄) ₂
Formula weight	317.01	355.86
Crystal color	pale green	blue
Crystal system	monoclinic	triclinic
Space group	$P2_1/n$	P1 bar
Lattice parameters	•	
a	7.608(3)Å	4.845(3)Å
b	8.026(5)	5.265(3)
с	5.116(3)	6.246(2)
α	90.0°	71.98(4)°
β	92.73(4)	93.04(4)
y	90.0	111.42(4)
$\dot{m{V}}$	312.0(3)Å ³	140.7(1)Å ³
Z	2	1
$D_{\rm calc}$	3.374 g cm-3	4.198 g cm^{-3}
F(000)	306	169
μΜοΚα	54.46 cm ⁻¹	95.86 cm ⁻¹
Diffractometer	Syntex-Nicolet P3	Syntex-Nicolet P3
Radiation	$MoK\alpha(\lambda = 0.71069\text{Å})$	$MoK\alpha(\lambda = 0.71069\text{Å})$
Temperature	29° C	29° C
Scan type	θ –2 θ	θ –2 θ
Octants meas.	$\pm h, k, l$	$\pm h, k, \pm l$
No. independ. refins. meas.	1717	1731
No. obs. refins.	549	645
No. variables	62	62
R/R_w	5.8/7.5%	8.5%
G.O.F.	0.64	0.77
Max. peak in final diff. map	$3.19 e^{-}/\text{Å}^{3}$	$2.87 e^{-}/\text{Å}^{3}$

to 1173 K in a platinum crucible. The mixture was maintained at this temperature for 48 hr. The reaction product was then heated to fusion (1473 K). The resulting liquid was cooled slowly to 873 K (5 K per hr), whereupon heating was discontinued. The crystalline product contained two different crystalline forms recognizable by their color (pale green or blue). A selection of pale green crystals was ground to give a powder spectrum which resembled that of $Mg_3(PO_4)_2$; that of the blue material (alone) was similar to the spectrum of $Cu_3(PO_4)_2$.

Crystallographic Studies

Crystals of I and II (dimensions $0.12 \times 0.10 \times 0.10$ mm, pale green color, I; $0.11 \times 0.11 \times 0.11$ mm, blue color, II) were mounted on a Syntex P3 automated diffractometer. Unit cell dimensions were determined by least-squares refinement of angular positions for 15 independent reflections $(2\theta > 15^\circ)$ (Table 1) during normal alignment procedures. Data (1717, (I) and 1731, (II) independent points after removal of forbidden space group, I, and of redundant data, I and II) were collected at room temperature using a variable scan rate, a θ -2 θ scan mode, and a scan width of 1.2 $^\circ$ below $K\alpha_1$ to 1.2 $^\circ$ above $K\alpha_2$ with a

maximum 2θ value of 60° . Backgrounds were measured at each side of the scan for a combined time equal to the total scan time. The intensities of three standard reflections were remeasured after every 97 reflections. As the intensities of these reflections showed less than 5% variation, corrections for decomposition were deemed unnecessary. Data were corrected for Lorentz and polarization effects. Observed reflections (549 (I) and 645 (II) points, $I > 3.0\sigma(I)$) were used for solution and refinement. Direct methods (MULTAN (11)) permitted location of the heavy atom positions. A cycle of least-squares refinement followed by a difference Fourier synthesis allowed location of the PO₄-groups. Distribution of Cu²⁺ and Mg²⁺ in heavy atom positions was determined by placing a Cu²⁺ and a Mg2+ atom in each metal site and constraining their positional and thermal parameters to remain identical for the atoms in each site. Population parameters were constrained to total 1 for each site. Refinement (XRAY (12)) of scale factor, positional, and isotropic thermal parameters was carried out to convergence (function minimized, $\sum w(|F_0| - |F_c|)^2$) leading to a final agreement factor (R = $(\Sigma w | |F_o| - |F_c| |/\Sigma w |F_o|) \times 100$). For both structures, scattering factors were taken from Cromer and Mann (13).

TABLE 2
Positional Parameters for (Mg_{0.54}Cu_{0.46})₃(PO₄)₂ I

Atom	$X(\operatorname{Sig}(X))$	$Y(\operatorname{Sig}(Y))$	$Z(\operatorname{Sig}(Z))$
Mgl	0.0000	0.0000	0.0000
Mg2	0.3862	0.1407	0.3870
Cu2	0.3862(2)	0.1407(2)	0.3870(3)
Pl	0.3034(3)	0.3032(3)	-0.0360(4)
01	0.4400(8)	0.3483(8)	0.1865(12)
O2	0.1503(8)	0.4278(8)	~0.0411(12)
O3	0.2394(8)	0.1296(8)	0.0503(12)
O4	0.3846(8)	0.3026(9)	-0.3005(12)

Anomalous dispersion corrections were made for Cu and Mg (International Tables for X-Ray Crystallography (14)). In the final stages of refinement a weight of $1/\sigma(F)^2$ was used. $R/R_w = 5.8/7.5\%$, I; 8.5/10.7%, II.

DISCUSSION

Positional parameters for I and II are given in Tables 2 and 3 respectively. Bond angles and distances are listed in Tables 4 and 5.

Refinement of occupancy factors for the single crystal structures **I** and **II** has determined their compositions to be $(Mg_{0.54}Cu_{0.46})_3(PO_4)_2$ **I** and $(Mg_{0.21}Cu_{0.79})_3(PO_4)_2$ **II**, corresponding to x = 0.46 and x = 0.79 in the solid solution $(Mg_{1-x}Cu_x)_3(PO_4)_2$. These two compositions belong to two different domains, $0 \le x \le 0.46$ (isotypic with $Mg_3(PO_4)_2$) and $0.79 \le x \le 1$ (isotypic with $Cu_3(PO_4)_3(9)$).

In the structure of $(Mg_{0.54}Cu_{0.46})_3(PO_4)_2$ I, special positions (0 0 0 and 0.5 0.5 0.5, I bar symmetry) of the space group $P2_1/n$ are occupied solely by Mg^{2+} ions. A general position is occupied by Mg^{2+} and Cu^{2+} ions in the ratio Mg/Cu: 0.62/1.38 or 31% Mg^{2+} and 69% Cu^{2+} . Thus, copper occupies only mixed sites.

Mg²⁺ ions located on inversion centers show regular octahedral geometry with Mg-O: 2.048(6)-2.103(6)Å. In the mixed sites, Mg/Cu displays distorted trigonal bipyramidal geometry with Mg/Cu-O: 1.908(7)-2.099(6)Å. Thus

TABLE 3
Positional Parameters for (Mg_{0,21}Cu_{0,79})₃(PO₄)₂ II

Atom	$X(\operatorname{Sig}(X))$	$Y(\operatorname{Sig}(Y))$	$Z(\operatorname{Sig}(Z))$
Cul	0.0000	0.0000	0.0000
Cu2	0.2805(3)	-0.2296(3)	0.6866(2)
Mg2	0.2805	-0.2296	0.6866
PI	0.3592(4)	0.6463(4)	0.2225(3)
O1	0.6707(11)	0.6492(11)	0.1715(9)
O2	0.3846(12)	0.8452(12)	0.3684(9)
O3	0.1527(13)	0.3422(14)	0.3390(10)
O4	0.2312(12)	0.7745(11)	-0.0027(9)

TABLE 4
Bond Angles (°) and Distances (Å) for (Mg_{0.54}Cu_{0.46})₃(PO₄)₂ I

			- 472
Mg1-O3	2.103(6)	O3-Mg1-O3'	180.0
Mg2-O3'	2.103(6)	O3-Mg1-O4''	87.0(2)
Mg2-O4"	2.099(7)	O3-Mg1-O4 ⁱⁱⁱ	93.0(2)
Mg2-O4 ⁱⁱⁱ	2.099(7)	O3-Mg1-O1 ^{iv}	87.8(2)
Mg2-O1iv	2.048(6)	O3-Mg1-O1 ^v	92.2(2)
Mg2-O1 ^v	2.048(6)	O3'-Mg1-O4"	93.0(2)
Mg _{0.31} Cu _{0.69} -O1	2.009(7)	O3'-Mg1-O4 ⁱⁱⁱ	87.0(2)
$Mg_{0.31}Cu_{0.69}-O3$	2.010(6)	O3'-Mg1-O1 ^{iv}	92.2(2)
$Mg_{0.31}Cu_{0.69}-O4^{vi}$	2.061(7)	O3'-Mg1-O1 ^v	87.8(2)
Mg _{0.31} Cu _{0.69} ~O2vii	2.099(6)	O4"-Mg1-O4 ⁱⁱⁱ	87.0(2)
Mg _{0.31} Cu _{0.69} -O2 ^v	1.908(7)	O4"-Mg1-O1iv	81.3(2)
P1-O1	1.548(6)	O4"-Mgi-O1"	98.7(2)
P1-O2	1.534(7)	O4 ⁱⁱⁱ -Mg1-O1 ^{iv}	98.7(2)
P1-O3	1.548(7)	O4 ⁱⁱⁱ –Mg1–O1 ^v	81.3(2)
P1-O4	1.514(6)	O1iv-Mg1-O1v	180.0
		OI-Mg _{0.31} Cu _{0.69} O3	73.6(2)
		$O1-Mg_{0.31}Cu_{0.69}-O4^{vi}$	83.2(3)
		$O1-Mg_{0.31}Cu_{0.69}-O2^{vii}$	95.2(2)
		$O1-Mg_{0.31}Cu_{0.69}-O2^{v}$	172.4(3)
		$O3-Mg_{0.31}Cu_{0.69}-O4^{vi}$	132.0(2)
		O3-Mg _{0,31} Cu _{0,69} -O2 ^{vii}	128.8(2)
		O3-Mg _{0.31} Cu _{0.69} -O2 ^v	103.2(2)
		$O4^{vi}-Mg_{0.31}Cu_{0.69}-O2^{vii}$	94.0(2)
		$O4^{vi}-Mg_{0,31}Cu_{0,69}-O2^{v}$	103.8(3)
		$O2^{vii}$ - $Mg_{0.3i}Cu_{0.69}$ - $O2^{v}$	81.4(2)
		O1-P1-O2	110.1(4)
		O1-P1-O3	102.1(3)
		O1-P1-O4	111.7(4)
		O2-P1-O3	110.0(3)
		O2-P1-O4	109.2(4)
		O3-P1-O4	113.5(4)

Note. $' \approx -x$, -y, -z; '' = -0.5 + x, 0.5 - y, 0.5 + z; iii = 0.5 - x, -0.5 + y, -0.5 - z; iv = -0.5 + x, 0.5 - y, -0.5 + z; v = 0.5 - x, -0.5 + y, 0.5 - z; vi $\approx x$, y, 1 + z; vii = 0.5 + x, 0.5 - y, 0.5 + x.

in the domain $0 \le x \le 0.46$ (isotypic with Mg₃(PO₄)₂), Cu²⁺ ions substitute preferentially into the sites of deformed trigonal bipyramidal geometry.

In $(Mg_{0.21}Cu_{0.79})_3(PO_4)_2$ II, sites of square pyramidal geometry (located on a center of symmetry) are occupied only by Cu^{2+} ions (Cu-O: 1.910(7)-1.977(4)Å). Mg^{2+} and Cu^{2+} ions occupy a second position of trigonal bipyramidal geometry with 31% Mg^{2+} and 69% Cu^{2+} occupancy (Mg/Cu: 0.63/1.37; Mg/Cu-O: 1.958(6)-2.207(6)Å).

Mg-O distances in I and II (Mg_{octahedral}-O av. 2.083(6); Mg_{trigonal bipyramidal}-O av. 2.017(7) I; Mg_{trigonal bipyramidal}-O av. 2.027(6)Å II) are similar to the values observed in Mg₃(PO₄)₂ (Mg_{octahedral}-O av. 2.121(6); Mg_{trigonal bipyramidal}-O av. 2.029(7)).

Cu-O values in I, $Cu_{trigonal\ bipyramidal}$ -O, av. 2.017(7), II $Cu_{trigonal\ bipyramidal}$ -O, av. 2.027(6), and $Cu_{square\ planar}$ -O), av. 1.941(6)Å are similar to those observed in $Cu_3(PO_4)_2$ ($Cu_{trigonal\ bipyramidal}$ -O, av. 2.025, and $Cu_{square\ planar}$ -O, av. 1.953Å).

The ionic radii of Mg²⁺ and Cu²⁺, when six-coordinate,

TABLE 5
Bond Angles(°) and Distances(Å) for (Mg_{0.21}Cu_{0.79})₃(PO₄)₂ II

8 17		0.7573	4/2
Cu1-O4'	1.910(7)	O4'-Cu1-O1"	90.0(2)
Cu1-Ot"	1.977(4)	O4'-Cu1-O1 ⁱⁱⁱ	90.0(2)
Cu1-O1iii	1.977(4)	O4'-Cu1-O4iv	180.0(6)
Cu1-O4iv	1.910(7)	01"-Cu1-01 ⁱⁱⁱ	180.0(5)
$Mg_{0.313}Cu_{0.686}-O4^{v}$	1.976(6)	O1"-Cu1-O4 ^{iv}	90.0(2)
Mg _{0.313} Cu _{0.686} -O2'	1.958(6)	O1 ⁱⁱⁱ –Cu1–O4 ^{iv}	90.0(2)
$Mg_{0.313}Cu_{0.686}-O2^{vi}$	2.019(5)	$O4^{v}-Mg_{0.313}Cu_{0.686}-O2'$	168.6(3)
$Mg_{0.313}Cu_{0.686}-O1^{vii}$	2.207(6)	$O4^{v}-Mg_{0.313}Cu_{0.686}-O2^{vi}$	87.2(2)
$Mg_{0.313}Cu_{0.686}-O3^{viii}$	1.974(6)	$O4^{v}-Mg_{0.313}Cu_{0.686}-O1^{vii}$	88.8(2)
P1-O1	1.552(6)	O4 ^v -Mg _{0.313} Cu _{0.686} -O3 ^{viii}	90.0(2)
P1~O2	1.558(7)	$O2'-Mg_{0.313}Cu_{0.686}-O2^{vi}$	81.5(2)
P1-O3	1.510(6)	O2'-Mg _{0,3)3} Cu _{0,686} -O1 ^{vii}	98.9(3)
P1-O4	1.564(6)	O2'-Mg _{0.313} Cu _{0.686} -O3viii	96.5(2)
		$O2^{vi}-Mg_{0.313}Cu_{0.686}-O1^{vii}$	124.8(2)
		$O2^{vi} - Mg_{0.313}Cu_{0.686} - O3^{viii}$	132.8(3)
		$O1^{vii}$ - $Mg_{0.313}Cu_{0.686}$ - $O3^{viii}$	102.2(2)
		OI-PI-O2	110.2(3)
		O1-P1-O3	109.8(4)
		O1-P1-O4	109.7(4)
		O2-P1-O3	111.3(3)
		O2-P1-O4	106.0(3)
		O3-P1-O4	109.8(3)

Note. ' = x, -1 + y, z; '' = -1 + x, -1 + y, z; iii = 1 - x, 1 - y, -z; iv = -x, 1 - y, -z; v = x, -1 + y, 1 + z; vi = 1 - x, 1 + y, 1 - z; vii = 1 - y, -y, 1 - z; viii = -x, -y, 1 - z.

have been estimated to be 0.72 and 0.73Å, respectively. Values for five-coordinate Mg²⁺ are 0.66: five coordinate copper (geometry unspecified), 0.65Å; and square planar Cu²⁺, 0.57Å (Shannon (15)). Thus, the two metals are similar in size and their ability to share a site is not remarkable. However, the observation that occupancy of mixed sites Mg/Cu of deformed trigonal bipyramidal geometry is identical in the two structures is unexpected.

The structures of the two compounds are shown in Figs. 1 and 2, respectively.

CONCLUSION

A single crystal study of $(Mg_{0.54}Cu_{0.46})_3(PO_4)_2$ I corresponding to x = 0.46 in the solid solution $(Mg_{1-x}Cu_x)_3(PO_4)_2$ shows that substitution of Cu for Mg in the solid isotypic with $Mg_3(PO_4)_2$ proceeds preferentially in the site of deformed trigonal bipyramidal geometry. Octahedral sites of $Mg_3(PO_4)_2$ remain occupied only by Mg^{2+} ions.

In $(Mg_{0.21}Cu_{0.79})_3(PO_4)_2$ II corresponding to x = 0.79 in the solid solution, $(Mg_{1-x}Cu_x)_3(PO_4)_2$, of the domain $0.79 \le x \le 1$ (isotypic with $Cu_3(PO_4)_2$), substitution of Mg^{2+} for Cu^{2+} proceeds in sites of trigonal bipyramidal geometry. Sites of square planar geometry remain occupied by Cu^{2+} ions alone.

The mixed occupancy sites of I and II show identical Mg²⁺/Cu²⁺ occupancies: 31%/69%.

FIG. 1. Projection view of $(Mg_{0.54}Cu_{0.46})_3(PO_4)_2$ I on the 1 0 1 plane.

FIG. 2. Projection of $(Mg_{0.21}Cu_{0.79})_3(PO_4)_2$ II on the 0 1 1 plane.

Substitution of Cu for Mg in Mg₃(PO₄)₂ and of Mg for Cu in Cu₃(PO₄)₂, both of which present a choice of substitution site, appears dominated by the preference of Mg for a site of octahedral or near octahedral coordination.

ACKNOWLEDGMENTS

The authors express their thanks to the National Science Foundation for assistance in the form of a grant to permit collaborative investigation and to the Moroccan-American Commission for Fulbright grants to EMH.

REFERENCES

- 1. A. G. Nord and P. Kierkegaard, Acta Chem. Scand. 22, 1466 (1968).
- 2. A. G. Nord and T. Stefanidis, Mater. Res. Bull. 15, 1183 (1980).
- 3. A. G. Nord and T. Stefanidis, Mater. Res. Bull. 12, 563 (1977).
- 4. A. G. Nord and T. Stefanidis, Mater. Res. Bull. 16, 1121 (1981).
- 5. C. Calvo, Acta Crystallogr. 23, 289 (1987).
- K. Lukaszewicz, Bull. Acad. Pol. Sci. Ser. Sci. Chim. 15 (2), 53 (1967).

- E. J. Baran, A. G. Nord, and E. Diemann, J. Phys. Chem. Solids 50 (9), 983 (1989).
- A. Moqine, A. Boukhari, and S. Flandrois, *Mater. Res. Bull.* 22, 165 (1987).
- A. Moqine, Thèse de 3ème Cycle, Rabat, Morocco, 1986; Thèse de Doctorat d'Etat, Rabat, Morocco, 1990.
- G. L. Shoemaker, J. B. Anderson, and E. Kostiner, Acta Crystallogr. Sect. B 33, 2969 (1977).
- P. Main, S. J. Fiske, S. E. Hull, L. Lessinger, G. Germain, J.-P. Declercq, and M. M. Woolfson, "MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data." Universities of York, and Louvain, 1980.
- J. M. Stewart, "The XRAY System-Version of 1978." Technical Report TR-446, Computer Science Center, Univ. of Maryland, College Park, MD, 1978.
- D. T. Cromer and I. B. Mann, Acta Crystallogr. Sect. A 24, 321 (1968).
- "International Tables for X-Ray Crystallography," Vol. IV. Kynoch Press, Birmingham, 1974. Present distributor Kluwer Academic Publishers, Dordrecht.
- 15. R. P. Shannon, Acta Crystallogr, Sect. A 32, 751 (1976).