Crystal Structure and Magnetic Properties of BaVSi₂O₇

Guo Liu and J. E. Greedan¹

Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada L8S 4MI

Received February 1, 1993; accepted May 28, 1993

The structure of the second phase (β) of BaVSi₂O₇ has been solved by single crystal X-ray diffraction, and its magnetic properties have been examined in the temperature range 5-300 K. β -BaVSi₂O₇ crystallizes in the tetragonal system, space group I4/m (No. 87), with a = 7.0535(7) Å, c = 11.467(2), V = 570.5(3) Å³, and Z = 4. This structure can be considered as consisting of VO₅⁶⁻ square pyramids and unbranched single rings of [Si₄O₁₂]⁸⁻, or of cage-like $[Si_4V_2O_{18}]^{12-}$ clusters formed by SiO_4^{4-} and VO_5^{6-} . These building elements are cross-linked to form a pseudo-twodimensional (2D) network containing empty channels perpendicular to the c-axis. The 2D networks are held together by Ba²⁺ ions that occupy channels parallel to the c-axis. B-BaVSi₂O₇ undergoes short range magnetic order below ~20 K. Its behavior can best be described as an $S = \frac{1}{2}$ dimer with J/k = -19.0 K, $\bar{g} = 1.87$. The fresnoite-type Ba₂VSi₂O₈ is found to be a Curie-Weiss paramagnet down to 4.5 K. © 1994 Academic Press, Inc.

INTRODUCTION

Tetravalent vanadium is known to form silicates with some alkaline earth elements (Ca, Sr, and Ba) where V(IV) adopts square pyramidal (VO_5^{6-}) coordination and Si is tetrahedrally coordinated (1-3). Feltz and co-workers (4) first reported the synthesis of Ba₂VSi₂O₈ and BaV- Si_2O_7 , and showed that the former appeared to be isostructural with the tetragonal fresnoite Ba₂TiSi₂O₈, in which TiO₅⁶⁻ square pyramids and Si₂O₇⁶⁻ dimers are linked to form a layered structure (5-7). Two polymorphs have been reported for BaVSi₂O₇. The recently discovered mineral suzukiite (3), (α -) BaVSi₂O₇, was said to have the haradaite (SrVSi₂O₇) structure, in which VO₅⁶ square pyramids and [Si₄O₁₂]_n chains are cross-linked to form again a layered structure (2). The second form, β) BaVSi₂O₇, was thought to be orthorhombic (4) (and probably isostructural with BaTiSi₂O₇) based on powder X-ray diffraction data, but detailed crystallographic information was not available. During our investigation in the BaVO_{3-x} system, we accidently obtained good quality single crystals of β -BaVSi₂O₇, and less well crystallized $Ba_2VSi_2O_8$. Thus we carried out a structure determination of β -BaVSi₂O₇ by single crystal X-ray diffraction, and examined the magnetic properties of both V(IV)-containing silicates.

EXPERIMENTAL

Sample Preparation

Synthesis of $Ba_8V_7O_{22}$. $Ba_2V_2O_7$ was first synthesized by firing an intimate mixture of $2BaCO_3$ and V_2O_5 at $900-1000^{\circ}C$ in air. $Ba_2V_2O_7$ powder specimens were reduced in flowing H_2 gas at $1100^{\circ}C$ for 24 hr. The dark gray product was ground further, pelleted, confined in an open Mo tube (O.D. 1.25 cm) which was secured in an alumina boat, heated in H_2 at $1350^{\circ}C$ for 2-4 days depending on the sample size, and cooled down rapidly. The pellet surface near both ends of the Mo tube was partially reoxidized (white), probably during cooling; the white material was removed physically. The structure of the major product has been solved by single crystal X-ray diffraction recently and its composition established as $Ba_8V_7O_{22}$, in which V exhibits three oxidation states (+3, +4, and +5) (8).

Crystal growth of β -BaVSi₂O₇. A mixture of Ba₈V₇O₂₂ $(0.167 \text{ g}, \sim 9\% \text{ by weight})$ and BaCl₂ (1.788 g) was loaded into a clean quartz tube, evacuated to 10⁻⁴ Torr with mild heating (below 100°C) to completely remove water absorbed by BaCl₂, and sealed off. The quartz tube was heated at 6-10°C/min to 1020°C, soaked for 30 min, and cooled at 6°C/hr to 850°C, then at 20°C/hr to 500°C, and finally, rapidly, to room temperature. The product was washed repeatedly with distilled water to remove the flux. Well crystallized greenish transparent thin plate crystals were easily picked out from the bulk powder specimen. As described below, the powder X-ray diffraction pattern matched that of BaVSi₂O₇ reported previously (4), for which Z = 4 had been derived from the measured density. The composition is proved by single crystal X-ray structure analysis.

Crystal growth of $Ba_2VSi_2O_8$. A mixture of $Ba_8V_7O_{22}$ (0.245 g, \sim 18% by weight) and $BaCl_2$ (1.153 g) was treated

¹ To whom correspondence should be addressed.

in the same way as for β -BaVSi₂O₇ in quartz, but was cooled at 20°C/hr to 600°C, and then rapidly to room temperature. Colorless square rod crystals were found when the product was washed repeatedly with distilled water. The surfaces of most crystals were covered with black materials which had to be removed by washing and scratching. No efforts were made to improve the quality of the crystals. Powder X-ray diffraction proved this to be the same phase as Ba₂VSi₂O₈ reported previously (4).

Powder X-Ray Diffraction and Magnetic Measurements

Preliminary examinations were performed using a Guinier-Hägg camera (IRDAB XDC700) with $CuK\alpha1$ radiation and a Si standard. Pulverized crystals were mounted on Scotch tape for Guinier photography. The Guinier data were read with a computer-controlled automated LS-20 type line scanner (KEJ Instruments, Täby, Sweden). Susceptibility data were obtained using a Quantum Design SQUID magnetometer in the temperature range 4.5–300 K using ~ 10 mg randomly oriented crystals at an applied magnetic field of 0.2 T. Diamagnetic corrections were applied.

Single Crystal X-Ray Structure Analysis of β-BaVSi₂O₂

A thin plate crystal was mounted on the tip of a glass fiber with epoxy cement and examined on a Siemens P3 four-circle diffractometer using Ag $K\alpha$ radiation. Three standards ((4 0 0); (0 4 0); (0 0 4)), measured at every 100 reflections, showed no measurable decay in intensity. Data reduction, structure solution, and refinement were effected using the Siemens SHELXTL PC software package on an IBM-compatible 80486 personal computer. Seven azimuthal scans ((0 k 0) where k = 2, 4, 6, 8, 10,12. 14) were used for absorption corrections using the program XEMP based on a lamina model with (0 0 1) for the prominent face of the thin plate crystal. Systematic extinction conditions (hkl: $h + k + l \neq 2n$) and intensity statistics suggested that the most likely space group is the centrosymmetric I4/m (#87), which has been determined in the subsequent refinement. Atomic coordinates of all the heavy atoms, Ba, V, and Si, were found by direct methods, and the oxygens were located by Fourier difference. The structural and anisotropic thermal parameters were refined by full least-squares methods based on $(F_o - F_c)^2$ using 904 observed reflections with $I_o > 3\sigma(I_o)$ to R = 4.75%, $R_w = 7.17\%$ and GOF = 1.96. Detailed crystallographic information is listed in Table 1. The noncentrosymmetric space group $I\overline{4}$ was also tested. The reliability factors were slightly lower (R = 4.13%, $R_w =$ 5.73%, and GOF = 1.62) due to the increase in refinable parameters. However, strong correlations between certain parameter pairs, high shift/error ratios, and the ap-

TABLE 1 Summary of Crystallographic Data for β-BaVSi₂O₇

Color and habit	Greenish, thin plate
Crystal size (mm³)	$0.21 \times 0.19 \times 0.023$
Diffractometer	Siemens P3
Radiation	$AgK\alpha(\lambda = 0.56086 \text{ Å})$
Temperature (K)	290
Monochromator	Graphite
2θ range (°)	6.0 to 70.0
Index ranges	$-1 \le h \le 14, -1 < k \le 14, -1 \le l \le 23$
Scan type	ω
Scan speed (°/min.)	Variable; 2.00 to 29.30 in ω
Scan range (ω, °)	0.06
Absorption correction	Semi-empirical
Min./max. transmission	0.5117/0.8661
Crystal system	Tetragonal
Systematic extinction conditions	$hkl: h + k + l \neq 2n$
Space group	I4/m
Unit cell dimensions	a = 7.0535(7)
(Å)	c = 11.467(2)
Volume (Å3)	570.5(3)
Z	4
Formula weight	356.5
Density (calc., g/cm ³)	4.150
Absorption coefficient (mm ⁻¹)	8.903
F(000)	652
No. of reflections collected	1747
No. of independent reflections	1280
No. of observed reflections	$904 \ (F_0^2 > 3\sigma(F_0^2))$
No. of parameters refined	31
Data/parameter ratio	29.2
R(%)	4.75
$R_{\rm w}(\%)$	7.17
Goodness-of-fit	1.96
Largest shift/error, Δ/σ	0.003

pearance of unreasonably short $O \cdots O$ contact distances (2.425 Å) are clear indications of an improper choice of space group. Therefore the space group I4 was rejected for β -BaVSi₂O₇.

RESULTS AND DISCUSSION

The Crystal Structure of β-BaVSi₂O₇

Atomic coordinates and isotropic temperature factors are listed in Table 2, anistropic temperature factors in Table 3, and important bond lengths and bond angles in Table 4. As can be seen in Fig. 1, the structure consists of unbranched single $[Si_4O_{12}]^{8-}$ rings and VO_5^{6-} square pyramids. The $[Si_4O_{12}]^{8-}$ group has a C_{4h} symmetry as shown more clearly in Fig. 2, while the VO_3^{6-} group has a lower (C_{4v}) symmetry. The Si-O bond lengths range from 1.597(5) to 1.622(5) Å (average 1.606(5) Å), and

TABLE 2
Atomic Coordinates and Equivalent Isotropic Displacement Coefficients ($\mathring{A}^2 \times 10^3$) for β -BaVSi₂O₇

Atom	Site	х	у	z	U(eq)
Ba	4 <i>d</i>	0.5000	0	0.2500	16(1)
V	4 <i>e</i>	0	0	0.3433(1)	7(1)
Si	8h	0.2313(2)	0.2175(2)	0	11(1)
O(1)	8h	0.2650(8)	-0.0099(7)	0	30(2)
O(2)	16 <i>i</i>	0.1783(7)	0.1986(8)	0.3826(4)	35(1)
O(3)	4 <i>e</i>	0	0	0.2044(7)	26(2)

Note. Equivalent isotropic u defined as one third of the trace of the orthogonalized U_{ii} tensor.

O-Si-O angles from 107.9(2)° to 114.2(4)° (average 109.5(3)°). These results are in good agreement with existing silicates (9), and suggest a relatively small distortion from a regular tetrahedron. Similar [Si₄O₁₂]⁸⁻ rings have been observed in a few other silicates such as M'-Pb₂SiO₄ (10), the leucosphenite $Na_4BaTi_2B_2Si_{10}O_{30}$ (11), and taramellite $Ba_4M_4(B_2Si_8O_{27})O_2Cl_x$ $(M = Ti^{4+}, Fe^{3+}; 0 \le x \le 1)$ 1) (12). In the VO₅⁻ square pyramid, the axial V-O bond length is only 1.592(8) Å, while the basal ones are significantly longer, 1.936(5) Å. The O(2)-V-O(3) basal to axial oxygen angle, 103.5(1)°, is greater than 90° and clearly indicates the displacement of the central V atom off the basal square plane toward the axial oxygen. This geometry is similar to the VO₅⁻ polyhedra in the haradaite SrVSi₂O₇(2), cavansite, and pentagonite (Ca(VO)(Si₄ O_{10}) · $4H_2O$) (1), and to the MV_3O_7 series (M = Ca, Sr, Cd) (13). The VO₅⁻ polyhedra are isolated in the sense that there is no direct connection between themselves. However, they can be considered as dimerized through four bridging Si atoms, forming a [Si₄V₂O₁₈]¹²⁻ cluster as shown in Fig. 3 (C_{4h} symmetry).

The cross linking of SiO₄⁴⁻ and VO₅⁶⁻ polyhedra results in the formation of a two-dimensional channel structure as shown in Fig. 4. It consists of 8-membered rings involving

TABLE 3
Anisotropic Displacement Coefficients ($\mathring{A}^2 \times 10^3$)
for $\beta\text{-BaVSi}_2O_7$

Atom	$oldsymbol{U}_{11}$	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Ba	16(1)	16(1)	15(1)	0	0	0
V	8(1)	8(1)	7(1)	0	0	0
Si	10(1)	9(1)	13(1)	-7(1)	0	0
O(1)	12(2)	13(2)	66(5)	-1(1)	0	0
O(2)	35(2)	50(3)	22(2)	-33(2)	-7(2)	-2(2)
O(3)	36(3)	36(3)	5(2)	0	0	0

Note. The anisotropic displacement exponent takes the form $-2\pi^2(h^2a^{*2}U_{11}+\cdots+2hka^*b^*U_{12})$.

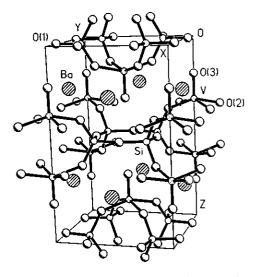
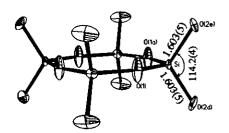



FIG. 1. The β -BaVSi₂O₇ structure with SiO₄⁴⁻ and VO₅⁶⁻ polyhedra outlined.

both Si and V as well as O atoms. The $V \cdots V$ distance in Fig. 3, 3.594 Å, sets an upper limit for the channel height. The 2D channel structure of β -BaVSi₂O₇ is unique among the known V(IV)- and Ti(IV)-containing silicates. Though in the fresnoite structure of Ba₂TiSi₂O₈ (7) and Ba₂VSi₂O₈ (4), and the haradaite structure of SrVSi₂O₇

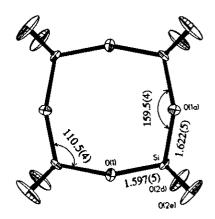


FIG. 2. Side and top views of an unbranched single $\{Si_4O_{12}\}^{8-}$ ring $(C_{4h}$ symmetry). Bond lengths (Å) and important bond angles (°) are also given. Atoms are plotted at 50% probability level.

		BaO_n		
	4 Ba-O(1)		3.312(3)	
	4 Ba-O(2)		3.070(5)	
	4 Ba-O(2)'		2.901(5)	
	4 Ba-O(3)		3.566(1)	
	Average	12x	3.094(4)	
	Ва-О	16x	3.212(3)	
V	O_5		S	iO ₄
V-O(3)	1.592(8)		Si-O(1)	1.622(5)
4 V-O(2)	1.936(5)		Si-O(1)'	1.597(5)
Average	1.867(6)		2 Si-O(2)	1.603(5)
			Average	1.606(5)
4 O(2)-V-O(3)	103.5(1)		O(1)-Si-O(1)'	110.5(4)
2 O(2)-V-O(2)'	153.0(3)		2 O(1)-Si-O(2)'	107.9(2)
4 O(2)-V-O(2)"	86.9(1)		2 O(1)'-Si-O(2)'	108.2(2)
			O(2)-Si-(2)'	114.2(4)
			Average	109.5(3)
2 O(1)-Ba	3.312(3)		O(2)-Ba	2.901(5)
O(1)-Si	1.597(5)		O(2)-Ba'	3.070(5)
O(1)-Si'	1.622(5)		2 O(2)-Si	1.603(5)
O(3)-V	1.592(8)			
4 O(3)-Ba	3.566(1)			

2.592

Shortest O · · · O

TABLE 4
Important Bond Lengths (Å) and Bond Angles (°) for *G*-BaVSi₂O₂

(2) and BaVSi₂O₇ (suzukiite) (3), the SiO₄⁴⁻ and VO₅⁶⁻ TiO₅⁶⁻) polyhedra form layers which are held together by Ba²⁺ or Sr²⁺ ions, they do not have the open channels found in the β -BaVSi₂O₇ structure. However, β -BaVSi₂O₇ is not believed to be as zeolitic as cavansite and pentagonite (1), where large 16- and 12-membered rings involving only Si and O atoms have been found, respectively.

The coordination of the Ba²⁺ ions that hold the 2D networks together in β-BaVSi₂O₇ is worthy of a close examination. They occupy channels parallel to the c-axis as can be seen more clearly from a perspective view along the c-axis in Fig. 5. Within the sphere of a 3.5 Å radius the Ba²⁺ ions can be considered as 12-coordinated with Ba-O bond lengths ranging from 2.901(5) to 3.312(3) Å and an average of 3.094(4) Å. If the four additional oxygens at a distance of 3.566(1) Å were considered, the Ba²⁺ ions would be 16-coordinated with an even longer average Ba-O distance (3.212(3) Å). The average Ba-O distance for the 12-coordination is already larger than that in the fresnoite Ba₂TiSi₂O₈ (average Ba-O 2.98(3) Å) and those in Ba₂VO₄ (2.883(15); 3.042(16) Å) (14). These results suggest that the Ba²⁺ ions are rather weakly bonded in β -BaVSi₂O₇.

Finally it is worth commenting on the highly anistropic thermal parameters of O(1) and O(3). As can be seen in

Table 3, there exist significant differences between the U_{11} , U_{22} , and U_{33} components for both oxygens. Since thermal motions are related to bonding, these results appear to reflect the special coordination environments of O(1) and O(3). O(3) is strongly bonded to one V with the V-O bond parallel to the c-axis, and much more weakly to four Ba²⁺ as described above. Thus thermal motion in

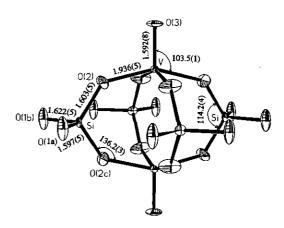


FIG. 3. A $[Si_4V_2O_{18}]^{12^-}$ cluster (C_{4h} symmetry) showing the dimerization of the VO_3^{6-} square pyramids. Atoms are plotted at 50% probability level.

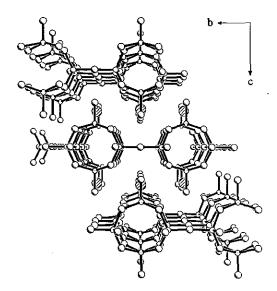


FIG. 4. Perspective view of the β -BaVSi₂O₇ structure alone the *a*-axis showing the existence of 2D networks and empty channels perpendicular to the *c*-axis.

the Z direction is very small as is the U_{33} value with respect to U_{11} and U_{22} . O(1), on the other hand, forms a quite irregular tetrahedron. It is loosely bonded to two Ba (Ba-O(1): 3.312(3) Å) with the Ba-O(1)-Ba (119.9(2)°) at ~30° with respect to the c-axis, while rather tightly to two Si (Si-O(1): 1.597(5), 1.621(5) Å and Si-O(1)-Si 159.4(4)°) in a plane perpendicular to the c-axis. Therefore, the U_{33} component of O(1) is significantly higher than U_{11} and U_{22} .

Powder X-ray Diffraction

 β -BaVSi₂O₇. Twenty observed reflections from Guinier X-ray data were indexed by the program TREOR90P, a PC version of TREOR (15), to the tetragonal system, with a = 7.0506(3), c = 11.4643(7) Å, and V = 569.89 Å³

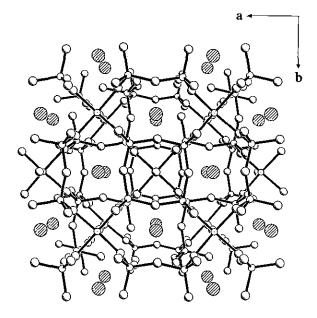


FIG. 5. Perspective view of the β -BaVSi₂O₇ structure alone the c-axis showing the occupation of channels by Ba²⁺ ions (shaded large circles) parallel to the c-axis.

and figures of merit M20 = 54, F20 = 60. The least-squares refined cell parameters using 38 unique reflections are listed in Table 5, together with related V(IV) and Ti(IV) silicates for comparison. The observed powder X-ray diffraction pattern is listed in Table 6. The powder pattern appears to be identical with the graphically shown pattern of "orthorhombic" BaVSi₂O₇ reported by Feltz and coworkers (4), and the two solutions have similar unit cell volumes (Table 5). Thus they probably represent the same phase.

 $Ba_2VSi_2O_8$. Twenty-two observed reflections were indexed completely by TREOR90P to the tetragonal system (M22 = 72, F22 = 63), with a = 8.5015(6), c = 5.2158(6) Å, and V = 376.98 Å³. The least-squares refined cell pa-

TABLE 5
Comparison of Observed Lattice Parameters for Some V(IV)- and Ti(IV)-Containing Silicates

Compound	Space group	a(Å)	b(Å)	c(Å)	V(Å)	Reference
BaV Si ₂ O ₇	/4/m	7.0507(3)		11.4665(7)	570.02(5)	This work
BaVSi ₂ O ₂		6.01(2)	10.00(4)	9.55(4)	574(5)	(4)
BaVSi ₂ O ₂	Ama2	7.089(2)	15.261(2)	5.364(1)	580.3	(3)
SrVSi ₂ O ₇	Amam	7.06	14.64	5.33	551	(2)
BayVSiyO8	P4bm	8.5017(4)		5.2145(4)	376.90(4)	This work
Ba ₂ VSi ₂ O ₈	P4bm	8.488(8)		5.210(5)	375.5	(4)
Ba ₂ TiSi ₂ O ₈	P4bm	8.5291		5,2110	379.08	(16)

TABLE 6
Guinier X-Ray Diffraction Pattern of Pulverized
BaVSi₂O₇ Crystals

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.006 5.7332 4.9858 3.7621 3.5253	1 2 0 2	0 0 1	h 1 0
5.7332 5.7330 4 4.9858 4.9892 14 3.7621 3.7643 27 3.5253 3.5270 16 3.3609 3.3612 15 3.0403 3.0405 10 3.0030 3.0043 100	5.7332 4.9858 3.7621 3.5253	2 0 2	0	
4.9858 4.9892 14 3.7621 3.7643 27 3.5253 3.5270 16 3.3609 3.3612 15 3.0403 3.0405 10 3.0030 3.0043 100	4.9858 3.7621 3.5253	0 2		Λ
3.7621 3.7643 27 3.5253 3.5270 16 3.3609 3.3612 15 3.0403 3.0405 10 3.0030 3.0043 100	3.7621 3.5253	2	1	•
3.5253 3.5270 16 3.3609 3.3612 15 3.0403 3.0405 10 3.0030 3.0043 100	3.5253			1
3.3609 3.3612 15 3.0403 3.0405 10 3.0030 3.0043 100			i	1
3.0403 3.0405 10 3.0030 3.0043 100	3.3609	0	0	2
3.0030 3.0043 100		3	0	1
		1	1	2
	3.0030	2	0	2
2.8666 2.8668 4	2.8666	4	0	0
2.4928 2.4932 60	2.4928	0	2	2
2.4851 2.4854 24		4	1	1
2.2861 2.2864 24	2.2861	2	2	2
2.2296 2.2299 10	2.2296	0	i	3
2.2241 2.2241 5		4	0	2
2.1808 2.1801 2	2.1808	5	0	1
2.0780 2.0781 14	2.0780	2	1	3
1.8810 1.8804 5	1.8810	4	2	2
1.7845 1.7845 9	1.7845	6	1	1
1.7627 1.7624 49	1.7627	0	0	4
1.7409 1.7412 5	1.7409	3	2	3
1.6848 1.6847 4	1.6848	2	0	4
1.6801 1.6798 5		6	0	2
1.5962 1.5959 9	1.5962	2	3	3
1.5766 1.5767 15	1.5766	0	2	4
1.5609 1.5608 3	1.5609	3	1	4
1.5201 1.5203 29	1.5201	2	2	4
1.5015 1.5013 8		4	0	4
1.4880 1.4880 2	1.4880	5	2	3
1.4510 1.4509 11	1.4510	6	1	3
1.4377 1.4373 23	1.4377	4	3	3
1.4333 1.4330 3	1.4333	8	0	0
1.3775 1.3777 3	1.3775	8	1	1
1.3442 1.3443 6	1.3442	2	1	5
1.3230 1.3231 3	1.3230	3	3	4
1.3008 1.3006 3	1.3008	1	2	5
1.2540 1.2542 5	1.2540	6	3	3
1.2426 1.2426 4	1.2426	8	2	2
	1.2161	6	2	4
1.2161 1.2168 5 1.2092 1.2086 2		0	3	5
1.2057 1.2059 7	1.2057	8	1	3

Note. $\lambda = 1.5406 \text{ Å}$, a = 7.0507(3) Å, c = 11.4665(7) Å, $\overline{V} = 570.02(5) \text{ Å}^3$; I4/m.

rameters using 26 unique reflections are also listed in Table 5. The unit cell is slightly larger than that reported previously for Ba₂VSi₂O₈, but smaller than the fresnoite Ba₂TiSi₂O₈. The observed powder pattern is listed in Table 7. This pattern is so similar to that of Ba₂TiSi₂O₈ (16) that it is clear that the crystals obtained in this experiment are Ba₂VSi₂O₈, and the compound has the fresnoite structure as suggested previously (4).

TABLE 7
Guinier X-Ray Diffraction Pattern of Ba₂VSi₂O₈

h	k	!	$d_{ m cal}$	$d_{ m obs}$	$I_{ m obs}$
0	0	1	5.215	5.211	6
2	0	0	4.251	4.258	3
1	1	1	3.9391	3.9387	9
2	1	0	3.8021	3.7995	19
2	0	1	3.2948	3.2942	41
2	1	1	3.0722	3.0720	100
2	2	0	3.0058	3.0057	6
3	1	0	2.6885	2.6882	34
0	0	2	2.6072	2.6071	19
3	1	1	2.3896	2.3897	9
2	0	2	2.2225	2.2231	8
2	1	2	2.1502	2.1507	23
4	1	0	2.0620	2.0614	31
3	3	0	2.0039	2.0040	14
2	2	2	1.9696	1.9697	9
4	2	0	1.9010	1.9006	6
3	3	1	1.8705	1.8707	30
4	1	2	1.6173	1.6177	11
3	3	2	1.5888	1.5886	16
2	1	3	1.5808	1.5811	14
5	2	1	1.5110	1.5112	16
6	0	0	1.4170	1.4169	6
5	3	1	1.4042	1.4038	6
4	1	3	1.3290	1.3292	11
6	2	1	1.3017	1.3018	11
5	4	1	1.2867	1.2868	6
1	1	4	1,2740	1.2737	6

Note. $\lambda = 1.5406 \text{ Å}$, a = 8.5017(4) Å, c = 5.2145(4) Å, $V = 376.90(4) \text{ Å}^3$; space group P4bm.

Magnetic Properties

β-BaVSi₂O₇. The magnetic susceptibility and inverse susceptibility data are plotted against temperature in Fig. 6. There exists a relatively broad susceptibility maximum

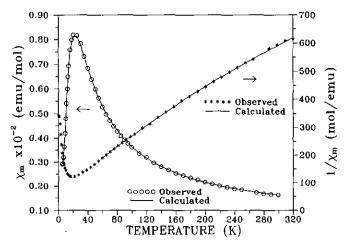


FIG. 6. Temperature dependencies of the magnetic susceptibility per V (left) and inverse susceptibility (right) of β -BaVSi₂O₇. Calculated curves are based on an $S = \frac{1}{2}$ dimer (left) and the Curie-Weiss law (right).

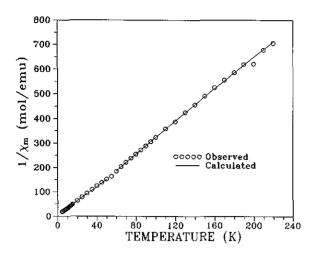


FIG. 7. Temperature dependence of the inverse susceptibility of Ba₂VSi₂O₈ with Curie-Weiss law fits in two different temperature ranges.

at \sim 22 K, indicating short-range magnetic order. Efforts to correlate the observed susceptibility data quantitatively to a short-range model showed that the best fit can be obtained for an $S=\frac{1}{2}$ dimer. The equation used for the fitting can be written as

$$\chi_{\rm m} = \frac{N\overline{g}^2 \mu_{\rm B}^2}{3kT} \left[1 + \left(\frac{1}{3} \right) \exp(-2J/kT) \right]^{-1} + \frac{C}{T - \theta} + \chi_{\rm TIP}$$
 [1]

where \overline{g} is the powder-averaged g-factor, and J the exchange constant. The first term is the Bleaney-Bowers expression (17) per V atom for an $S=\frac{1}{2}$ dimer system, the second (Curie-Weiss law) term accounts for the trace amount of paramagnetic impurity whose contribution was only observable at ~ 6 K, and the last term accounts for temperature-independent paramagnetism. As can be seen in Fig. 6, this equation gave an excellent fit to the observed data with J/k = -19.0 K, $\overline{g} = 1.87$, $\chi_{\text{TIP}} = 4.97 \times 10^{-4}$ emu/mol, C = 0.0212 emu·K/mol, and $\theta = -4.2$ K.

The dimeric antiferromagnetic interaction can be understood by examining the cluster structure shown in Fig. 3. This mechanism involves superexchange through the four O-Si-O bridges. Relevant bond lengths and bond angles for such a V-O(2)-Si-O(2)'-V' bridge are, from left to right: 1.936(5) Å, 1.603(5), 1.603(5), 1.936(5); 136.2(3)°, 114.2(4)°, 136.2(3)°. Such a pathway should allow good orbital overlaps which are important for the superexchange interaction. Also, this pathway should be favored over that which would result in two-dimensional correlations, namely, V-O(2)-Si-O(1)-Si'-O(2)'-V' (Fig. 1).

We recently reported another magnetic dimer for V(IV) in the high temperature (β -) phase of Sr_2VO_4 (18), where

TABLE 8
Observed and Ideal Bond Valence Sums (V) for the Crystallographically Independent Atoms in β -BaVSi₂O₇

Atom	Ва	V	Si	O(1)	O(2)	O(3)
V(obs.)	1.61	4.33	4.38	-2.30	-2.08	-1.80
V(ideal)	2	4		-2	-2	-2

the formation of a somewhat loosely defined chemical dimer, $V_2O_8^{8-}$, has been observed (14). The magnetic coupling is much stronger in β -Sr₂VO₄ ($\overline{g} = 1.88$, J/k = -52 K) than in β -BaVSi₂O₇ despite the involvement of a long V-O bond (2.37 Å) in the superexchange pathway in the former case. Thus it is believed that the V-O-V bond angle, 147°, played a crucial role in the magnetic exchange in β -Sr₂VO₄, while in β -BaVSi₂O₇ the relatively small exchange coupling constant is probably due to the combined effects of smaller bond angles and the presence of an additional atom, Si, in the superexchange pathway.

The inverse susceptibility curve in the temperature range 60-300 K can be fitted to a Curie-Weiss law with a temperature-independent term. This gave C=0.374 emu·K/mol, which is exactly that expected for an $S=\frac{1}{2}$ spin-only system (C=0.375 emu·K/mol) for V(IV), $\theta=-17.4$ K, and $\chi_{\rm TIP}=4.37\times 10^{-4}$ emu/mol, which is close to the value in the dimer model fitting.

 $Ba_2VSi_2O_8$. The temperature dependence of the inverse susceptibility data is plotted in Fig. 7. A Curie-Weiss law is observed down to 4.5 K. There appears to be a change in slope at ~55 K; its origin is unknown. A fitting to the data in the 60-220 K range gave C=0.271 emu·K/mol, $\theta=8.2$ K, and $\chi_{\rm TIP}=1.26\times10^{-4}$ emu/mol. The low temperature data between 4.5 and 50 K gave $\theta=-1.7$ K and C=0.344 emu·K/mol, which is close to the spin-only value of 0.375 emu·K/mol.

Bond Valence Sums

A bond valence sum, V, for a given ion is defined as the sum of bond valences (s_i) of its individual bonds according to the equation

$$V = \sum s_i = \sum \exp[(r_0 - r_i)/B], \qquad [2]$$

where r_i is the observed bond length for the *i*th bond, and B and r_0 are semiempirical parameters which have been calculated by Brown and Altermatt (19). V can be used to describe the distribution of valence in bonds, and is normally expected to be close to the oxidation state of the ion concerned. An increase in V represents a shortening of bonds and a decrease in V means a lengthening of bonds. Derived bond valence sums from known bond lengths for β -BaVSi₂O₇ are listed in Table 8. Apparently, the V, Si,

and O(1) atoms are tightly bonded because of their importance in the formation of the $[Si_4O_{12}]^{8-}$ rings and $[Si_4V_2O_{18}]^{12-}$ clusters, while the Ba atoms, which fill the channels as described above, are rather loosely bonded. The small bond valence sum for O(3), however, cannot be interpreted simply as a result of bond stretching because of its unusual coordination environment. The O(3)-Ba bonds are lengthened indeed, while the bond valence value of -1.80 for the axial O(3)-V bond is a very high value, and reflects the strong double bond nature of V-O(3).

ACKNOWLEDGMENT

We thank Dr. J. Britten for assistance in the single crystal X-ray diffraction work and Professor C. V. Stager for use of the magnetometer. The financial support of the Natural Science and Engineering Research Council of Canada and the Ontario Centre for Materials Research are acknowledged gratefully.

REFERENCES

- 1. H. T. Evans, Jr., Am. Mineral. 58, 412 (1973).
- 2. Y. Takeuchi and W. Joswig, Mineral. J. 5, 98 (1967).

- 3. S. Matsubara, A. Kato, and S. Yui, Mineral. J. 11, 15 (1982).
- A. Feltz, S. Schmalfuss, H. Langbein, and M. Tietz, Z. Anorg. Allg. Chem. 417, 125 (1975).
- R. Masse, J.-C. Grenier, and A. Durif, Bull. Soc. Fr. Minér. Crist. 90, 20 (1967).
- 6. P. B. Moore and J. Louisnathan, Science 156, 1361 (1967).
- 7. P. B. Moore and S. J. Louisnathan, Z. Kristallogr. 130, 438 (1969).
- 8. G. Liu and J. E. Greedan, J. Solid State Chem., in press.
- F. Liebau, "Structural Chemistry of Silicates: Structure, Bonding, and Classification," Springer-Verlag, Berlin/New York, 1985.
- L. S. Dent Glasser, R. A. Howie, and R. M. Smart, Acta Crystallogr. Sect. B 37, 303 (1981).
- Yu. A. Malinovskii, N. A. Yamnova, and A. N. V. Belov, Sov. Phys. Dokl. 26, 372 (1981).
- 12. F. Mazzi and G. Rossi, Am. Mineral. 65, 123 (1980).
- 13. G. Liu and J. E. Greedan, J. Solid State Chem. 103, 139 (1993).
- 14. G. Liu and J. E. Greedan, J. Solid State Chem. 103, 228 (1993).
- P. E. Werner, L. Eriksson, and M. Westdahl, J. Appl. Crystallogr. 18, 367 (1985).
- Powder Diffraction File card 22-513, JCPDS: International Centre for Diffraction Data, 1601 Park Lane, Swarthmore, PA 19081.
- B. Bleaney and K. D. Bowers, Proc. R. Soc. London Ser. A 214, 451 (1952).
- W. Gong, J. E. Greedan, G. Liu, and M. Bjorgvinsson, J. Solid State Chem. 95, 213 (1991).
- I. D. Brown and D. Altermatt, Acta Crystallogr. Sect. B 41, 244 (1985).