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Crystals of the compounds La,Ti,_ g0, are shown, by means
of electron diffraction and high resolution electron microscopy, to
form a homologous series of hexagonal or rhombohedral structures.
The structures can be described as resulting from the perovskite
structure by the periodic introduction of intrinsic stacking faults
in a cubic stacking of close packed La0Q; layers. The titanium
ions, which have mixed valencies, occupy the octahedral interstices
between the close packed La0, layers, whereas the interstices in
the fauit ptanes remain vacant, making up for the nonstoichiome-
try. The corner-sharing TiO, octahedra are found to be coopera-
tively tilted about the normal to the layer planes. The “cul and
projection” method is used to analyze the electron diffraction pat-
terns and fo determine the stacking sequences from geometrical
features of the diflraction patterns. Six different stacking sequences
are confirmed by direct imaging. High resolution images support
the tilt scheme of the TiQ, octahedra. The formation mechanism
of the regular block sequences is discussed and the defects which
allow this mechanism to operate are modeled and visual-
ized. © 1994 Academic Press, Inc.

1. INTRODUCTION

Several ternary oxides containing lanthanum and tita-
nium have been characterized in the La-Ti-O system
with a La/Ti ratio equal to 1. In most of them the titanium
ion is tetravalent (1). Recently a study of the LaTiO,
system reported on a series of layered titanium oxides
structurally related to the perovskites (2).

LaTiO, s (= La,Ti,0; with all Ti**), known for several
years (3, 4), is a member (7 = 3) of a homologous series
of layered structures (5-7) A,B,O;, .1 (0 = n < =) based
on the variation in thickness of the component perovskile
slabs of distorted TiO, octahedra. By changing the oxygen
stoichiometry a new phase LaTiO,, (= LaTi;Q; with
titanium valency smaller than 4) was, together with the
n = 4 compound, the first conducting member of this
scries. The structure of this new phase was determined
from high resolution electron microscopy (HREM) data
supported by X-ray and thermogravimetric analysis (8).
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In the range 3.4 < x < 3,50 well-ordered intergrowth takes
place between the » = 4 and the n = 3 compounds. This
study confirms that the most interesting transport and
magnetic properties are expecled for compounds in which
titanium occurs in a mixed-valence state (titanium va-
lencies +4 and +3).

L.aTiQ; is a compound with Ti valency +3 whose struc-
ture is a distorted orthorhombic perovskite (GdFeO;
structurc) (9, 10j.

Elscwhere hexagoral perovskite-like structures with
general formula xA,8,0,, + yA'B'O; (A and A’ = La,
Ca, Sr, Baand Band B' = Ti, Nb, W) have been reported
(1t-16). In the La-Ti—O system the crystal structure of
L.a,Ti;O,, is based on the close packed stacking of 1.a0Q,
layers and corresponds to the 12R hexagonal polytypoid
with a heeh sequence (i = hexagonal stacking; ¢ = cubic
stacking) along the c-axis.

Previous results have shown that La,Ti,O, reacts easily
with ABQ, compounds (A = Ca, Sr, Ba; 8 = Ti, Ru) (14,
15). These materials are structurally refated to hexagonal
structures and belong to the homologous series A, L.a,Ti,
B,0O5,4,(n = 0,1, 2), where all the B-cations are present
with a formal valence state +4.

As the difference between the ionic radii of Ti** (0.0601
nm) and Ti** (0.067 nm) is not large it seemed interesting
to synthesize La,Ti,_,0,, phases that can be regarded
as belonging to the La,Ti;0,,—LaTiO, system. In these
compounds the titanium is present in a mixed valence
state corrcsponding to +4 and + 3. For this reason some
interesting physical properties can be expected for these
compounds with fayered structures.

2. EXPERIMENTAL

The compounds of the La,Ti,_,0s, system have been
prepared by solid state reactions of L.a,Ti,0; and LaTiO;.
Starting materials were weighed and mixed; after grind-
ing, the powder was pressed into pellets. These pellets
were sintered under vacuum at 1073 K for 8 hr and subse-
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quently at 1673 K for 8 hr. All the products were slowly
cooled to room temperature. Previously the preparations
of La,Ti,0,, and LaTiQ, were performed from appropriate
mixtures of La,0, + Ti,O; heated under vacuum and
La,0, + TiO, fired in air respectively.

Bulk structural analysis was carried out by X-ray pow-
der diffraction with CuKe radiation. The data of X-ray
diffraction powder patterns have been refined by the Riet-
veld method (17). These results have been published else-
where (24).

High resolution electron microscopic observations
were made on freshly powdered samples deposited on
holey carbon films or on copper grids dipped in a soft
glue. Observations were made using a 400-kV microscope
with a point resolution of 0. 17 nm. The ¢lectron diffraction
experiments, exploring reciprocal space, were performed
on the same type of samples using a 200-kV instrument.

3. STRUCTURAL CONSIDERATIONS

The materials with chemical compositions La,Ti, _;0,,
form a homologous series of mixed layer compounds con-
sisting of a framework of La0, close packed layers the
geometry of which is shown in Fig. la. Within the layers
the lanthanum and oxygen atoms are ordered in such a
way that each lanthanum atom is surrounded by six oxy-
gen atoms, whereas each oxygen atom has two lanthanum

FIG. 1.
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atoms among its six nearest neighbors. The sublattice of
lanthanum atoms thus forms a hexagonal array with lattice
parameter ay = 5.57 A. Stacking of these layers occurs
in such a way that the lanthanum atoms are as widely
separated as possible; i.e., the lanthanum positions in one
layer project along the normal to the layer in the center of
a triangle formed by the lanthanum atoms in the adjacent
layer. The stacking of such layers (ignoring the oxygen
atoms), can thus be described by the usual stacking sym-
bols ABC .. .orcc...hh...,depending on whether
one wishes to emphasize the layer positions or the stack-
ing mode. It should be noted that the stacking symbols
are assumed to bear on the lanthanum arrangement only,
i.e., on close-packed layers with omissions.

One third of the octahedral interstices between two
such layers are surrounded exclusively by oxygen atoms;
they are occupied by titanium atoms (Figs 1b, 1c). How-
ever, due to the actual composition, in particular to the
cation deficiency, not all octahedral interstices can be
occupied. It was shown in (14) that the stacking of LaO,
layers 1s of the type hee . . . ch and that the titanium
deficiency is accommodated as complete layers of vacant
octahedral interstices. These layers are located in the
midplanes of the quadruplets of layers resuiting from the
two adjacent hexagonally stacked triplets such as AvyB O
AyB, where y stands for a layer of oxygen octahedral
sites partially filled by titanium atoms according to Fig.

[1010]

Schematic representation of the structure of the compounds La,Ti,_;04,. (a) Arrangement of lanthanum and oxygen atoms in the LaO,

layers parallel to (0001). (b) Sandwich of LaQ; close packed layers showing the octahedral interstices occupied by titanium ions, LaO;-Ti-La0;. (¢}
View of (b) along the close packed rows of atoms. (d) Schematic representation of the 10H structure of LaTi,O;s as viewed along the close
packed rows of columns. This schematic representation can be compared with the image of Fig. 12b,
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1b and Qfor a layer of vacant octahdral sites. The stacking
symbol of the stoichiometric compound LaTiO; would be
AyBaCB . . ., but due to the nonstoichiometry the full
stacking symbol of the compound La,Ti;O, would for
instance be

ByA O ByABCaB O CaByABC O ABCeB . . .

(A,B,C: LaO, layers; a,8,y: Ti- layers; [ vacant layers).
For the subsequent discussion it is convenient to describe
the structure as consisting of identical blocks separated
by vacancy layers, successive blocks being displaced over
a vector 3[1120], (Fig. 1d).

If the chemical composition is represented by La,
Ti,_;0;, (n = 4} the number of La0, layers in each block
is n and that of titanium layers is # — 1. If the number n
is a (threefold — 1) the resulting stacking has a repeat
period aleng the layer normal which contains a single
block and the structure is hexagonal. If the number # is
a threefold or a (threefold + 1) the stacking only repeats
after three blocks and the structure is rhombohedral.
These considerations are only valid in the simplest case
considered here, i.e., for the composition La,Ti,_,0,,;
they are generalized in the following paragraph.

4. BUILDING PRINCIPLES

Assuming the above-mentioned building principles to
be obeyed, it is evident that the number of vacancy-con-
taining layers must increase with increasing cation defi-
ciency. For instance, if the composition is La,Ti,_,0,,
{6 = small integer) the number of vacancy containing
layers in the repeat unit should become 8 and conse-
quently also the number of *‘blocks’”. The repeat unit
meant here may have a thickness equal to the cy-parame-
ter in some cases; in other cases it may be cy/3, depending
on the value of n (mod 3), as discussed above, It 1s possible
to formulate the block sequence for a compound of a
given composition obeying the described stacking prin-
ciple.

For simplicity we first consider integer values of & only.
Let the chemical composition be given by La,Li,_;0;,.
The three numbers #, n — 8, 3n are supposed not to have
any common factor. We further accept as an empirical
fact that blocks of two different sizes are sufficient to
generate any composition, provided the compositions of
these blocks are of the form La,Ti,_,0,, and La,,_,
Ti, 03 +1y» Where m is chosen in such a way that the
cation deficiency of the compound, i.e. 6/n is intermediate
between those of the two blocks; i.e. one must have
1/m + 1 < &/n < 1/m or the equivalent double inequality

m<nl8<m+ 1. [1]
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From a suitably chosen mixture of two such blocks the
desired average composition can always be achieved, We
shall show how the relative abundancies p/(p + ¢) and
q/{p + q) of the two block sizes (» and m + 1) can be
computed given the average composition (i.e. given n
and §).

One must clearly have

pm+{(m+1Dg=n (2}
m—Dp+mg=n-—2=3 3]
3pm + 3g(m + 1) = 3n, [4]

where (2) and (4) are in fact equivalent relations. From
(2) and (3) we deduce

mp+q)=n-—gq (3]
mp+q)=n—-8+p [6]

and hence
d=p+qg. [7]

Moreover
p=(m+18—n [8]
g =n— md, [9]

The possibility for the formation of this homologous

series is based on the mixed valence of titanium, but
limitations on the chemical formula follow from the re-
quirement for charge compensation. In the limiting case
where all titanium atoms were in the Ti** state the compo-
sition would have to be LaTiO;, since La is always in the
La** state and O in the O®~ state. On the other hand,
should all the titanium atoms be in the Ti'* ionization
state, the composition would have to be La,Ti;O,;. Only
compositions which are intermediate between these two
limiting compositions can lead to a stable structure of the
type described here. The chemical composition can thus
also be formulated as a linear combination of the two
extreme ones:
N LaTiO; + M La,Ti;0,, or Lay.4uTiy amOans 1om
The nonstoichiometry is then defined by § = (N +
4M) — (N + 3M) = M with 8 = 1 for compounds of the
considered series. This means that M = 1; the lower limit
for n in the formula La,Li, ;05 is thus n = 4.,

Another way of stating this requirement is to consider
the La/Ti ratio. This has to be intermediate between that
in LaTiO,, La/Ti = 1, and that in La/Ti;O0p, i.e.,
La/Ti = 4/3. This leads to an upper limit for 8,
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1 < nlin — 8) < 4/3;
ie., to

0<d=n/d. [10]

The two inequalities (1) and (10) severely limit the number
of compounds that can be expected as stable phases.
Examples of applications:

{1 LagTi;0,;, n =9;8=2
4<9/2<5 m =
p =1 g = L.

The block sequence is an alternation of 4 and 5 layer
blocks; the “‘repeat unit’’ can be formulated as 45.

(2) LaI:]'Til,'iOSI n = ]7;5 =4
4<17/14<5 m =4
p =3 g=1

The block sequence thus consists of an alternation of
three four-layer blocks followed by one five-laver block;
the repeat unit is now 44435,

In the first case the unit cell contains three repeat units
the resulting structure is rhombohedral. In the second
case the unit cell contains one repeat unit and the structure
is hexagonal since 17 = threefold — I.

5. SYMMETRIES OF THE MULTIBLOCK PHASES

We noted above that if the composition is La,Ti, ,0,,
(8 = 1) all blocks, separated by vacancy layers, are
equally thick and contain n LaO, layers and (n — 1) Ti
layers. The repeat unit then contains one such block and
its size is equal to the c-parameter if the structure is
hexagonal. If the structure is rhombohedral the c-parame-
ter contains three repeat units. The symmetry of the struc-
ture, H, R_, or R, was shown to depend on n,
if

n = threefold — 1: H
n = threefoid: R,
n = threefold + 1: R_,

where R, means that successive repeat units of the rhom-
bohedral stacking have their first layers stacked in the
succession ABC, whereas R _ means that this succession
1s CBA.
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From the geometrical construction, to be discussed be-
low (Sections 6 and 7), which is used to determine the
block sequences it follows that the minority blocks always
occur in isolation and if & = 4 there is only one minority
block in the repeat sequence. Since the minority and the
majority blocks differ in thickness by one LaQ, layer, the
two-block repeat units such as 54, 65, . . . canonly belong
1o one of the three categories

(i) one hexagonal (h) and one rhombohedral block (r.)

(ii) one hexagonal (h) and one rhombohedral block (r )

(iii) one r, and one r_ block.

The combination h + his not compatible with the stacking
rules because either the number of layers must be the
same for both blocks, and in that case h h is equivalent
to h, or the two blocks must differ by three layers, and
this is against the stacking principie that implies that the
blocks can only differ in thickness by one layer.

Writing down the explicit letter sequences it can, for
instance, be concluded that the structure resulting from
a repeat unit consisting of one hexagonal block and one
rhombohedral r, block results in a rhombohedral R,
structure. In shorthand:

h+r,=>R,
h+r_.=>R_
r, +r_=>H.

For “‘three-block™ repeat units six combinations have
to be considered, none of them leading to a hexagonal
structure. In order to show this we first deduce simple
combination rules which make it possible to reduce com-
plicated sequences to the three mentioned two-block
cases. We note that 2r_ changes the stacking position 4
into C and hence is equivalent to r, ; in short 2r_ =>r_.
Similar reasoning leads to the following relations:

r_=>r,
r,>r_

3r,=>h
Ir_=>h.

nh=>h

For the six three-block combinations one finds by reduc-
tion, for instance;

h+2r,>h+r_ 2R_
h+2r_>h+r, >R,
Iy +r_=>r_+r_>R,

2ro+r,=>r, +r, >R_
2h+r_>h+r_>R_
2h+r,>h+r, >R,

This last retation, for instance, can be illustrated explic-
itly as follows:
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ABCAB/ABCAB/ABCABC//BCABC/BCABC/BCABCA//CABCA/CABCA/ . ..

Sh sh ér, Sh  Sh 6r,

... CABCAB/]
or,

We now consider the “*four-block™ repeat units. Due to
the fact that the minority block can only appear once and
only if 8 = 4, there are only six possibilities which can
be reduced in the following ways:

3h+r,>h+r, >R,
3h+r.>h+r >R_
h+3r >h+h>H

h+3r,=>h+h=>H
r_+3r,>r_+h>R_
r, +3r_>r.+h=>R,.

The following combinations could apparently lead to fur-
ther possible structures: 2h + 2r, and 2h + 2r_. How-
ever, if these combinations are to be compatible with the
stacking principles we must have that:

(1) In such a symbol the hexagonal blocks have the same
number of layers since otherwise their thickness would
differ by three, which has to be excluded.

(ii) The two rhombohedral blocks have the same num-
ber of layers since otherwise one would have three differ-
ent block thicknesses in the repeat unit, which we ex-
cluded.

(iii) We can thus only have a symbol of the form xxyy
(e.g., 5566 or 5544), where the total number of layers
n = 2x + 2y is necessarily even and where also the
number of blocks in the repeat unit, which is §, is even
as well, since it is 4. The chemical formula La,Ti,_,0;,
can thus be simplified by deviding all subscripts by 2.

In conclusion, the symbol 2h -+ 2r. can be simplified
toh + r, and the block sequence is xy (56, or 54). This is
a general feature: symbols in which 4 common numerical
factor occurs lead to a chemical composition in which the
same common factor is present. According to our basic
rules this common factor has to be removed before
applying the algorithms that determine the stacking.

It is easy to verify that the ‘‘cut and projection’ method
(18-20) applied for instance to LayTi0,, leads to the
sequence 5656, which is equivalent to 56. (This is also
reflected in the chemical composition which can be simpli-
fied to La;;TigO;;).

If the number of blocks (i.e., 5) becomes larger than
4, complicated sequences containing the minority blocks
more than once, but still in isolation, may occur, e.g.,
44545, which is the sequence corresponding to
Lay,Tij;04.

The simple algorithms discussed above make it possible
to deduce the symmetry of the structure generated by an

5h 5h

arbitrary sequence of blocks by progressive reduction.
Consider, for example, the sequence 44545 belonging to
the type r_ r_ hr_ h; we successively have

r_r_hr_h=>r,hr_h=>r,r_h=hh=>H.

The resulting structure is thus hexagonal, as can be veri-
fied directly on the explicit stacking symbol:
ABCAICABC! BCABC/BCAB/ABCARB/A

4 4 5 4 5

6. GENERALIZATION

We now generalize the considerations of the previous
paragraph 4 and 5 to arbitrary values of 8. The cation
deficiency is defined by the formula La,Ti,_;O;,, where
& may now adopt nonintegral, even irrational values.

The average spacing between vacancy layers must now
be n/8. This average spacing must be equal to the average
block size, which is given by [mp + (m + L)gl/(p + q),
where p and g are the numbers of m-layer blacks and
(m + 1)-layer blocks, respectively, in a sufficiently long
sequence; i.e., p/(p + g) and g/(p + g) are the relative
abundancies of the two block types. We thus must have

ni6 =[mp + (m + lgl/(p + q)or

[(n/8) — mlp + [n/8 — (m + Dlg = 0. [I11]
It is possible to map each block sequence on a 2D lattice
with a rectangular unit mesh of m X (m + 1) units. Assum-
ing the number of (m + 1)-layer blocks to be plotted along
the vertical direction and the number of m-layer blocks
along the horizontal direction, any sequence consisting
of the two types of blocks is thus imaged as a zigzag path
on this 2D lattice. The sequence which best approximates
a uniform distribution of vacancy iayers is then repre-
sented by the zigzag line which fits best the straight line
S of which the slope is given by the ratio of the total
length of the block sequences along the two directions;
i.e. (Fig. 2), '

tane = (m + l)g/mp or mptang — (m + g = 0.
[12]

The two equations [11] and [12] are homogeneous in p
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La,Ti O, (655)

o

FIG. 2. *‘Cut and projection™ method applied to the derivation of
the stacking sequence 655 in La¢T1;3044.

and g. The condition under which they have a nontrivial
solution for p and ¢ is then given by

((m’&) -m (n/8) — (m + 1)) o

mtan & —(m + 1)

which leads to an expression for tan ¢

tan o = —{[(n/8) — m]/[(n/8) — (m + )]} [13]
x [(m + 1)/m].
This relation determines the slope of the straight line §
for any given value of & and n, the value of m being
determined by the double inequality (1), These relations
are valid for any value of §, including nonintegral or irra-
tional values. If § is irrational the resulting sequence will
not be periodic. Complicated sequences of two kinds of
rational blocks may thus result for arbitrary 8 values. The
actual stacking sequence is obtained by projecting the
zigzag line on the line L enclosing an angle of 45° with
the horizontal (Fig. 2) (18).

7. INTERPRETATION METHODOLOGY OF THE
DIFFRACTION PATTERNS

The application of a variant of the “‘cut and projection”
method (18) makes it possible to deduce not only the
stacking sequence but also the essential features of the
diffraction patterns for given values of # and 8. The
method consists in making a cut by drawing two parallel
lines with a slope ¢ through the 2D lattice considered
above, based on a rectangular unit mesh of m X {m +
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1) units (see Fig. 2). The width of the cut or *‘slit”” is
determined by the requirement that the bordering lines
pass through two diametrically opposed points of the basic
rectangle. The block sequence is represented by the zig-
zag path described on points of this 2D lattice and confined
by the “*strip”” or **slit”” boundaries. The slit is half open;
i.e., only points situated on one of the two lines, conven-
tionally chosen, are accepted (Fig. 2).

As an example we deduce the sequence leading to the
composition La; Ti;30,. One has n = 16,8 = 3, m =
5, and hence m + 1 = 6; i.e., the 2D lattice consists of
rectangles of 5 x 6 units. The slope of the slit is given by
tan ¢ = 6/10. The actual sequence is now obtained by
projecting the zigzag segments on a line L. with a slope
of 45°, From Fig. 2 it follows that the sequence must be
655655, . . . Since in this case § is a small integer the
sequence is finite and short.

The diffraction pattern is obtained by the transforma-

La Ti, 0, (45}

o -] o Q a o ] o o a o o
o a o o L] o - L3 o a o o
FIG. 3. Graphical method to determine the approximate relative

intensity distribution in the diffraction pattern of LagTi;0;. The central
row of diffraction spots is represented by the black dots; the noncentral
rows are represented by open circles. The relative positions of the three
rows are arbitrary; they are not representative of the geometry observed
in the diffraction pattern; only the intensity distribution in the rows
1s relevant.
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FIG. 4. Diffraction pattern along the {1010] zone of the phase LayTi;O5; this pattern can be compared with Fig. 3.

tion to Fourier space of the different operations giving
rise to the strip. The construction of the central row of
the diffraction pattern for the compound L2,Ti;Q,;, using
the algorithm described in Refs. (18, 21}, is represented
in Fig. 3. The relative intensities of the diffraction spots,

La Ti, O

16° 13~ 48

(655)

L*

FIG. 5. Theoretical diffraction pattern {central row) of the phase
La4Ti;;04 using the '“cut and projection’” method.

represented by dots of different sizes along L* in Fig. 3,
are well reproduced because they are mainly determined
by the geometry and size of the blocks, rather than by
their detailed content, provided all blocks have the same
average specific scattering power, which is the case here.
The absolute intensities, however, do depend on the
atoms present in the blocks. Figure 4 is the corresponding
experimental diffraction pattern.

The diffraction pattern reveals directly the average
spacing between vacancy layers since the separation of
the first, relatively intense spot from the basic spot is
given by 8/n; n is the number of intervals between the
two basic spots, whereas & is the number of intervals of
this first relatively intense spot, counted trom the closest
basic spot {# = 9,8 = 2 in Figs. 3 and 4),

In the generalized case where &8 1s not an integer the
first intense spot still gives the average separation of the
vacancy layers. The structure is now in fact an interface
modulated structure with modulation wave vector g =
&/n, The diffraction pattern may look incommensurate
and exhibit spacing anomalies even though the ‘“‘mod-
ules’” are commensurate. The above mentioned algorithm
for the construction of sequences then leads to possibly
nonperiodic, but “‘uniform” sequences having a well de-
fined long range order and thus producing sharp diffrac-
tion spots. If the first intense spot, which determines the
g-vector, is separated from the basic spot by p intervals,
the repeat unit contains p blocks. Figure 5 shows for
instance the pattern to be expected for the 556 sequence
inLa  Ti;;O.. The distance between two basic spots (cor-
responding to the thickness of a single layer of 0.22 nm)
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FIG. 6. Diffraction patterns of three monoblock potytypoids with # = 4, 5, and 6. The left column refers to the [l 120] zone, whereas the
right colump refers to the {1010] zone. (a)(b) La,Ti;O); (12R); (c)d) LagTisO5 (18R); (e)(D) LasTi,Q5 (10H),
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is separated into 16 intervals and the first intense spot is
separated by three intervals from the basic spot.

In Fig. 3, which refers to the compound La,Ti,0,,; with
stacking sequence 45, the first intense spot is separated
from the basic spot by two intervals. In single block se-
quences the spot intensity decreases in a monotonous
manner with the separation from the basic spot; Fig. 6
shows, for instance, the diffraction patterns for the com-
pounds 4, 5, and 6.

The diffraction pattern thus allows the direct determina-
tion of & and n and hence of m; i.e., of the two block
sizes. Since these parameters in turn determine the slope
of the slit, the block sequence is also determined directly.

In the case n = threefold — 1 the blocks are stacked
vertically and the vacancy layers define the blocks. In the
cases n = threefold + 1 and threefold the successive
blocks are, moreover, shifted over a vector R = 3[1120].
This results in a paralle] shift of the intersection line L*
in the diagram of Fig. 3, simulating the fractional shift of
the noncentral superlattice spot sequences with respect
to the basic spot positions (22). The fractional shifts g + R
are the same for all spots along a row parallel to c*; the
components along the layer plane of the corresponding
diffraction vectors are the same and thus the dot product
g - R is also the same since R is a vector in the layer
plane. A lateral shift of L* which results in the desired
fractional shift of the dot pattern can be obtained as fol-
lows. A parallel shift of L* overs, where s is a reciprocal
lattice vector of the 2D lattice, brings the line L* again
through a node of this lattice; it only results in a parallel
shift of the resulting dot pattern, which is not an essential
change. However, a displacement of L* over the fraction
g - R of s causes the desired fractional shift and now
produces the spot sequences along noncentral rows. In
the present case the fractional shifts are =3 (mod 1). A
possible construction is shown in Fig. 3, it is clear that
any other lattice vector 5 of the 2D-lattice could have
been chosen, leading to the same final result.

8. OBSERVED DIFFRACTION PATTERNS

We shall first discuss the diffraction patterns due to the
simplest phases, i.e., those containing one type of repeat
unit only.

The 5H (I0H) Phase (n = 5; 8 = 1} (Fig. 6e.f, Fig. 7)

The diffraction pattern along the ¢* zone of Fig. 7 con-
sists of a hexagonal array of spots corresponding to a
lattice parameter ¢, = 0.557 nm in agreement with the
geometry of the LaQ, layers. The spots belong to two
classes of intensities; the set of the most intense spots
forms a two-dimensional hexagonal lattice with lattice
parameter aH*f\/_’T. These intense spots reflect the fact

VAN TENDELOO ET AL,

FIG. 7.

The [0001] zone diffraction pattern of the series of phases
La,Ti,_0,,. Note the two levels of intensity of the diffraction spots.

that the projected arrangement of the La ions forms a
hexagonal array with lattice parameter aH\/ST, confirming
the structure of the LaQ), fayers and their stacking.

The most relevant diffraction patterns are those along
the [1120]* and {1010]* zone; they are shown in Fig. 6.
In Fig. 6 the spacing between the most intense (basic)
spots, indicated by arrows, corresponds with the layer
thickness (1.22 nm of one LaO, layer. In the SH diffraction
patterns (Fig. 6¢) this basic spacing is divided in five
intervals, The intensity of the spots decreases monotoni-
cally with their separation from the basic spots. They form
rectangular meshes, i.e., they are aligned along normals to
c*. The most intense basic spots in successive spot rows
systematically occupy shifted positions along the c* direc-
tion (the shift increasing with increasing k); this reflects
the predominantly ABC . . . stacking of the layers.

Tilting experiments about the ¢* axis reveal that the c-
spacing is in fact 2 X 1.09 nm; i.e., it contains [0 LaQO,
layers. This can be deduced from the diftfraction patterns
of Fig. 6f in which the interspot spacing is only half of
that observed along the [1120)* zone pattern. This 10-
layer spacing is exhibited in all zones of the type [Aki0Q]*
except for the three symmetry-related [1120]* type zones.
We conclude that the foltowing diffraction conditions
are satisfied:

kRO is present for! = even
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and

000/

for | = even.

This latter condition is derived from the observation that
the 000! spots for [ = odd are only present if these spots
are also present in non-central rows of reflections. Their
presence in the [1010]* zone type patterns must be attrib-
uted to double diffraction.

The observed diffraction conditions are consistent with
two trigonal space groups P3cl (ar 158) and P3¢l (nr
[65) and with three hexagonal space groups Pé;cm (nr
185), P6c2 (nr 188) and Pé,/mcm (nr 193).

It is worth noting that the intensity distribution in rows
of spots parallel to ¢* in the [1010]* zone pattern, can be
accounted for by assuming the structure to be composition
modulated. The basic structure must then have a promi-
nent double layer period (due to deformation) as viewed
along this zone and it must further be composition modu-
lated by a five-layer superperiod. Since 5 and 2 have no
common factor the real period becomes ten layers. The
most intense diffraction spots are then the “*basic’ spots
with/ = 0, = 5and ! = 10, The other spots have then
to be considered as satellites of these basic spots, with a
g-vector q = jcy*, their intensity decreasing with their
separation from the basic spots.

Alternatively one obtains the same set of reflections if
one considers the structure as having a basic period of
¢ = 1.1 nm, i.e., equal to the thickness of five layers,
further commensurately modulated by a deformation
wave with a wave vector q = 2.5¢* (corresponding to
two layer thicknesses). The two descriptions are equiva-
lent, but it is more customary to consider the shortest
period as the basic one and the larger one as the modula-
tion period.

The 18R Phase (n = 6,8 = 1)

The {0001)* basal section is not very different from that
of the 5H phase above. The geometry and the intensity
distribution of the spots are the same. Only the nodes of
the type #R0I with & = threefold are touched by Ewald’s
sphere, but the nodes 401 and k0T (k # 3) are close
enough to Ewald’s sphere, i.e., at +4c*, to produce spots
due to relrods.

Since the structure is rhombohedral successive spot
positions alongrows in the [1120]* zone diffraction pattern
are shifted along ¢* over A X §¢*; the spol spacing corre-
sponds to the thickness of 6 La0, layers (Fig. 6¢,d).

In the #h2A! spot rows, i.e., in the [11001* zone, the
period remains equal to the thickness of six layers. The
spot with I = 3 is relatively more intense, which again
reflects the presence of a prominent double layer period,
when viewed along this zone. Since the composition mod-
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ulation period of six layers is a multiple of the 2-layer
deformation period, the actual period remains 6, at vari-
ance with the case n = 5 where period doubling occurs.
There are no systematic extinctions.

The I12R Phase (n = 4,8 = I)

The 12R diffraction patterns are rather similar ‘‘mutatis
mutandis’” to those of the 18R phase (Figs. 6a,b). The
rhombohedral shift along ¢* over +% of the hhil spot
positions is also visible here (Fig. 6a). The interspot spac-
ing now corresponds to the thickness of 4-layers. Along
the #h2h! spot rows the interspot spacing remains the
same (Fig. 6b); there is again no period doubling (due to
the tilt of the octahedra as we shall see below} since n =
4 is even. The cy-parameter contains 3 X 4 = 12 layers,
due to the rhombohedral lattice.

The 54R Phase (n = 9,8 = 2)

The diffraction pattern of this phase along the [1120}*
zone is reproduced in Fig. 4. The separation of the basic
spots (corresponding with the thickness of one LaOj
layer) is divided into nine equal intervals by the diffraction
spots. The first intense spot, counted from the basic spots
is the second one; this means that § = 2 and the composi-
tion is thus LagTi;0,;. The modulation vector is g = §c*.
Using the *‘cut and projection method™ described above
the block sequence corresponding with this value of g is
45. Also, the theoretical diffraction pattern can be con-
structed by the same method. The relative spot intensities
are found to correspond remarkably well with the ob-
served ones (Fig. 3). Since » = odd the real period con-
tains 54 layers.

The 78R Phase (n = 13,8 = 3)

As an example of the analysis of a complex phase,
exhibiting all the characteristic features of this family of
mixed layer structures, we discuss in some detail the
patterns made along the [1120]* and [1010]* zone (Figs.
8a and b).

In Fig. 8a the distance between {wo successive basic
spots, indicated by arrows, is divided into 13 e¢qual inter-
vals. Since 13 = threefold + 1 the structure is rhombohe-
dral and successive Ah2h! spot rows suffer a +3 shift, as
indicated by the vertical lines in Fig. 8a. The first intense
spot in the #h00 row counted from the basic spot is the
third one, i.e., & = 3. The composition is therefore
La,;Ti;;04 and the block sequence must contain three
blocks. From the location of the first intense spot we find
the values ¢ = {5 and tan ¢ = §. From this we can deduce
the block sequence by means of the cut and projection
method; it is found to be 445. Also, the theoretical diffrac-
tion pattern can be deduced graphically; the result is
shown in Fig. 9. The relative intensities of the spots are
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FIG. 8. Diffraction pattern of the phase La;Ti,(Os (78R): (a) [1120]* zone; {b) [1010]* zone.

quite well reproduced, as can be judged by comparing
with Fig. 8a.

In the [1010]* zone (Fig. 8b) the interspot spacing is
only half that in the [1120]* zone, showing that the ¢-
parameter must be doubled, as a consequence of the tilt
pattern of the TiO, octahedra, in agreement with the fact
that n = 13 is odd. The total c-parameter is thus equal
toa 13 X 3 X 2 = 78 layer thickness.

An “Incommensurate’’ Pattern with g = 11/46

Figure 10 shows an apparently incommensurate dif-
fraction pattern along the [1120]* zone. The g-value
deduced from the first intense spots is approximately
g = 11/46. Since 4 << 46/11 < 5 the sequence consists
of 4 (m) and 5§ (m + 1) layer blocks, but neither n
nor d is directly measurable from the diffraction pattern.
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FIG. 10, *“‘Incommensurate’’ diffraction pattern with a wavevector
g =~ 11/46. Note the spacing anomaly. The corresponding stacking se-
guence can be approximated by 4444544, | | .

FIG.9. Theoreticaldiffraction pattern of the phase La;;Ti;j05 (78R),
which can be compared with the observed pattern of Fig. 8a.

However, we know that the average spacing n/8 = 9. HIGH RESOLUTION IMAGES

l/g = 46/11. From formula (12) we can thus deduce that

tan ¢ = 10/36. The corresponding stacking sequence  Lhe high resolution images made along the zones
is 4444544. 1t is close to pure 4 with a 5 block inserted [1120}* and [1010]* confirm the structures proposed in
quasiperiodically. the previous paragraphs.
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FIG. 11. High resolution image along the close packed directions of the polytypoid 45. In the thin part of the wedge-shaped sample the dark

dots represent lanthanum columns and the grey dots titanium columns. The projected unit cell of the basic structure is outlined. This image can
be compared with Fig. 1d.
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LagTisOy5 (18R) 6; {d) LagTi;0y (54R) 45; (&) LayyTixOs (T8R) 445, (B Lay TigOy (12R) 56.

The most informative high resolution images are those
along zones parallel to the close packed directions of the
layers. The crystal structure of the compound 1.a;Ti, Oy,
as viewed along such a close packed direction is repre-
sented in Fig. 1d, The projected lanthanum positions form
a 2D parallelogram shaped network, which is the projec-
tion of a 3D network of flattened octahedra; it is indicated
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High resolution images of different polytypoids along the close packed directions (1) La,Ti;O;; (12R) 4; (b) La;TigOy5 (10H) 5; (c)

by double lines in Fig. 1d. The titanium positions project
in the centres of these parallelograms; they are indicated
by medium sized round dots in Fig. 1. The oxygen atoms
are indicated by small dots and the vacancy rows by
squares. Oxygen positions are usually not revealed in high
resolution images.

Figure 11 is an image along such a zone of a crystal
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Matrix of calculated HR images along [1120] of the 18R structure for different defocus values (horizontal) and different thick-

nesses (vertical).

FIG. 13.

{1120] high resolution image of the 10H polytypoid {La;Ti,O;s): {a} thin area; (b} thicker area. The c-axis is horizontal.

FIG. 14,
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fragment of LagTi;0,;; the correspondence with the pro-
jected structure is indicated schematically using the same
symbols as in Fig. 1d. 1t is obvious that the structure
contains 4- and 5-layer blocks in accordance with the
model that follows from considerations discussed above.

In the [1120]* zone image the structure is viewed along
the close packed rows of the LaO; layers. Close to the
thin edge of the foil the La-containing columns are marked
by pronounced dark dots, whereas the titanium containing
columns are imaged as grey dots. As usual, pure oxygen
columns are not revealed. In thicker parts of the foil only
the lanthanum-containing golumns are clearly revealed as
bright dots (Fig. 14). A number of images of different
pelytypoids are reproduced in Fig. 12.

This image interpretation follows directly from the sym-
metry of the image and from the one to one correspon-
dence of dots and projected structure. It was confirmed
by the computer simulations of the image based on the
described model. The images were computed for a wide
range of thicknesses and defocus values; a matrix for
n = 6 is reproduced in Fig. 13.

The {1010]* zone image is less informative (Fig. 14),
but it strikingly confirms the structure, as is evident from
a comparison with the projected model of Fig. 15. Ac-
cording to the idealized structure, all atom columns are
now aligned along the c-direction, but the vacancy layers
causing the superperiod can still be recognized.

The array of bright dots in Fig. 14 (10H-phase) has
roughly the geometry, i.¢., the size and shape, of the
array of columns containing lanthanum and oxygen, as
viewed along the [1010] zone. However, the array is not
rectangular, as one would expect for the idealized struc-
ture (Fig. 15). The rows along the c-axis are slightly zigzag
shaped. In the space groups under consideration (P3cl,
P3cl) the positions of the lanthanum atoms are deter-
mined by symmetry; i.e., they are situated on the trigonal
axis, and the rows of lanthanum columns should therefore
be straight and parallel to ¢. However, the zigzag arrange-
ment of the bright dots can be understoced by noting that
in the actual model the oxygen octahedra are slightly
rotated, as discussed in Section 10. The oxygen atoms
the projected positions of which coincided with those of
the lanthanum columns in the ideal structure are hereby
slightly shifted alternatingly to the left and to the right in
successive rows, as indicated at the top of Fig, 15. The
extrema in lattice potential, which give rise to the bright
dots, are hereby shifted as well, due to the eccentric,
albeit small contribution of the oxygen columns.

The zigzagging in Fig. 14 is established objectively by
digitized averaging over 10 frames, followed by computer
generation of lines of equal brightness (Fig. 16). The elon-
gated shape of the dots is consistent with our assumption
that they are formed by the superposition of straight rows
of lanthanum cotlumns and of oxygen columns displaced
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FIG. 15. Projection of the idealized 10H structure along the
[1120] zone. In the upper part the displacements of the oxygen atoms
associated with the tilt of the TiO, octahedra is shown schematically.

alternatingly left and right in a direction perpendicular
to c.

10. MODELS FOR THE SUPERSTRUCTURES

The structure models described above (Sections 3 and
4) are idealized in the sense that the TiOg4 octahedra are
implicitely assumed to be perfectly regular. They cor-
rectly represent the topological features of the structures,
but the real structures are more complicated as a result
of small deformations. We describe in detail the model
for the 10H phase, the other structures being built on the
same principles,

It is well known that below a certain temperature the
regular TiO, octahedra become unstable in many struc-
tures; they may become deformed, the titanium ions occu-
pying often eccentric positions in the octahedra. This is,
forinstance, the case in tetragonal BaTiO; and in a number
of titanates derived from the perovskite structure,

From the diffraction patterns we concluded that the
prominent period as seen along the close packed direc-
tions is equal to the thickness of one LaQ, layer. In projec-
tion along the [11201* zone on the other hand the promi-
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FIG. 16. Equi-intensity contours of a digitized averaged high resolu-
tion image of the type shown in Fig. 14.

nent basic period becomes equal to the thickness of two
layers. This causes the spots with [ = 5 (mod 10) to be
relatively more intense than the other superstructure
spots.

Assuming the period doubling to be due to deformation
of the TiO¢ octahedra, the displacement pattern shouid
be consistent with the presence of three (six) fold rotation
symmetry about an axis normal to the layer planes and
it should conserve the unit mesh in the c-plane, but should
double the c-parameter.

Any tilt pattern of corner-sharing octahedra about a tilt-
axis which is not parallel to the c-axis breaks the trigonal
(hexagonal) symmetry and can thus be excluded. It is
therefore compelling to assume that the deformation of
the TiOQ, octahedra must result from a small tilt about
the c-axis. Such a tilt leads to flattening of the coupled
octahedra. The unit mesh in the layer plane being con-
served, all TiO4 octahedra situated in the same c-layer
planes must be tilted in the same sense and by the same
small angle. Each TiO¢ octahedron is “‘enclosed” in a
strongly flattened octahedron formed by six lanthanum
ions, limited by the same layers as the TiQ, octahedra.
These lanthanum octahedra share edges and thus form a
rigid framework within which the TiO, octahedra appar-
ently have only a very limited tilt possibility (Fig. 1).
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FIG. 17. Coupling of corner-sharing octahedra in the La,Ti,_Os,
structure: direction A: along the close-packed direction; direction B:
perpendicular to the close-packed direction.

In the cubically stacked part of the structure the TiQg
octahedra share corners; as a result successive c-layers
of octahedra are rotated in opposite senses and the basic
period normal to these layers is doubled. This is shown
schematically in Fig. 17. The octahedra of the hexagonal
triplet are face-sharing and hence the octahedra in adja-
cen! c-layers, in this part of the structure, are tilted in
the same sense.

A deformed version of the structure of the 10H-phase
resulting from the described tilt pattern is reproduced in
Fig. 18a,b. The shaded octahedra in (b) are situated in
the same plane, parallel to the plane of the drawing, which
passes through the titanium ions, situated in the centers
of the octahedra, i.e., passing through the threefold rota-
tion axis.

A front as well as a side view are represented in Fig.
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FIG. 18, Schematic representation of the real structure of 10H: (a) View along the [1120] zone. Note the zigzag arrangement of the oxygen
atoms. A prominent two-layer period is obvious. The symmetry elements are indicated schematically. (b) View along the [1010] zone. The shaded
octahedra are situated in the same plane. A glide mirror plane is parallel to the plane of the drawing. (c} View of the real structure of 18R along

the [1010] zone. The plane of the drawing is not a glide-mirror plane,

18 a and b. When ignoring the difference between full
(front) and dotted (rear) lines i.e. in projection, the period
along the ¢-direction is equal to the thickness of five layers
(1.1 nm) (Fig. 18b). However when taking into account
front and rear part of the octahedra we note that a dis-
placement of cy/2 (1.1 nm) along the c-direction, followed
by a reflection with respect to the plane parallel to the
plane of the drawing and passing though the titanium ions,
is a symmetry operation, i.¢., this plane is a glide mirror
plane with a ¢,/2 glide vector. This can aiso be concluded
from the side view of the structure shown in Fig. 18a.
The same conclusion can be reached for the symmetry
related planes. The space group of this model structure
thus contains three sets of glide mirror planes enclosing
angles of 60°, intersecting along the rows of titanium ions'
which are situated on the threefold rotation axis.

One can similarly conclude that diagonal glide mirror
planes are present halfway between the axial glide mir-
rors. The two spacegroups P3¢ 1 and P3¢l are consistent
with this model and with the diffraction conditions. The
other three space groups mentioned before are not consis-
tent with the model because they contain mirror planes,
while the model does not.

It is also evident from the side view of Fig. 17a that a
prominent period equal to the thickness of two layers
results, This bilayer sequence is composition modulated
by a period equal to five layers, leading to a tenfold period.

The principal of the deformation pattern is the same in
the other structures. It should be noted that the presence
of the glide mirror plane, i.e., of the extinctions for | =
odd, depends on the parity of the number of layers in the
repeat unit. For instance, when the repeat unit is six layers
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thick, there is no period doubling; morcover, the structure
is thombohedral: 18R (Fig. 18¢).

The simple rules that make it possible to conclude
whether a structure is rhombohedral or hexagonal, and
hence whether or not the ¢-parameter has to be tripled,
can be extended to include the effect of the deformation
pattern on the lattice parameter along the layer normal.

The rhombohedral (R) or hexagonal (H) type depends
on the value of n {mod 3), whereas the doubling of the
lattice parameter resulting from the octahedron tilts de-
pends on n (mod 2). As a result, the following four combi-
nations can occur. If the resulting structure is rhombohe-
dral and n = even, the lattice parameter is three times
the thickness of the repeat unit (e.g., n = 6}; if n = odd
it is six times the thickness of the repeat unit (e.g., 445).
If, on the other hand, the resulting structure is hexagonal
and n = even the lattice parameter is equal to the thick-
ness of the repeat unit, but for n = odd it is the double
{e.g. n = 5).

11. PLANAR DEFECTS

In a number of high resolution images defects, imaged
as pronounced dark lines, are present {(Fig. 19). They
always coincide with the positions of the stacking fault
planes, in particular with the hexagonal triplets adjacent
to the isolated block layer; for instance, adjacent to the
5-block in a sequence 4445 (Fig. 19). They are only easily
visibte in the thicker parts of wedge shaped specimens.

Although an extensive set of simulated images was gen-
erated for the perfect crystal, albeit ignoring the small
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FIG. 20. Structure model viewed along the [1120] zone: {(a) illustrat-
ing the deformation of an octahedron in the contact plane between two
crystal parts in which the octahedra are deformed in opposite senses;
{b) normal structure of the hexagonal triplet in the structure.

rotations of the octahedra, no image comparable with
the pronounced dark lines was obtained. It is therefore
concluded that these lines must image planar faults associ-
ated with the hexagonal triplets.

An unambiguously established model cannot he pro-
posed at present, but it is possible to speculate on probable
ones. It should be noted that “‘a priori’’ two senses of
rotation of the TiQ, octahedra about the c-axis are equally
probable. Since these rotations are coupled there is a
strong tendency to have the same consistent pattern of
corner sharing octahedra in large crystal parts. However,
where, on transforming into a ferroic phase, the rotations

FIG.

19. High resolution image of the 445 phase. Note the presence of extra dark lines imaging planar interfaces located in (0001),
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start independently in different parts of the crystal, they
may be incompatible where different domains meet. Rota-
tion patterns of opposite sense would not lead to a differ-
ent image along the close packed rows, as in Fig. 20, since
the projected lattice potential is the same. Domains would
thus not be obvious in such images. It is not unreasonable
to assume that the contact plane between two oppositely
rotated regions would coincide with the layers of empty
octahedra, which is the most easily deformable one, and
which as aresult would become distorted by a twist about
the ¢-axis (Fig. 20). This twist would also locally change
the layer spacing and hence change the contrast. Such an
interface could be called a “*rotational anti-phase bound-
ary’’ since the tilt patterns on both sides are in anti-phase.
The relationship between blocks on either side of the
interface can alternatively be described as a translation
over a vector R (Fig. 20a) which has a component parallel
to the layer plane.

In some places quasiperiodi¢c arrangements of such
boundaries occur (Fig. 19); their separation being the
same as the period of the idealized structure. This is con-
sistent with the proposed model since the fault planes
-are assumed to be associated with the hexagonal triplet
adjacent to the layer of singular blocks, which determines
the period.

The diffraction patterns along the [1010]* zone of speci-
mens containing several such faults exhibit diffuse streak-
ing halfway between the spot rows (Fig. 21). We believe
that this diffuse scattering is caused by the planar defects
discussed here. The streaks have reinforcements corre-
sponding to the spacing between successive layers, show-
ing that even in faulted regions a strong correlation in
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FIG. 21. Diffraction pattern along the [1120} zone of the 10H phase.
Note the relatively strong intensity of the spots with I = 5. Halfway
between the spot rows weak diffuse streaks are observed.
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FIG. 22. Model of the defect responsible for the mobility of the
vacancy layers in the hexagonal quadruplet of layers. The defect consists
of a dipole of stair rod dislocations of the vacancy type.

the tilt pattern between successive layers of octahedra
is maintained.

In Ref. (23) it was shown that disorder in the tilt pattern
of octahedra in the cubic perovskite structure leads to
diffuse streaks along the cube directions passing through
the reciprocal lattice point 4, 4, 4 and to diffuse cube
planes. In the present case the streaks are parallel to ¢*.

An alternative explanation, which we consider to be
less probable however, consists in assuming that the dark
lines are in fact defects of the type described below, i.e.,
steps in the fault plane, the dipoles being by chance paral-
lel to the foil surface over a large number of unit cells.
In view of the small thickness of the sample this is rather
improbable, however. j

Occasionally isolated defects occur in the stacking se-
quences; they usually consist of a single block of the
wrong size, for instance a single 4-layer block in a se-
quence of S-layer blocks.

Sometimes also defects of a different nature are found;
for instance, a 54 lamella becoming gradually a 45 lamella,
the rest of the structure being unaffected. At such a defect
the level of the hexagonal quadruplet changes by one
layer; as a consequence the vacancy layer is also stepped.
Such a line defect is represented as viewed edge on in
Fig. 22; it can formally be described as a dipole of partial
“stair-rod”’ type dislocations. This defect can be either
of the vacancy or of the interstitial type. A [1120] zone
view of such a defect is shown in Fig. 23; it can be com-
pared with the schematic one of Fig. 22, where it is as-
sumed that the dipole is of the vacancy type. Defects
of this type are possibly frozen-in ‘‘leftovers” from the
mechanism responsible for the rearrangement of the block
sequences. The propagation of the dislocation dipole by
glide along the (0001) layer plane, accompanied by the
cooperative rearrangement of the titanium ions, results
in the widening of one block by one layer at the expense
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FIG. 23.

of the corresponding narrowing of the adjacent block.
During this motion the titanium ions only have to jump
into vacancies in the adjacent vacancy layer. Re-
arrangement of the block sequences can thus take place
easily at moderate temperatures since only very short
range diffusion of the titanium ions, coupled with the
conservative motion of a dislocation dipole, are required.
Such a mechanism allows us to understand the formation
of the surprisingly long sequences of perfectly ordered
complex block sequences.

12, DISCUSSION

The structures of the compounds La,Ti,0,; and
LagTi;0,; which were determined by means of X-ray pow-
der diffraction {24) have been confirmed by electron dif-
fraction and high resolution electron microscopy. More-
over, it was found that the building principle of these
structures can be generalized to a large series of homolo-
gous compounds of the general chemical composition La,
Tin_603rr'

Our observations have in particular demonstrated the
direct relationship between composition and stacking se-
quence in the system La, Ti, _;O,,. High resolution images
make it possible to “‘read” directly the local stacking
sequences. The sequence corresponding to the theoreti-
cal, average, composition is always the most abundant
one, but often not the only one; slightly different se-
quences are usually formed as well. This happens more

_often for the complicated multiblock sequences than for
the simpler monoblock sequences. For instance se-
quences such as 4445 and 445 were found in neighbouring

¥y ryr.oe

High resolution image suggesting the presence of a defect of the type illustrated in Fig. 22.

parts of the same sample. The sequence variability is
attributed to small inhomogeneities in the composition of
the samples; very long heat treatments would be required
to produce perfectly ordered structures with such long
periods.

The physical origin of long period structures is still a
matter of debate. Depending on the type of material differ-
ent driving forces for long period interface ordering have
been proposed. A model derived from the ANNNI model
(25), originally developed for magnetically ordered struc-
tures, has been successfully applied to a certain class of
long period antiphase boundary modulated alloys. The
model assumes competing interactions of opposite sign
between first and second nearest neighbors along one
direction. It has been applied to long period alloy struc-
tures containing periodic conservative antiphase bound-
aries such as Cu,Pd (27), Al-Ti (28), Au-Zn {29), and
Cu—Al (30). However in certain alloys the antiphase
boundaries are nonconservative and the structures are
mainly composition driven; this is, for instance, the case
for the Au—Mn (31) and the Ni-Mo systems {32).

Also, in the present materials, the formation of the long
pertod structures is undoubtedly composition driven since
the observed sequences depend directly on the chemical
composition. Variations in the stacking sequences within
the same crystal fragment are presumably due to slight
inhomogeneities in the composition; the materials may
not have been completely equilibrated.

The formation of complicated sequences such as 4445
can be understood in terms of the following simple qualita-
tive picture. The composition, and in particular the Ti**/
Ti** ratio determines the average separation of the inter-
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faces (i.e., of the layers of titanium vacancies). The ab-
sence of positive titanium ions along the interfaces causes
some net charge localized along these interfaces and
hence leads to a repulsive Coulomb type interaction be-
tween successive parallel interfaces. The interaction law
is presumably of the shielded Coulomb type. The equilib-
rium configuration of a set of parallel interfaces, inter-
acting by repulsive forces, which decrease faster than
linear with the interface separation, is the equidistant ar-
rangement (see appendix). However, due to the discrete
nature of the lattice, the interface separation can only
adopt values which are integer multiples of the interlayer
spacing. Very often the average separation imposed by
the composition will not be such an integer multipie. The
best approximation to an equidistant distribution is then
the sequence obtained by the ‘‘cut and projection”
method described above. This algorithm produces ‘‘uni-
form™ sequences which have a well defined long range
order and therefore produce a diffraction pattern have a
well defined long range order and therefore produce a
diffraction pattern consisting of sharp spots. The physical
rcalization of the uniform sequences could proceed by
the mechanism described above (Section 9.2).

13. CONCLUSIONS

The materials with composition La,Ti,_;O;, were
shown to form a homologous series of polytypoids or
mixed layer compounds having either hexagonal or rhom-
bohedral symmetry. Their structures can be derived from
that of cubic perovskite by introducing periodically intrin-
sic faults with a displacement vector % [1210],, in the cubic
stacking of close packed LaO, layers, leading to stacking
sequences of the type hce . . . ch. The octahedral inter-
stices formed exclusively by oxygen ions are occupied by
titanium ions, except for the central layers of octahedral in
the hexagonal triplets associated with the stacking faults,
which remain empty, making up for the nonstoichiometry.
The number n is equal to the number of La0, layers in
the repeat unit if 8 = 1. If 8 > 1 the period contains &
repeat units (or blocks) of two different thicknesses. The
following block sequences were observed in high resolu-
tion images made along the close packed directions; 4, 5,
6, 45, 445, 4445, 56. More complicated sequences such
as 44345 were deduced from the diffraction patterns. All
observed sequences are uniform, i.e., they exhibit long
range order and thus produce sharp diffraction spots. The
sequences, as well as all semiquantitative features of the
diffraction patiern can adequately be analyzed graphically
using the cut and projection method.

All compounds for which n is odd exhibit period dou-
bling. It was shown that the superperiod is due to tilting
of the octahedra about the c-axis accompanied by defor-
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mation. The tilt pattern occurs in all polytypoids, but it
gives rise to the presence of glide mirror planes only if n
is odd. The tilting and period doubling are confirmed by
high resolution imaging along the [1010] zone.

The deformation of the TiOg4 octahedra makes it possi-
ble to explain in a natural and consistent manner the
occurrence of glide mirror planes leading to extinctions
in the diffraction patterns of the different phases and in
particular the dependence on the parity of a.

Like many other titanates, the materials studied here
are presumably ferroic, either ferroelastic, ferroelectric,
or both, and transform into the idealized phases at the
critical temperature. If this is confirmed the space group
would be unambigeously defined as P3¢1 (No. 158). High
temperature electron diffraction experiments are under
way to verify the presence of this phase transition.

APPENDIX

Whatever be the interaction law, a sufficient condition
for equilibrium is that each interface in the sequence of
identical repelling interfaces should be symetrically sur-
rounded by similar parallel interfaces; i.e., an interface
at X must be surrounded by interfaces at X + x;; X =
(fy + )5 X £ (x; + x5, + x5 ... X = (2 x). The
same must of course apply to any other interface of the
sequence and in particular to the interfaces at X + «x,.
This implies that the interfaces at (X + x;) — x; and at
(X + x;) + x,, as well as those at (X + x;) — (x; + x3)
and at (X + x;) + (x, + x3), should be located symmetri-
cally with respect to the interface at X + x,. This implies
that /x;/ = /x,/; /x/ = [x3/; ... : le,, the separation
between successive interfaces must be constant.

A sufficient equilibrium condition is intuitively clear;
however, it is possible to prove analytically that it is also
a necessary condition for the case whereby the interaction
is assumed to be proportional to the inverse of the inter-
face separation. It is also assumed that the interfaces are
sufficiently numerous to allow a description in terms of
aninterface density function D(x) such that D(x} dx repre-
sents the number of interfaces in the interval x, x + dx,
where x is chosen perpendicular to the interfaces. We
further assume that the interfaces are present in the inter-
val - g = x = +a, 1.e., the average density is N/2a. The
force exerted on an interface at X, —a = X = +a, is
then proportional to

J'D(x) de/ (X — x) = 0. [1]

The integral equation (1) has a solution

D(x) = (n/m) (a® - xHV2,
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where use was made of the normalization condition that
the interval —a, +a contains n interfaces. This expres-
ston would for instance describe the interface distribution
in a crystal with a finite thickness 2« along the c-direction,
where the surfaces act as barriers for the outer interfaces
of the sequence. However, in practice, we observe only
a small fraction of a long sequence, somewhere in the
central part of the crystal. We are therefore more inter-
ested in a situation where n and 2a both go to infinity in
such a way that the ratio n/2a remains constant and equal
to the average interface density, whereas x remains finite;
under these conditions D(x) becomes a constant, i.e., the
interfaces separation is constant, confirming the intu-
itive reasoning.
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